[1] D. G. Sullivan, “Using probabilistic reasoning to University, automate software tuning (Doctoral Dissertation) ”, Harvard Cambridge, Massachusetts, 2003.
[2] T. Vodopive, S. Samothrakis and B. Šter, “On Monte Carlo Tree Search and Reinforcement Learning, Journal of Artificial Intelligence Research”, vol. 60, pp. 881–936, 2017, doi: 10.1613/jair.5507, 2007.
[3] T. Li, Z. Chunqiu, Y. Jiang, W. Zhou, L. Tang, Z. Liu, & Y. Huang. , “Data-Driven Techniques in Computing System Management”, ACM Computing Surveys, vol. 50, no. 3, pp. 45–88, 2017.
[4] A. O. Omondi, I. A. Lukandu and G. W. Wanyembi , “A Selection Variation for Improved Throughput and Accuracy of Monte Carlo Tree Search Algorithms”, IJCIT, vol. 7, no. 6, pp. 286–294, Jul. 2018.
[5] A. Bousdekis, B. Magoutas, D. Apostolou and G. , “Mentzas A proactive decision making framework for condition-based maintenance”, Industrial Management & Data Systems, vol. 115, no. 7, pp. 1225–1250, 2015, doi: 10.1108/imds-03-2015-0071, 2015.
[6] U. K. Chajewska, D. Koller and R. Parr, R, “Making rational decisions using adaptive utility elicitation”, in American Association for Artificial Intelligence, 2000, pp. 363–369, 2000.
[7] G. Su, T. Chen, Y. Feng, D. S. Rosenblum and P. S. Thiagaranj, “An iterative decision-making scheme for Markov decision processes and its application to self-adaptive systems”, presented at the 19th International Conference Fundamental Approaches to Software Engineering (FASE 2016), Eindhoven, Netherlands, 2016.
[8] B. Hjørland, “Empiricism, rationalism and positivism in library and information science”, Journal of documentation, vol. 61, no. 1, pp. 130–155, 2005, doi: 10.1108/00220410510578050.
[9] T. Lemke, “Varieties of materialism, ”BioSocieties, vol. 10, no. 4, pp. 490–495, 2015, doi: 10.1057/biosoc.2015.41.
[10] P. Sanders, “Algorithm engineering: An attempt at a definition, in Efficient Algorithms: Lecture Notes in Computer Science”, S. Albers, H. Alt, and S. Naher, Eds. Heidelberg, Berlin: Springer-Verlag, 2009, pp. 321–340.
[11] R. Kitchin, “Thinking critically about and researching algorithms”, Information, Communication & Society, vol. 20, no. 1, pp. 14–29, 2017, doi: 10.1080/1369118X.2016.1154087.
[12] F. Desprez, G. Fox, E. Jeannot, K. Keahey, M. Kozuch, D. Margery, et al. , “ Supporting experimental computer science”, Argonne National Laboratory, Rocquencourt, France, Technical Memo 362, 2012.
[13] D. Van Aken, A. Pavlo, G. J. Gordon and B. Zhang, “Automatic Database Management System Tuning through Large-Scale Machine Learning”, presented at the ACM International Conference on Management of Data, Chicago, IL, USA, 2017, pp. 1009–1024, doi: 10.1145/3035918.3064029.
[14] S. W. Cheng and D. Garlan, “Stitch: A language for architecture-based self-adaptation”, Journal of Systems and Software, vol. 85, no. 12, pp. 2860–2875, 2012.
[15] J. O. Kephart and D. M. Chess, “The vision of autonomic computing”, Computer, vol. 36, no. 1, pp. 41–50, 2003.
[16] H. D. Autor, “Why are there still so many jobs? The history and future of workplace automation”, The Journal of Economic Perspectives, vol. 29, no. 3, pp. 3–30, 2015, doi: 10.1257/jep.29.3.3.
[17] J. W. Kim, S. H. Cho and I. M. Kim, “Workload-Based column partitioning to efficiently process data warehouse query”, International Journal of Applied Engineering Research, vol. 11, no. 2, pp. 917–921, 2016.
[18] S. Chaudhuri and V. Narasayya, “Self-Tuning Database Systems: A Decade of Progress”, in Proceedings of the 33rd international conference on Very Large Databases, 2007, pp. 3–14.