H.3.7. Learning
Mohammad Rezaei; Mohsen Rezvani; Morteza Zahedi
Abstract
With the increasing interconnectedness of communications and social networks, graph-based learning techniques offer valuable information extraction from data. Traditional centralized learning methods faced challenges, including data privacy violations and costly maintenance in a centralized environment. ...
Read More
With the increasing interconnectedness of communications and social networks, graph-based learning techniques offer valuable information extraction from data. Traditional centralized learning methods faced challenges, including data privacy violations and costly maintenance in a centralized environment. To address these, decentralized learning approaches like Federated Learning have emerged. This study explores the significant attention Federated Learning has gained in graph classification and investigates how Model Agnostic Meta-Learning (MAML) can improve its performance, especially concerning non-IID (Non-Independent Identically Distributed) data distributions.In real-world scenarios, deploying Federated Learning poses challenges, particularly in tuning client parameters and structures due to data isolation and diversity. To address this issue, this study proposes an innovative approach using Genetic Algorithms (GA) for automatic tuning of structures and parameters. By integrating GA with MAML-based clients in Federated Learning, various aspects, such as graph classification structure, learning rate, and optimization function type, can be automatically adjusted. This novel approach yields improved accuracy in decentralized learning at both the client and server levels.
M. Khanzadi; H. Veisi; R. Alinaghizade; Z. Soleymani
Abstract
One of the main problems in children with learning difficulties is the weakness of phonological awareness (PA) skills. In this regard, PA tests are used to evaluate this skill. Currently, this assessment is paper-based for the Persian language. To accelerate the process of the assessments and make it ...
Read More
One of the main problems in children with learning difficulties is the weakness of phonological awareness (PA) skills. In this regard, PA tests are used to evaluate this skill. Currently, this assessment is paper-based for the Persian language. To accelerate the process of the assessments and make it engaging for children, we propose a computer-based solution that is a comprehensive Persian phonological awareness assessment system implementing expressive and pointing tasks. For the expressive tasks, the solution is powered by recurrent neural network-based speech recognition systems. To this end, various recognition modules are implemented, including a phoneme recognition system for the phoneme segmentation task, a syllable recognition system for the syllable segmentation task, and a sub-word recognition system for three types of phoneme deletion tasks, including initial, middle, and final phoneme deletion. The recognition systems use bidirectional long short-term memory neural networks to construct acoustic models. To implement the recognition systems, we designed and collected Persian Kid’s Speech Corpus that is the largest in Persian for children’s speech. The accuracy rate for phoneme recognition was 85.5%, and for syllable recognition was 89.4%. The accuracy rates of the initial, middle, and final phoneme deletion were 96.76%, 98.21%, and 95.9%, respectively.
P. Abdzadeh; H. Veisi
Abstract
Automatic Speaker Verification (ASV) systems have proven to bevulnerable to various types of presentation attacks, among whichLogical Access attacks are manufactured using voiceconversion and text-to-speech methods. In recent years, there has beenloads of work concentrating on synthetic speech detection, ...
Read More
Automatic Speaker Verification (ASV) systems have proven to bevulnerable to various types of presentation attacks, among whichLogical Access attacks are manufactured using voiceconversion and text-to-speech methods. In recent years, there has beenloads of work concentrating on synthetic speech detection, and with the arrival of deep learning-based methods and their success in various computer science fields, they have been a prevailing tool for this very task too. Most of the deep neural network-based techniques forsynthetic speech detection have employed the acoustic features basedon Short-Term Fourier Transform (STFT), which are extracted from theraw audio signal. However, lately, it has been discovered that the usageof Constant Q Transform's (CQT) spectrogram can be a beneficialasset both for performance improvement and processing power andtime reduction of a deep learning-based synthetic speech detection. In this work, we compare the usage of the CQT spectrogram and some most utilized STFT-based acoustic features. As lateral objectives, we consider improving the model's performance as much as we can using methods such as self-attention and one-class learning. Also, short-duration synthetic speech detection has been one of the lateral goals too. Finally, we see that the CQT spectrogram-based model not only outperforms the STFT-based acoustic feature extraction methods but also reduces the processing time and resources for detecting genuine speech from fake. Also, the CQT spectrogram-based model places wellamong the best works done on the LA subset of the ASVspoof 2019 dataset, especially in terms of Equal Error Rate.
R. Ghotboddini; H. Toossian Shandiz
Abstract
Lighting continuity is one of the preferences of citizens. Public lighting management from the viewpoint of city residents improves social welfare. The quality of lamps and duration of lighting defect correction is important in lighting continuity. In this regard, reward and penalty mechanism plays an ...
Read More
Lighting continuity is one of the preferences of citizens. Public lighting management from the viewpoint of city residents improves social welfare. The quality of lamps and duration of lighting defect correction is important in lighting continuity. In this regard, reward and penalty mechanism plays an important role in contract. Selecting labor and lamps has a significant impact on risk reduction during the contract period. This research improves strategies for public lighting asset management. The lifespan of lamp that announced by manufacturers is used to calculate maintenance cost in order to provide a possibility to estimate the actual cost of high-pressure sodium luminaire in public lighting system. Guarantee period of lamps and maximum permissible lighting defect detection and correction time is used for reward and penalty mechanism. The result shows that the natural life guarantee and permissible correction time have a considerable effect in maintenance cost and city resident’s satisfaction.
H.5. Image Processing and Computer Vision
Pouria Maleki; Abbas Ramazani; Hassan Khotanlou; Sina Ojaghi
Abstract
Providing a dataset with a suitable volume and high accuracy for training deep neural networks is considered to be one of the basic requirements in that a suitable dataset in terms of the number and quality of images and labeling accuracy can have a great impact on the output accuracy of the trained ...
Read More
Providing a dataset with a suitable volume and high accuracy for training deep neural networks is considered to be one of the basic requirements in that a suitable dataset in terms of the number and quality of images and labeling accuracy can have a great impact on the output accuracy of the trained network. The dataset presented in this article contains 3000 images downloaded from online Iranian car sales companies, including Divar and Bama sites, which are manually labeled in three classes: car, truck, and bus. The labels are in the form of 5765 bounding boxes, which characterize the vehicles in the image with high accuracy, ultimately resulting in a unique dataset that is made available for public use.The YOLOv8s algorithm, trained on this dataset, achieves an impressive final precision of 91.7% for validation images. The Mean Average Precision (mAP) at a 50% threshold is recorded at 92.6%. This precision is considered suitable for city vehicle detection networks. Notably, when comparing the YOLOv8s algorithm trained with this dataset to YOLOv8s trained with the COCO dataset, there is a remarkable 10% increase in mAP at 50% and an approximately 22% improvement in the mAP range of 50% to 95%.
A. Fakhari; K. Kiani
Abstract
Image restoration and its different variations are important topics in low-level image processing. One of the main challenges in image restoration is dependency of current methods to the corruption characteristics. In this paper, we have proposed an image restoration architecture that enables us to address ...
Read More
Image restoration and its different variations are important topics in low-level image processing. One of the main challenges in image restoration is dependency of current methods to the corruption characteristics. In this paper, we have proposed an image restoration architecture that enables us to address different types of corruption, regardless of type, amount and location. The main intuition behind our approach is restoring original images from abstracted perceptual features. Using an encoder-decoder architecture, image restoration can be defined as an image transformation task. Abstraction of perceptual features is done in the encoder part of the model and determines the sampling point within original images' Probability Density Function (PDF). The PDF of original images is learned in the decoder section by using a Generative Adversarial Network (GAN) that receives the sampling point from the encoder part. Concretely, sampling from the learned PDF restores original image from its corrupted version. Pretrained network extracts perceptual features and Restricted Boltzmann Machine (RBM) makes the abstraction over them in the encoder section. By developing a new algorithm for training the RBM, the features of the corrupted images have been refined. In the decoder, the Generator network restores original images from abstracted perceptual features while Discriminator determines how good the restoration result is. The proposed approach has been compared with both traditional approaches like BM3D and with modern deep models like IRCNN and NCSR. We have also considered three different categories of corruption including denoising, inpainting and deblurring. Experimental results confirm performance of the model.
Seyed Mahdi Sadatrasoul; Omid Mahdi Ebadati; Amir Amirzadeh Irani
Abstract
Companies have different considerations for using smoothing in their financial statements, including annual general meeting, auditing, Regulatory and Supervisory institutions and shareholders requirements. Smoothing is done based on the various possible and feasible choices in identifying company’s ...
Read More
Companies have different considerations for using smoothing in their financial statements, including annual general meeting, auditing, Regulatory and Supervisory institutions and shareholders requirements. Smoothing is done based on the various possible and feasible choices in identifying company’s incomes, costs, expenses, assets and liabilities. Smoothing can affect credit scoring models reliability, it can cause to providing/not providing facilities to a non-worthy/worthy organization orderly, which are both known as decision errors and are reported as “type I” and “type II” errors, which are very important for Banks Loan portfolio. This paper investigates this issue for the first time in credit scoring studies on the authors knowledge and searches. The data of companies associated with a major Asian Bank are first applied using logistic regression. Different smoothing scenarios are tested, using wilcoxon statistic indicated that traditional credit scoring models have significant errors when smoothing procedures have more than 20% change in adjusting company’s financial statements and balance sheets parameters.
H.3. Artificial Intelligence
Afrooz Moradbeiky; Farzin Yaghmaee
Abstract
Knowledge graphs are widely used tools in the field of reasoning, where reasoning is facilitated through link prediction within the knowledge graph. However, traditional methods have limitations, such as high complexity or an inability to effectively capture the structural features of the graph. The ...
Read More
Knowledge graphs are widely used tools in the field of reasoning, where reasoning is facilitated through link prediction within the knowledge graph. However, traditional methods have limitations, such as high complexity or an inability to effectively capture the structural features of the graph. The main challenge lies in simultaneously handling both the structural and similarity features of the graph. In this study, we employ a constraint satisfaction approach, where each proposed link must satisfy both structural and similarity constraints. For this purpose, each constraint is considered from a specific perspective, referred to as a view. Each view computes a probability score using a GRU-RNN, which satisfies its own predefined constraint. In the first constraint, the proposed node must have a probability of over 0.5 with frontier nodes. The second constraint computes the Bayesian graph, and the proposed node must have a link in the Bayesian graph. The last constraint requires that a proposed node must fall within an acceptable fault. This allows for N-N relationships to be accurately determined, while also addressing the limitations of embedding. The results of the experiments showed that the proposed method improved performance on two standard datasets.
A. Lakizadeh; E. Moradizadeh
Abstract
Text sentiment classification in aspect level is one of the hottest research topics in the field of natural language processing. The purpose of the aspect-level sentiment analysis is to determine the polarity of the text according to a particular aspect. Recently, various methods have been developed ...
Read More
Text sentiment classification in aspect level is one of the hottest research topics in the field of natural language processing. The purpose of the aspect-level sentiment analysis is to determine the polarity of the text according to a particular aspect. Recently, various methods have been developed to determine sentiment polarity of the text at the aspect level, however, these studies have not yet been able to model well complementary effects of the context and aspect in the polarization detection process. Here, we present ACTSC, a method for determining the sentiment polarity of the text based on separate embedding of aspects and context. In the first step, ACTSC deals with separate modelling of the aspects and context to extract new representation vectors. Next, by combining generative representations of aspect and context, it determines the corresponding polarity to each particular aspect using a short-term memory network and a self-attention mechanism. Experimental results in the SemEval2014 dataset in both restaurant and laptop categories show that ACTSC has been able to improve the accuracy of aspect-based sentiment classification compared to the latest proposed methods.
H. Sadr; Mir M. Pedram; M. Teshnehlab
Abstract
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted ...
Read More
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted a lot of attention and become mainstream in this field. Despite the remarkable success of deep learning models for sentiment analysis of text, they are in the early steps of development and their potential is yet to be fully explored. Convolutional neural network is one of the deep learning methods that has been surpassed for sentiment analysis but is confronted with some limitations. Firstly, convolutional neural network requires a large number of training data. Secondly, it assumes that all words in a sentence have an equal contribution to the polarity of a sentence. To fill these lacunas, a convolutional neural network equipped with the attention mechanism is proposed in this paper which not only takes advantage of the attention mechanism but also utilizes transfer learning to boost the performance of sentiment analysis. According to the empirical results, our proposed model achieved comparable or even better classification accuracy than the state-of-the-art methods.
H. Morshedlou; A.R. Tajari
Abstract
Edge computing is an evolving approach for the growing computing and networking demands from end devices and smart things. Edge computing lets the computation to be offloaded from the cloud data centers to the network edge for lower latency, security, and privacy preservation. Although energy efficiency ...
Read More
Edge computing is an evolving approach for the growing computing and networking demands from end devices and smart things. Edge computing lets the computation to be offloaded from the cloud data centers to the network edge for lower latency, security, and privacy preservation. Although energy efficiency in cloud data centers has been widely studied, energy efficiency in edge computing has been left uninvestigated. In this paper, a new adaptive and decentralized approach is proposed for more energy efficiency in edge environments. In the proposed approach, edge servers collaborate with each other to achieve an efficient plan. The proposed approach is adaptive, and consider workload status in local, neighboring and global areas. The results of the conducted experiments show that the proposed approach can improve energy efficiency at network edges. e.g. by task completion rate of 100%, the proposed approach decreases energy consumption of edge servers from 1053 Kwh to 902 Kwh.
H.3.9. Problem Solving, Control Methods, and Search
Zahra Jahan; Abbas Dideban; Farzaneh Tatari
Abstract
This paper introduces an adaptive optimal distributed algorithm based on event-triggered control to solve multi-agent discrete-time zero-sum graphical games for unknown nonlinear constrained-input systems with external disturbances. Based on the value iteration heuristic dynamic programming, the proposed ...
Read More
This paper introduces an adaptive optimal distributed algorithm based on event-triggered control to solve multi-agent discrete-time zero-sum graphical games for unknown nonlinear constrained-input systems with external disturbances. Based on the value iteration heuristic dynamic programming, the proposed algorithm solves the event-triggered coupled Hamilton-Jacobi-Isaacs equations assuming unknown dynamics to develop distributed optimal controllers and satisfy leader-follower consensus for agents interacting on a communication graph. The algorithm is implemented using the actor-critic neural network, and unknown system dynamics are approximated using the identifier network. Introducing and solving nonlinear zero-sum discrete-time graphical games in the presence of unknown dynamics, control input constraints and external disturbances, differentiate this paper from the previously published works. Also, the control input, external disturbance, and the neural network's weights are updated aperiodic and only at the triggering instants to simplify the computational process. The closed-loop system stability and convergence to the Nash equilibrium are proven. Finally, simulation results are presented to confirm theoretical findings.
H. Kalani; E. Abbasi
Abstract
Posterior crossbite is a common malocclusion disorder in the primary dentition that strongly affects masticatory function. To the best of the author’s knowledge, for the first time, this article presents a reasonable and computationally efficient diagnostic system for detecting characteristics ...
Read More
Posterior crossbite is a common malocclusion disorder in the primary dentition that strongly affects masticatory function. To the best of the author’s knowledge, for the first time, this article presents a reasonable and computationally efficient diagnostic system for detecting characteristics between children with and without unilateral posterior crossbite (UPCB) in the primary dentition from the surface electromyography (sEMG) activity of masticatory muscles. In this study, 40 children (4–6y) were selected and divided into UPCB (n = 20) and normal occlusion (NOccl; n = 20) groups. The preferred chewing side was determined using a visual spot-checking method. The chewing rate was determined as the average of two chewing cycles. The sEMG activity of the bilateral masticatory muscles was recorded during two 20-s gum-chewing sequences. The data of the subjects were diagnosed by the dentist. In this study, the fast Fourier transform (FFT) analysis was applied to sEMG signals recorded from subjects. The number of FFT coefficients had been selected by using Logistic Regression (LR) methodology. Then the ability of a multilayer perceptron artificial neural network (MLPANN) in the diagnosis of neuromuscular disorders in investigated. To find the best neuron weights and structures for MLPANN, particle swarm optimization (PSO) was utilized. Results showed the proficiency of the suggested diagnostic system for the classification of EMG signals. The proposed method can be utilized in clinical applications for diagnoses of unilateral posterior crossbite.
Seyedeh H. Erfani
Abstract
Facial expressions are part of human language and are often used to convey emotions. Since humans are very different in their emotional representation through various media, the recognition of facial expression becomes a challenging problem in machine learning methods. Emotion and sentiment analysis ...
Read More
Facial expressions are part of human language and are often used to convey emotions. Since humans are very different in their emotional representation through various media, the recognition of facial expression becomes a challenging problem in machine learning methods. Emotion and sentiment analysis also have become new trends in social media. Deep Convolutional Neural Network (DCNN) is one of the newest learning methods in recent years that model a human's brain. DCNN achieves better accuracy with big data such as images. In this paper an automatic facial expression recognition (FER) method using the deep convolutional neural network is proposed. In this work, a way is provided to overcome the overfitting problem in training the deep convolutional neural network for FER, and also an effective pre-processing phase is proposed that is improved the accuracy of facial expression recognition. Here the results for recognition of seven emotional states (neutral, happiness, sadness, surprise, anger, fear, disgust) have been presented by applying the proposed method on the two largely used public datasets (JAFFE and CK+). The results show that in the proposed method, the accuracy of the FER is better than traditional FER methods and is about 98.59% and 96.89% for JAFFE and CK+ datasets, respectively.
F. Amiri; S. Abbasi; M. Babaie mohamadeh
Abstract
During the COVID-19 crisis, we face a wide range of thoughts, feelings, and behaviors on social media that play a significant role in spreading information regarding COVID-19. Trustful information, together with hopeful messages, could be used to control people's emotions and reactions during pandemics. ...
Read More
During the COVID-19 crisis, we face a wide range of thoughts, feelings, and behaviors on social media that play a significant role in spreading information regarding COVID-19. Trustful information, together with hopeful messages, could be used to control people's emotions and reactions during pandemics. This study examines Iranian society's resilience in the face of the Corona crisis and provides a strategy to promote resilience in similar situations. It investigates posts and news related to the COVID-19 pandemic in Iran, to determine which messages and references have caused concern in the community, and how they could be modified? and also which references were the most trusted publishers? Social network analysis methods such as clustering have been used to analyze data. In the present work, we applied a two-stage clustering method constructed on the self-organizing map and K-means. Because of the importance of social trust in accepting messages, This work examines public trust in social posts. The results showed trust in the health-related posts was less than social-related and cultural-related posts. The trusted posts were shared on Instagram and news sites. Health and cultural posts with negative polarity affected people's trust and led to negative emotions such as fear, disgust, sadness, and anger. So, we suggest that non-political discourses be used to share topics in the field of health.
A. Alijamaat; A. Reza NikravanShalmani; P. Bayat
Abstract
Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small ...
Read More
Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small sizes of lesions, their dispersion in the brain, similarity of lesions to some other diseases, and their overlap can lead to the misdiagnosis. Automatic image detection methods as auxiliary tools can increase the diagnosis accuracy. To this end, traditional image processing methods and deep learning approaches have been used. Deep Convolutional Neural Network is a common method of deep learning to detect lesions in images. In this network, the convolution layer extracts the specificities; and the pooling layer decreases the specificity map size. The present research uses the wavelet-transform-based pooling. In addition to decomposing the input image and reducing its size, the wavelet transform highlights sharp changes in the image and better describes local specificities. Therefore, using this transform can improve the diagnosis. The proposed method is based on six convolutional layers, two layers of wavelet pooling, and a completely connected layer that had a better amount of accuracy than the studied methods. The accuracy of 98.92%, precision of 99.20%, and specificity of 98.33% are obtained by testing the image data of 38 patients and 20 healthy individuals.
Mohammad Reza Keyvanpour; Zahra Karimi Zandian; Nasrin Mottaghi
Abstract
Regression testing reduction is an essential phase in software testing. In this step, the redundant and unnecessary cases are eliminated, whereas software accuracy and performance are not degraded. So far, various researches have been proposed in regression testing reduction field. The main challenge ...
Read More
Regression testing reduction is an essential phase in software testing. In this step, the redundant and unnecessary cases are eliminated, whereas software accuracy and performance are not degraded. So far, various researches have been proposed in regression testing reduction field. The main challenge in this area is to provide a method that maintain fault-detection capability while reducing test suites. In this paper, a new test suite reduction technique is proposed based on data mining. In this method, in addition to test suite reduction, its fault-detection capability is preserved using both clustering and classification. In this approach, regression test cases are reduced using a bi-criteria data mining-based method in two levels. In each level, the different and useful coverage criteria and clustering algorithms are used to establish a better compromise between test suite size and the ability of reduced test suite fault detection. The results of the proposed method have been compared to the effects of five other methods based on PSTR and PFDL. The experiments show the efficiency of the proposed method in the test suite reduction in maintaining its capability in fault detection.
H.3. Artificial Intelligence
Ali Rebwar Shabrandi; Ali Rajabzadeh Ghatari; Mohammad Dehghan nayeri; Nader Tavakoli; Sahar Mirzaei
Abstract
This study proposes a high-level design and configuration for an intelligent dual (hybrid and private) blockchain-based system. The configuration includes the type of network, level of decentralization, nodes, and roles, block structure information, authority control, and smart contracts and intended ...
Read More
This study proposes a high-level design and configuration for an intelligent dual (hybrid and private) blockchain-based system. The configuration includes the type of network, level of decentralization, nodes, and roles, block structure information, authority control, and smart contracts and intended to address the two main categories of challenges–operation management and data management–through three intelligent modules across the pandemic stages. In the pre-hospital stage, an intelligent infection prediction system is proposed that utilizes in-house data to address the lack of a simple, efficient, agile, and low-cost screening method for identifying potentially infected individuals promptly and preventing the overload of patients entering hospitals. In the in-hospital stage, an intelligent prediction system is proposed to predict infection severity and hospital Length of Stay (LoS) to identify high-risk patients, prioritize them for receiving care services, and facilitate better resource allocation. In the post-hospital stage, an intelligent prediction system is proposed to predict the reinfection and readmission rates, to help reduce the burden on the healthcare system and provide personalized care and follow-up for higher-risk patients. In addition, the distribution of limited Personal protective equipment (PPE) is made fair using private blockchain (BC) and smart contracts. These modules were developed using Python and utilized to evaluate the performance of state-of-the-art machine learning (ML) techniques through 10-fold cross-validation at each stage. The most critical features were plotted and analyzed using SHapely Adaptive exPlanations (SHAP). Finally, we explored the implications of our system for both research and practice and provided recommendations for future enhancements.
Seyedeh S. Sadeghi; H. Khotanlou; M. Rasekh Mahand
Abstract
In the modern age, written sources are rapidly increasing. A growing number of these data are related to the texts containing the feelings and opinions of the users. Thus, reviewing and analyzing of emotional texts have received a particular attention in recent years. A System which is based on combination ...
Read More
In the modern age, written sources are rapidly increasing. A growing number of these data are related to the texts containing the feelings and opinions of the users. Thus, reviewing and analyzing of emotional texts have received a particular attention in recent years. A System which is based on combination of cognitive features and deep neural network, Gated Recurrent Unit has been proposed in this paper. Five basic emotions used in this approach are: anger, happiness, sadness, surprise and fear. A total of 23,000 Persian documents by the average length of 24 have been labeled for this research. Emotional constructions, emotional keywords, and emotional POS are the basic cognitive features used in this approach. On the other hand, after preprocessing the texts, words of normalized text have been embedded by Word2Vec technique. Then, a deep learning approach has been done based on this embedded data. Finally, classification algorithms such as Naïve Bayes, decision tree, and support vector machines were used to classify emotions based on concatenation of defined cognitive features, and deep learning features. 10-fold cross validation has been used to evaluate the performance of the proposed system. Experimental results show the proposed system achieved the accuracy of 97%. Result of proposed system shows the improvement of several percent’s in comparison by other results achieved GRU and cognitive features in isolation. At the end, studying other statistical features and improving these cognitive features in more details can affect the results.
V. Fazel Asl; B. Karasfi; B. Masoumi
Abstract
In this article, we consider the problems of abnormal behavior detection in a high-crowded environment. One of the main issues in abnormal behavior detection is the complexity of the structure patterns between the frames. In this paper, social force and optical flow patterns are used to prepare the system ...
Read More
In this article, we consider the problems of abnormal behavior detection in a high-crowded environment. One of the main issues in abnormal behavior detection is the complexity of the structure patterns between the frames. In this paper, social force and optical flow patterns are used to prepare the system for training the complexity of the structural patterns. The cycle GAN system has been used to train behavioral patterns. Two models of normal and abnormal behavioral patterns are used to evaluate the accuracy of the system detection. In the case of abnormal patterns used for training, due to the lack of this type of behavioral pattern, which is another challenge in detecting the abnormal behaviors, the geometric techniques are used to augment the patterns. If the normal behavioral patterns are used for training, there is no need to augment the patterns because the normal patterns are sufficient. Then, by using the cycle generative adversarial nets (cycle GAN), the normal and abnormal behaviors training will be considered separately. This system produces the social force and optical flow pattern for normal and abnormal behaviors on the first and second sides. We use the cycle GAN system both to train behavioral patterns and to assess the accuracy of abnormal behaviors detection. In the testing phase, if normal behavioral patterns are used for training, the cycle GAN system should not be able to reconstruct the abnormal behavioral patterns with high accuracy.
M. Asgari-Bidhendi; B. Janfada; O. R. Roshani Talab; B. Minaei-Bidgoli
Abstract
Named Entity Recognition (NER) is one of the essential prerequisites for many natural language processing tasks. All public corpora for Persian named entity recognition, such as ParsNERCorp and ArmanPersoNERCorpus, are based on the Bijankhan corpus, which is originated from the Hamshahri newspaper in ...
Read More
Named Entity Recognition (NER) is one of the essential prerequisites for many natural language processing tasks. All public corpora for Persian named entity recognition, such as ParsNERCorp and ArmanPersoNERCorpus, are based on the Bijankhan corpus, which is originated from the Hamshahri newspaper in 2004. Correspondingly, most of the published named entity recognition models in Persian are specially tuned for the news data and are not flexible enough to be applied in different text categories, such as social media texts. This study introduces ParsNER-Social, a corpus for training named entity recognition models in the Persian language built from social media sources. This corpus consists of 205,373 tokens and their NER tags, crawled from social media contents, including 10 Telegram channels in 10 different categories. Furthermore, three supervised methods are introduced and trained based on the ParsNER-Social corpus: Two conditional random field models as baseline models and one state-of-the-art deep learning model with six different configurations are evaluated on the proposed dataset. The experiments show that the Mono-Lingual Persian models based on Bidirectional Encoder Representations from Transformers (MLBERT) outperform the other approaches on the ParsNER-Social corpus. Among different Configurations of MLBERT models, the ParsBERT+BERT-TokenClass model obtained an F1-score of 89.65%.
Z. Nazari; H.R. Koohi; J. Mousavi
Abstract
Nowadays, with the expansion of the internet and its associated technologies, recommender systems have become increasingly common. In this work, the main purpose is to apply new deep learning-based clustering methods to overcome the data sparsity problem and increment the efficiency of recommender systems ...
Read More
Nowadays, with the expansion of the internet and its associated technologies, recommender systems have become increasingly common. In this work, the main purpose is to apply new deep learning-based clustering methods to overcome the data sparsity problem and increment the efficiency of recommender systems based on precision, accuracy, F-measure, and recall. Within the suggested model of this research, the hidden biases and input weights values of the extreme learning machine algorithm are produced by the Restricted Boltzmann Machine and then clustering is performed. Also, this study employs the ELM for two approaches, clustering of training data and determine the clusters of test data. The results of the proposed method evaluated in two prediction methods by employing average and Pearson Correlation Coefficient in the MovieLens dataset. Considering the outcomes, it can be clearly said that the suggested method can overcome the problem of data sparsity and achieve higher performance in recommender systems. The results of evaluation of the proposed approach indicate a higher rate of all evaluation metrics while using the average method results in rates of precision, accuracy, recall, and F-Measure come to 80.49, 83.20, 67.84 and 73.62 respectively.
Zahra Asghari Varzaneh; Soodeh Hosseini
Abstract
This paper proposed a fuzzy expert system for diagnosing diabetes. In the proposed method, at first, the fuzzy rules are generated based on the Pima Indians Diabetes Database (PIDD) and then the fuzzy membership functions are tuned using the Harris Hawks optimization (HHO). The experimental data set, ...
Read More
This paper proposed a fuzzy expert system for diagnosing diabetes. In the proposed method, at first, the fuzzy rules are generated based on the Pima Indians Diabetes Database (PIDD) and then the fuzzy membership functions are tuned using the Harris Hawks optimization (HHO). The experimental data set, PIDD with the age group from 25-30 is initially processed and the crisp values are converted into fuzzy values in the stage of fuzzification. The improved fuzzy expert system increases the classification accuracy which outperforms several famous methods for diabetes disease diagnosis. The HHO algorithm is applied to tune fuzzy membership functions to determine the best range for fuzzy membership functions and increase the accuracy of fuzzy rule classification. The experimental results in terms of accuracy, sensitivity, and specificity prove that the proposed expert system has a higher ability than other data mining models in diagnosing diabetes.
M. Saffarian; V. Babaiyan; K. Namakin; F. Taheri; T. Kazemi
Abstract
Today, Metabolic Syndrome in the age group of children and adolescents has become a global concern. In this paper, a data mining model is used to determine a continuous Metabolic Syndrome (cMetS) score using Linear Discriminate Analysis (cMetS-LDA). The decision tree model is used to specify the calculated ...
Read More
Today, Metabolic Syndrome in the age group of children and adolescents has become a global concern. In this paper, a data mining model is used to determine a continuous Metabolic Syndrome (cMetS) score using Linear Discriminate Analysis (cMetS-LDA). The decision tree model is used to specify the calculated optimal cut-off point cMetS-LDA. In order to evaluate the method, multilayer perceptron neural network (NN) and Support Vector Machine (SVM) models were used and statistical significance of the results was tested with Wilcoxon signed-rank test. According to the results of this test, the proposed CART is significantly better than the NN and SVM models. The ranking results in this study showed that the most important risk factors in making cMetS-LDA were WC, SBP, HDL and TG for males and WC, TG, HDL and SBP for females. Our research results show that high TG and central obesity have the greatest impact on MetS and FBS has no effect on the final prognosis. The results also indicate that in the preliminary stages of MetS, WC, HDL and SBP are the most important influencing factors that play an important role in forecasting.
H.3. Artificial Intelligence
Seyed Alireza Bashiri Mosavi; Mohsen Javaherian; Omid Khalaf Beigi
Abstract
One way of analyzing COVID-19 is to exploit X-ray and computed tomography (CT) images of the patients' chests. Employing data mining techniques on chest images can provide in significant improvements in the diagnosis of COVID-19. However, in feature space learning of chest images, there exists a large ...
Read More
One way of analyzing COVID-19 is to exploit X-ray and computed tomography (CT) images of the patients' chests. Employing data mining techniques on chest images can provide in significant improvements in the diagnosis of COVID-19. However, in feature space learning of chest images, there exists a large number of features that affect COVID-19 identification performance negatively. In this work, we aim to design the dual hybrid partial-oriented feature selection scheme (DHPFSS) for selecting optimal features to achieve high-performance COVID-19 prediction. First, by applying the Zernike function to the data, moments of healthy chest images and infected ones were extracted. After Zernike moments (ZMs) segmentation, subsets of ZMs (SZMs1:n) are entered into the DHPFSS to select SZMs1:n-specific optimal ZMs (OZMs1:n). The DHPFSS consists of the filter phase and dual incremental wrapper mechanisms (IWMs), namely incremental wrapper subset selection (IWSS) and IWSS with replacement (IWSSr). Each IWM is fed by ZMs sorted by filter mechanism. The dual IWMs of DHPFSS are accompanied with the support vector machine (SVM) and twin SVM (TWSVM) classifiers equipped with radial basis function kernel as SVMIWSSTWSVM and SVMIWSSrTWSVM blocks. After selecting OZMs1:n, the efficacy of the union of OZMs1:n is evaluated based on the cross-validation technique. The obtained results manifested that the proposed framework has accuracies of 98.66%, 94.33%, and 94.82% for COVID-19 prediction on COVID-19 image data (CID) including 1CID, 2CID, and 3CID respectively, which can improve accurate diagnosis of illness in an emergency or the absence of a specialist.