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 Scouring, occurring when the water flow erodes the bed materials 

around the bridge pier structure, is a serious safety assessment problem 

for which there are many equations and models available in the 

literature in order to estimate the approximate scour depth. This 

research work is aimed to study how the surrogate models estimate the 

scour depth around circular piers, and compare the results with those 

of the empirical formulations. To this end, the pier scour depth is 

estimated in non-cohesive soils based on a sub-critical flow and live 

bed conditions using the artificial neural networks (ANNs), group 

method of data handling (GMDH), multivariate adaptive regression 

splines (MARS), and Gaussian process models (Kriging). A database 

containing 246 lab data gathered from various studies is formed, and 

the data is divided into three random parts: 1) training, 2) validation, 

and 3) testing in order to build the surrogate models. The statistical 

error criteria such as the coefficient of determination (R
2
), root mean 

squared error (RMSE), mean absolute percentage error (MAPE), and 

absolute maximum percentage error (MPE) of the surrogate models are 

then found and compared with those of the popular empirical 

formulations. The results obtained reveal that the surrogate models‘ 

test data estimations are more accurate than those of the empirical 

equations; Kriging has better estimations than the other models. In 

addition, the sensitivity analyses of all the surrogate models show that 

the pier width‘s dimensionless expression (b/y) has a greater effect on 

estimating the normalized scour depth (Ds/y). 
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1. Introduction 

The bridge pier local scour, which is a vital 

limiting factor involved to assign the minimum 

substructure depth, is the removal of the river bed 

materials from around the pier foundation. This 

issue is important because if the scour depth is 

overestimated, the result will be an increased 

foundation depth, and an increased pier base 

design depth, and hence, the increased project 

implementation costs; and if it is underestimated, 

there will be an increased bridge destruction risk. 

Shirhole and Holt [1] believed that the bridge 

failure due to hydraulic factors (scour, ice, and 

debris) was more serious compared to the other 

factors involved (overloading, collision, structural 

details, earthquake, etc.). Therefore, a correct 

estimation of this phenomenon is a very effective 

parameter in bridge safety evaluations. However, 

due to the natural complexity of the phenomenon 

and thus its modeling, many researchers such as 

Breusers et al. [2], Melville & Coleman [3], 

Richardson & Davis [4], and Sheppard & Miller 

[5] studied the case and proposed different 

empirical relations based on a specific dataset and 

different input variables. The important point is 
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that most of the existing models do not yield a 

proper estimation accuracy, and often provide 

different, highly conservative, and overestimated 

scour depths. Therefore, their estimations of the 

maximum scour depth are not satisfactory, and 

their use in the design of real-world cases is 

unreliable since it generally leads to higher 

foundation design costs [6].  

Since different sources have stated that a single 

reliable equation does not exist in order to 

estimate the scour depth for various ranges, 

alternative methods (e.g. surrogate modeling) 

have been widely used, and have become effective 

tools to provide more accuracy in the hydraulic 

design problems. Although they have performed 

much better than the methods that are mostly 

regression-based, some of them cannot provide an 

explicit relation between the scour depth and its 

decision variables [7, 8]. 

ANNs, MARS, GMDH, and Kriging find 

relations between a set of effective variables as 

the model inputs and the local scour depth as the 

target variable. Many studies have shown the 

efficiency of these methods in the engineering 

problems, and many researchers ([9-13]) have 

used them successfully to solve the hydraulic 

problems.  

In order to estimate the scour depth, the 

researchers have used different ANNs, GMDH 

MARS, and Kriging models. Bateni et al. [7] have 

applied MLP/BP (multi-layer perception) and 

RBF/OLS (radial basis) (two ANN models) along 

with ANFIS (adaptive neuro-fuzzy inference 

system) and numerous lab data in order to 

estimate the scour depth around bridge piers by 

modeling the equilibrium scour depth as a 

function of five variables including the flow 

depth, mean velocity, critical flow velocity, mean 

grain diameter, and pier diameter. In order to 

check the estimation accuracy of the mentioned 

models, their results have been compared with 

those of 8 other empirical relations, and it has 

been confirmed that the proposed approaches are 

much more accurate in estimating the scour depth. 

Firat and Gungor [14] have studied the ANN‘s 

ability in order to estimate the scour depth around 

circular bridge piers, have compared the results 

obtained with those of the empirical formulae, and 

have shown that the Generalized Regression 

Neural Network (GRNN) model can not only do 

the task successfully but is also more reliable and 

accurate. 

Najafzadeh et al. [15] have compared the results 

of the GMDH network and the traditional 

equations for estimation of the scour depth in 

cohesive soils, proving that the former is much 

more successful than the latter. 

Bateni et al. [8] have utilized the GEP (genetic 

expression programming) and MARS models in 

order to estimate the equilibrium scour depth 

around pile groups; they compared their 

performance with those of the empirical equations 

and showed that they could estimate the 

equilibrium scour depth more accurately than the 

existing equations; MARS was more accurate than 

GEP. 

The studies that have evaluated the performance 

of these models in order to estimate the scour 

depth are numerous; however, Kriging has not 

been widely used so far in this domain. In order to 

show its capabilities in other fields, Qin et al. [16] 

have successfully applied a hybrid Kriging model-

genetic algorithm to modify the FEM (finite 

element method) analyses of complex bridge 

structures, showing that the Kriging surrogate 

model performed well in estimating the structural 

response and reducing the computational costs. 

Fan et al. [17] have examined if the Kriging 

surrogate models could optimally design crane-

bridge systems based on reliability, showing that 

it could considerably improve the computational 

efficiency with a good accuracy. Lu et al. [18] 

have used the Kriging model in to estimate the 

bridge static load, showing that Kriging has a 

good accuracy, and the results obtained conform 

well to those of the static load tests. Therefore, the 

above-mentioned studies and their results show 

that the performance and effectiveness of the 

proposed method are acceptable for the estimation 

or optimization purpose. 

In this work, we investigated the efficiency of the 

Kriging model in comparison with the GMDH, 

ANN, and MARS models, and some existing 

traditional equations in order to estimate the pier 

scour depth under live bed conditions with 

uniform sediments in non-cohesive soils 

considering the influence of the effective 

parameters on the performance of the surrogate 

models to estimate the scour depth. 

 

2. Local Scour Around a Pier and Data 

Collection 

Soil materials are eroded from around bridge piers 

or other hydraulic structures built in flowing 

water. Since this sediment removal (also called 

local scouring) phenomenon, due to the flow-pier 

interaction (figure 1), is a main bridge-failure 

factor, because it undermines the foundation, we 

are required to precisely estimate the pier-vicinity 

scour hole in order to take the necessary measures 

to prevent the structure from erosion-related 
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failures all through its service life. Nevertheless, 

since the pier obstruction and sediment erosion, 

which form the scour hole, are complicated 

interactions between different fluid flow patterns 

and the scour affecting variables are many, 

making a dependable numerical/analytical model 

that can consider different inter-related controlling 

factors, without having to oversimplify the case, is 

not easy. The local scour depth estimation is not 

possible by an accurate method; hence, empirical 

methods are used for this purpose since different 

designers have varied opinions and use different 

equations. Since this issue depends on such 

parameters as the fluid, flow, bed sediment, and 

pier geometry, many research works have been 

done by many colleagues in order to investigate 

the factors that affect the scour depth around 

bridge piers. 

 
Figure 1. Sketch of local scour of pier. 

After Azamathulla et al. [19] compared the GP 

performance with those of ANNs and regression 

equations and concluded that the former was more 

effective, they used it as an alternative to HEC-18 

(conventional regression-based equations) in order 

to find the scouring of bridge piers.   

They expressed the factors affecting the 

equilibrium scour depth at piers as a function of 

the following variables: 

(1)  50s f V, y,  D ,   ,  b,L,g D 
 

where V and y are the approach flow velocity and 

depth, respectively, D50 is the mean particle 

diameter, ơ is the standard deviation of the grain 

size distribution, b and L are the pier width and 

length, respectively, and g is the gravity-caused 

acceleration. 

Since the non-dimensional parameters yielded 

better scour depth estimations than the 

dimensional ones, some papers [20-22] analyzed 

models with a non-dimensional dataset and found 

the following equation with 5 decision variables 

using the dimensional analysis method:  

(2) 
s 50

r

D Db L
f F , , , ,  

y y y y


 
  

   

where Ds/y, b/y, D50/y, L/y, Fr, and ơ are the scour 

depth, pier width, mean particle diameter, pier 

length (all non-dimensional), Froude number, and 

standard deviation of the grain size distribution, 

respectively.  

Hence, the decision variables are, next, reduced as 

follows using the dimensional analysis technique: 

(3)  s 50D f V, y,  D ,   ,  b,g 
 

Hence, using the circular-section piers in this 

work led to their equilibrium scour depth to be a 

function of the variables mentioned below: 

(4) 
s 50

r

D Db
f F , , ,  

y y y


 
  

  
The above parameters were used in order to 

develop the surrogate models and the results 

obtained were compared with those of four 

empirical equations in order to evaluate the 

efficiency of the developed models. The selected 

equations (table 1) included: 1) modified HN/GC 

[23], 2) Laursen and Toch [24], 3) Johnson [25], 

and 4) FHWA HEC-18 [26] (based on the 

Colorado State University ‗CSU‘ Equation). 

Tables 2 and 3 show the surrogate models 

developed for uniform sand bed materials using a 
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dataset of totally 246 cases, out of which 99 were 

reported by Chiew [27], 75 by Chabert and 

Engeldinger [28], 50 by Chee [29], 15 by Jain and 

Fischer [30, 31], and 7 by Chen [32], all gathered 

through observations of live bed scour (V > Vc) 

and a sub-critical flow regime (Fr < 1). Since the 

armoring phenomenon would probably occur at ơ 

> 1.3, lower values (ơ < 1.3) were considered 

[33]. 
 

Table 1. Empirical methods used for comparison. 

Reference Equation Notes 

Laursen and Toch (1956)  0.7 0.31.35sD b y
 

 

Johnson (1992)  
0.98 0.21 ( 0.24)2.02 ( )s r

b
D y F

y
 

 

84

50

D

D
 

 

CSU (1993)  
0.65 43

1 2 3 4

0.2.0 ( )s
r

D b
K K K K F

y y


 

r

V
F

gy


 

modified HN/GC (2016)  
2

1 2 30.62 0.38 1.5
1.32 [ ( )]

1.97

sD H
K K K tanh

b y 


 50( )g

V
H

g S D


 
 

where: 

Ds = Predicted pier scour depth; 

σ = Sediment gradation coefficient; 

Fr = Approach flow Froude number defined as 

H = Hager number (densimetric particle Froude 

number (Fr)); 

b = Pier width; 

y = Approach flow depth; 

D84 = Sediment diameters for which 84% of the 

sediment material is finer; 
 

D50 = Median grain size; 

K1 and K2 = Correction coefficient pier nose 

shape and flow angle of attack, respectively. For a 

circular pier, both K1 and K2 are equal to one; 

K3 = Correction factor for bed conditions (for 

clear water (K3 = 1.1) and live bed (1.1 ≤ K3 ≤ 

1.3); 

V = Mean approach velocity; 

g = Gravitational acceleration 

Sg = Specific gravity of the sediment 

 
Table 2. Data sources. 

Source Chiew (1984) Chabert and Engeldinger (1956) Chee (1982) Jain and Fischer (1979,1980) Chen (1980) SUM 

Number Of Data 99 75 50 15 7 246 

Table 3. Range of data. 

Parameters Maximum Average Minimum Std. Deviation 

Fr 0.999 0.606 0.201 0.214 

ơ 1.28 1.185 1.094 0.048 

D50/y 0.035 0.008 0.0015 0.007 

b/y 1.50 0.513 0.132 0.342 

Ds/y 1.75 0.669 0.156 0.365 

Figure 2 shows the input-output variable 

correlationship assessed through the Pearson 

correlation analysis. Here, heatmaps represent the 

absolute values of the correlation coefficients. 

Those in yellow/pink mean strong 

positive/negative inter-variable correlations. Since 

b/y has the highest correlation, b/y-Ds/y has a 

strong positive linear correlationship; that of other 

input-output variables is negligible. 



Estimating Pier Scour Depth: Comparison of Empirical Formulations with ANNs, GMDH, MARS, and Kriging 

113 
 

 
Figure 2. Heatmap of correlationship between the input and output variables. 

3. Surrogate Models and Statistical 

Performance Measures 

Surrogate (Meta) models are used in order to 

simulate and find the relationships between the 

different input variables and how they affect the 

outputs in complex models. The general steps in 

building a surrogate model are: 1) 

Generating/defining its input parameters and their 

variation range, 2) Determining its structure/type, 

3) Estimating its training parameters, and 4) 

Evaluating its performance [34]. 

Since the accuracy/success of these methods 

highly depends on the data points and sample 

locations, the database was randomly divided 

(figure 3) into: 1) A training subset (with 172 data 

or 70%) to construct the surrogate model and 

avoid overfitting, 2) A validation subset (with 37 

data or 15%) in order to evaluate the model‘s 

generalization capability, check its performance 

throughout the training stage, and finally, 

determine the model‘s optimum input parameters, 

and 3) A test subset (with 37 data or 15%) to 

evaluate the performance of the developed 

surrogate models through comparisons with the 

existing empirical equations. 

 

 
 Figure 3. Properties of dataset used for estimating Ds/y.

In this work, we used the ANNs, GMDH, MARS, 

and Kriging techniques of the surrogate modeling 

in order to estimate the pier scour depth. Next, the 

RMSE (root mean square error), R
2
 (coefficient of 

determination), MAPE (mean absolute percent 

error), and MPE (maximum percent error) 

performance measures ((5)-(8)) were applied to 

compare each model‘s accuracy/efficiency. 
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(5) 

2
n

i 1 P A

1
RMSE ( ) — ( )  

n

s s

i i

D D

y y

    
      

    


 
 

(6) 

2

n

i 1

A A P P2

2 2

n n

i 1 i 1

A A P P

( ) — ( ) —

R

( ) — ( ) —

s s s s
i i

s s s s
i i

D D D D

y y y y

D D D D

y y y y



 

 
          
                      

 
           
                          



 

 

 

(7) 
n

P A

i 1

A

( ) — ( )
1

MAPE
n

( )

s s
i i

s
i

D D

y y

D

y



   
   
   


 
 
 



 
 

(8) P A

A

( ) — ( )

MPE MAX *100 ,   i 1,2,3,   , n 

( )

s s
i i

s
i

D D

y y

D

y

    
    
    

  
  
       

where 

s

A i

D

y

  
   
    are the measured data, 

s

P i

D

y

  
   
    

are the model estimations of the non-dimensional 

scour depth, n is the number of data points, and 

A

sD

y

 
 
   and P

sD

y

 
 
   are the measured and model-

estimated mean data values, respectively. The 

model performance was evaluated using RMSE 

with a range of 0 to +∞ (optimum zero); 

generally, a low RMSE/MAPE/MPE and a high 

R
2
 mean a more efficient model performance. The 

general framework for this research work is 

shown in figure 4. 

 
Figure 4. Research framework. 
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3.1. Artificial Neural Networks (ANNs) 

The ANNs model is an intelligent system capable 

of modeling complex problems and solving 

complicated systems in many fields such as the 

optimization, prediction, estimation, and 

simulation. Its structure consists of some input, 

hidden, and output layers, each of which has a 

network of artificial neurons called "nodes". The 

nodes in the input and output layers are 

indications of the independent and dependent 

variables, respectively, and one or more hidden 

layers, which are neither input nor output, can 

constitute the ANNs network. In a layer, all the 

nodes send signals to interact and make links with 

those in the adjacent layers for the ANNs network 

to be fully connected. Since each node applies a 

typical activation function (tansig, purelin, etc.) to 

generate its output signal, the output variables are 

produced by merging the connection 

weights/biases with each input node after passing 

through an activation function. The target values 

(ŷ(x)) are, therefore, calculated as follows: 

(9) 
1 1

ˆ( ) ( ),&
pm

i i i ij j j

i j

y x w x    
 

   
 

where α, w, and β are the network‘s uncertain 

parameters (weights, bias terms, etc.), φ(x) is a 

transfer function, m is the number of neurons in 

the hidden layer, and p is the number of inputs 

[34]. Next, the multilayered perceptron method 

and back-propagation algorithm were used in 

order to find the optimal ANNs network structure 

to determine the number of hidden layers and 

nodes as well as the type of the activation function 

in each layer. 

The ANNs network first uses the training dataset 

to train itself and then the validation dataset in 

order to evaluate its performance; the process 

continues until MSE reaches its minimum: 

(10)  
n

2

i i

i 1

1
MSE E — N  

n 

 
 

where Ni are the measured data, Ei are the model 

estimation, and n is the number of data points. 

Thus this network, with variable hidden layers and 

nodes and various activation functions (tansig, 

purelin) is investigated until the error of the 

validation set is minimized and the best 

performance is achieved.  

Figure 5 shows this work‘s optimal ANNs 

structure extracted with four neurons in the input 

layer corresponding to four input data 

50

r

Db
F , , ,  

y y


 
 
  . The best results were obtained 

after many trials and errors using the back-

propagation algorithm with one hidden layer and 

5 neurons and tansig and purelin as the optimal 

activation functions in the hidden and output 

layers, respectively. 

 
Figure 5. Final properties of the optimal ANNs model. 
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3.2. Group Method of Data Handling (GMDH) 

First proposed by Ivakhnenko based on the 

principle of heuristic self-organization, GMDH is 

a kind of ANNs learning machine algorithm 

capable of being used in such various problems as 

the complex system modeling, function 

approximation, non-linear regression, pattern 

recognition, and so on. It presents a model as a set 

of neurons different pairs of which are linked in 

each layer through quadratic polynomials to 

generate new neurons in the next layer. The main 

objective of the identification problem is to find a 

good approximation function f  that can estimate 

the actual output ŷ for a given input vector X = 

(x1, x2, … xn). 

Thus for a given set of n samples (multi-input-

single-output data pairs), we will have: 

(11)    1 2, , ,       1,2, ,  i i i iny f x x x i m   
 

The GMDH model is now trained in order to 

estimate the target ŷi for any given input vector X 

as follows: 

(12)    1 2
ˆˆ , , ,       1,2, ,i i i iny f x x x i m   

 
and minimizes the squared difference between the 

real and predicted values as: 

(13)   
2

1 2

1

,ˆmin , , —
m

i i in i

i

E f x x x y


 
  

 


 

The basic form of the GMDH algorithm (figure 6) 

that yielded the input-output variables relationship 

could, therefore, be shown by the VKG (Volterra–

Kolmogorov–Gabor) polynomial transfer function 

as follows [35, 36]: 

(14) 0

1 1 1 1 1 1

,
n n n n n n

m i i ij i j ijk i j k

i i j i j k

y a a x a x x a x x x
     

      
 

where a0 is the bias component, X = (x1, x2, …, 

xn) is the vector of input variables, A = (a1, a2, …, 

an) is the vector of weights, and y is the output 

variable in each node. 

In this scenario, the network layers contain similar 

PD polynomial orders, and that of each neuron 

(PN) is kept unchanged throughout the network. 

For instance, if the first layer PN polynomials are 

quadratic: 

(15)   2 2

0 1 2 3 4 5
ˆ ,i j i j i j i jy G x x a a x a x a x x a x a x      

 

Here, the network is designed with a similar 

procedure since all of its layers‘ neurons‘ 

polynomials are similar; compared to the 

quadratic polynomials, the tri-quadratic and 3rd-

order ones form a more sophisticated network, 

whereas the bilinear polynomials produce less 

complex structures. Earlier studies have revealed 

that selecting polynomials may be dependent on 

the objective function‘s minimum error and the 

polynomial type complications. In this work, we 

used the quadratic polynomials to model the 

bridge-pier vicinity scour depth, and regression 

techniques in order to find the weighting 

coefficients in (15) to minimize the difference 

between y and ŷ (actual and calculated outputs) 

for each xi, xj pair (input variables). Hence, the 

weighting coefficients of the quadratic function Gi 

were obtained as follows to optimally fit the 

output in the whole set of the input–output data 

pair:  

(16) 
 

2

1
— ()

 

m

i ii
y G

E min
m

 


 

 
Figure 6. Schematic architecture of GMDH networks [36].
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Also in order to optimize such GMDH parameters 

as the maximum number of neurons/layers and the 

selection pressure by the training/validation 

datasets, the trial-and-error method was used so 

that the network was first trained by the training 

dataset and was then evaluated by the validation 

dataset until the mean squared error was 

minimized to yield the best performance. In the 

optimal structure, the maximum number of 

neurons, layers, and selection pressure were found 

to be 14, 4 and 0.675, respectively. 

 

3.3. Kriging Model 

The Gaussian process regression or Kriging is a 

semi-parametric meta-modeling interpolation 

method that estimates, based on the known 

observed information, the unknown information at 

a point as follows [37, 38]: 

(17)        T xĝ x F x,β  f x β z  
 

 

where F(x,β) (constant or polynomial) is the 

regression base representing the Kriging trend, 

g(x) is supposedly the random process realization, 

f(x) is the Kriging basis, and β is the regression 

coefficient. Different forms of f
T
(x)β are usually 

ordinary (β0), linear 0 1
( )

N

n nn
x 


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, n is the 

dimension of the random input vector x, and z(x) 

is the Kriging interpolation following a stationary 

Gaussian process with zero mean and a 

covariance matrix between the points xi and xj 

defined as follows: 

(18)       2,   , ;i j i jCOV Z x Z x R x x 
 

 

where ơ
2
 is the process variance or the generalized 

mean squared error from the regression part based 

on the best linear unbiased predictor, R(xi,xj;Ѳ) is 

the correlation (kernel) function representing the 

process correlation function with hyper-parameter 

  that has a significant impact on the Kriging 

performance.  

The Kriging model used in this work was an 

ordinary type, and the correlation functions 

(linear, exponential, Gaussian, cubic, spherical, 

and spline) along with constant, linear, and 

quadratic polynomials (degree 0, 1 and 2, 

respectively) were evaluated in order to find the 

optimal model parameters. After approximating 

the training dataset, the model created for 

different functions and degrees was evaluated by 

the validation dataset with the MSE index. 

Finally, the 2nd-order and exponential functions 

were selected as the best approximations for the 

analyses. 

3.4. Multivariate Adaptive Regression Splines 

(MARS) 
A non-linear nonparametric method first 

introduced by Friedman, MARS defines the 

relationship between some sets of input-output 

variables in a high-dimensional data region using 

a group of coefficients and piecewise-defined 

polynomials [39].  

MARS, which is a non-parametric non-linear 

method of developing relationships among 

different sets of input and dependent variables in 

an n-dimensional data region without requiring 

any special assumptions about the input variables-

output underlying functional relationships, is 

based on a divide-and-conquer strategy wherein 

the training data divides into separate splines of 

varying slopes. Knots or segments‘ end points 

mark the end of one data region and the start of 

another. This enables the basis functions (plotted 

piecewise curves) to make the models more 

flexible and allow a linear function to have bends, 

thresholds, and other departures. A linear union of 

the basis functions (BFs) and their interactions 

can help the MARS model f(X) to be formed as 

follows [40]: 

(19)    
M

0 m m

m 1

f X  β β λ X


 
 

 

where λm is a basis function; either of one spline 

or the product of two or more; in this work, we 

assumed a maximum 2nd-order function to 

simplify the purposes, although higher orders are 

also possible if the data guarantees. The least-

squares method is used to estimate β, which is 

constant, and BFs are smooth polynomials 

(splines) with piecewise linear/cubic functions.  

The form of a piecewise linear function is max (0, 

x—t). It is used for simplicity and has a knot at 

value t. Max (.) means its value is zero unless the 

positive part is used: 

(20)  
—      

0, —
0      

x t x t
max x t

otherwise


 
  

 

In order to generate BFs, MARS searches 

stepwise among all variables‘ interactions and 

over all possible univariate knot locations, the 

selection of which is by an adaptive regression 

algorithm. To construct a MARS model, use is 

made of a technique with a forward phase to add 

functions to find the performance improvement 

knots until the highest predetermined number of 

terms are found and an intentionally over-fitted 

model is obtained, and a backward phase that 

eliminates the most ineffective terms to prevent 

overfitting using the GCV (Generalized Cross-

Validation) method, which is a goodness of fit test 
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that fines for excess BFs and lessens the 

overfitting chance. The GCV equation for a set of 

training data with N observations is as follows 

[41]: 

 

(21) 
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where M is the number of BFs, N shows the 

number of observations, f(xi) are the MARS 

model‘s estimated values, and d is the fine 

parameter (cost per basis function optimization to 

make the procedure smooth. Its larger values 

mean fewer knots, and hence, less fluctuating 

estimates. Since Friedman [39] has suggested 

2≤d≤4, preferably 3 as an optimum value, (this 

research work has taken d = 3).  

Equation (19) is minimized when a basis function 

is omitted at each step so that a good and 

acceptable fitting model is yielded. Since BF and 

the variable knot location selection are both data-

based and problem-specific, MARS is considered 

as an adaptive procedure.  

In the data-driven MARS modeling, ANOVA 

(analysis of variance) decomposition is used in 

order to evaluate the input variables‘ contributions 

and BFs by testing and comparing variables for 

statistical significance by placing all BFs with one 

variable in one group and all those with pairwise 

interactions (or higher when applicable) in another 

after the optimal MARS model has been 

determined. 
 

4. Results and Discussion 

4.1. Optimal Structure of Surrogate Models 

In this section, we evaluate the performance of the 

surrogate models by plotting actual non-

dimensional scour depths (Ds/y) against the 

estimated values. Table 4 and figures 7-11 

illustrate the performance and results of the 

optimized ANNs, GMDH, Kriging, and MARS 

models for training and validation datasets. The 

RMSE, R
2
, MAPE, and MPE statistical 

parameters obtained from (5)-(8) are compared to 

evaluate the performance of these methods.  

According to the results obtained, all the surrogate 

models estimated Ds/y acceptably for the training 

and validation datasets. The regression lines had 

good R
2
 values (0.897-0.9997) for the training set 

but slightly smaller values (0.852-0.990) for the 

validation set; Kriging and MARS had, 

respectively, the higher and lower values in both 

cases.  

A comparison of the RMSE, MAPE, and MPE 

statistical indicators showed that in the training 

part, they were lower for the Kriging model 

(0.0070%, 0.002%, and 10.7%) and higher for the 

MARS model (0.122%, 0.144%, and 81.1%). The 

same was the case in the validation part but with 

different values; (0.0033%, 0.047%, and 17.2%) 

for Kriging and (0.129%, 0.162%, and 40.6%) for 

MARS models. 

A results review showed that among all the 

models, the optimized Kriging had the highest R
2
 

and the lowest RMSE, MAPE, and MPE, and 

contrary to other models, all its estimated values 

were within an accuracy range of -20% to +20% 

(figure 9). 

According to figure 11, the values estimated in 

both the training and validation sets had trends 

similar to the actual values. 
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Table 4. Performance of surrogate models in the training and validation sets. 

Models Dataset Number of data R2 RMSE MAPE MPE (%) 

GMDH 
Train 172 0.951 0.085 0.108 68.8 

Validation 37 0.956 0.068 0.1 30.1 

Kriging 
Train 172 0.9997 0.007 0.002 10.7 

Validation 37 0.990 0.033 0.047 17.2 

MARS 
Train 172 0.897 0.122 0.144 81.1 

Validation 37 0.852 0.129 0.162 40.6 

ANNs 
Train 172 0.979 0.055 0.066 27.3 

Validation 37 0.988 0.035 0.06 20.9 

 

 
Figure 7. Performance evaluation of ANNs model developed for the training and validation sets. 

 
 Figure 8. Performance evaluation of GMDH model developed for the training and validation sets. 
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Figure 9. Performance evaluation of Kriging model developed for the training and validation sets.  

 
Figure 10. Performance evaluation of MARS model developed for the training and validation sets. 
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Figure 11. Schematic comparison of the optimal networks estimated in the training and validation sets: (A) GMDH, (B) 

Kriging, (C) MARS, and (D) ANNs. 

 

4.2. Performance Evaluation of Developed 

Surrogate Models 
In the previous sections, the surrogate models 

were developed using the training and validation 

datasets but this section is aimed to use the test 

dataset in order to evaluate the performance of the 

developed models through a comparison with the 

results of some traditional equations. 

The optimal structures extracted from GMDH, 

Kriging, MARS, and ANNs were used to estimate 

Ds/y for the test dataset, and the results obtained 

were compared with those of the modified 

HN/GC (2016), Laursen-Toch (1956), Johnson 

(1992), and FHWA HEC-18 (1993) empirical 

equations. Figures 12-15 and table 5 compare the 

surrogate models and traditional equations in 

estimating Ds/y for the test dataset, and conclude 

that the former did the estimation more accurately 

than the latter; Kriging and ANNs had better 

estimates than GMDH and MARS. Kriging with 

R
2
 = 0.947, RMSE = 0.065, MAPE = 0.067, and 

an MPE of 25.1% performed the best compared to 

the other models. 
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Figure 12. Comparison between the observed and computed Ds/y values by surrogate models. 

 
Figure 13. Comparison between the observed and computed Ds/y values by empirical equations. 
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Figure 14. Estimation accuracy of the test dataset by surrogate models.  

 
Figure 15. Estimation accuracy of the test dataset by empirical equations. 

Although the empirical methods used in this work 

had a reasonable R
2
, their RMSE, MAPE, and 

MPE rates were much higher, leading to 

conservative results and overestimated Ds/y. 

Figures 12-13 show that most surrogate models‘ 

estimated values are in the -20% to +20% 

accuracy range, and most values obtained from 

the empirical equations are beyond this range. 

According to table 5, the highest Ds/y were 

overestimated by 85.3 and 58.8% (MAPE), on 

average, for CSU and modified HN/GC, 

respectively, and the RMSE and MPE for CSU 

were 0.393 and 269.8%, respectively. However, 

the Johnson and Laursen-Toch equations had 

reasonable results for this test dataset compared to 

the mentioned equations. All in all, the statistical 

parameters show that the surrogate models‘ 

estimation performance is satisfactory compared 

to the traditional methods. 

 

Table 5. Performance indices of various Ds/y estimation methods. 

Models Type of data Number of data R2 RMSE MAPE MPE (%) 

su
rr

o
g

at
e 

m
o
d

el
s GMDH Test 37 0.803 0.121 0.125 65.5 

Kriging Test 37 0.947 0.065 0.067 25.1 

Mars Test 37 0.839 0.11 0.149 72.8 

ANNs Test 37 0.919 0.078 0.094 22.9 

em
p
ir

ic
al

 

eq
u

at
io

n
s 

Johnson (1992) Test 37 0.781 0.211 0.257 77.4 

Laursen and Toch (1956) Test 37 0.826 0.166 0.356 120.3 

CSU (1993) Test 37 0.713 0.393 0.853 269.8 

HN/GC (2016) Test 37 0.795 0.254 0.588 175.6 
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5. Sensitivity Analysis 

The importance of each input variable and its 

effects on the surrogate model outputs were 

checked by the sensitivity analysis, which is, in 

fact, a fundamental modeling tool for a proper 

model application since it enables the user to find 

the relative importance of the input parameters 

and consider the effects of their errors on the 

model output. In this analysis, one input variable 

of (4) was deleted each time to evaluate its effect 

on the output [42]. 

In this research work, we analyzed the sensitivity 

of the estimated Ds/y to the input variables in the 

GMDH, Kriging, MARS, and ANNs models, 

extracted the optimal structure of each model 

based on the inputs of each scenario and the 

training and validation datasets, and used the test 

dataset in order to evaluate the performance of 

each scenario (tables 6 and 7). 

 

Table 6. Sensitivity analysis results for the parameters in (4). 

Scenarios Models Dataset Number of data R2 RMSE MAPE MPE (%) 

D
s/

y
 =

 f
(F

r,
 ơ
, 
D

5
0
/y

) 

 

GMDH 

 

Train 172 0.379 0.301 0.399 283.3 

Validation 37 0.44 0.242 0.399 127 

Test 37 0.415 0.22 0.388 132.1 

Kriging 
 

Train 172 0.8564 0.1446 0.1156 80.95 

Validation 37 0.483 0.238 0.284 119.3 

Test 37 0.733 0.163 0.269 73.2 

Mars 

 

Train 172 0.171 0.348 0.513 216.6 

Validation 37 0.213 0.299 0.555 199 

Test 37 0.241 0.279 0.595 159.9 

ANNs 
 

Train 172 0.813 0.165 0.19 78.4 

Validation 37 0.747 0.163 0.196 77.4 

Test 37 -3.66 2.846 1.072 3235.5 

D
s/

y
 =

 f
(F

r,
 ơ
, 
b
/y
) 

 

GMDH 

 

Train 172 0.952 0.084 0.109 67.5 

Validation 37 0.955 0.07 0.106 30.3 

Test 37 0.811 0.119 0.13 60.2 

Kriging 
 

Train 172 0.9997 0.0066 0.0022 10.71 

Validation 37 0.982 0.045 0.062 37.9 

Test 37 0.834 0.111 0.093 43.2 

Mars 

 

Train 172 0.897 0.122 0.144 81.1 

Validation 37 0.852 0.129 0.162 40.6 

Test 37 0.839 0.11 0.149 72.8 

ANNs 
 

Train 172 0.971 0.066 0.085 54.5 

Validation 37 0.986 0.039 0.066 24.4 

Test 37 0.828 0.114 0.128 47.7 
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Table 7. Sensitivity analysis results for the parameters in (4). 

Scenarios Models Dataset Number of data R2 RMSE MAPE MPE (%) 

D
s/

y
 =

 f
(F

r,
 D

5
0
/y

, 
b

/y
) 

GMDH 

Train 172 0.952 0.084 0.111 64.9 

Validation 37 0.963 0.063 0.102 30.3 

Test 37 0.803 0.122 0.136 58.9 

Kriging 

Train 172 0.9997 0.0066 0.0022 10.71 

Validation 37 0.983 0.046 0.067 26.5 

Test 37 0.882 0.096 0.086 35.7 

Mars 

Train 172 0.897 0.122 0.144 81.1 

Validation 37 0.852 0.129 0.162 40.6 

Test 37 0.839 0.11 0.149 72.8 

ANNs 

Train 172 0.992 0.035 0.051 43.6 

Validation 37 0.973 0.056 0.078 22.2 

Test 37 0.917 0.079 0.099 36.1 

D
s/
y
 =
 f
(ơ
, 
D

5
0
/y

, 
b
/y

) 

GMDH 

Train 172 0.914 0.112 0.129 60.6 

Validation 37 0.901 0.116 0.159 45.5 

Test 37 0.838 0.11 0.134 43.5 

Kriging 

Train 172 0.9679 0.0684 0.0573 33.85 

Validation 37 0.935 0.086 0.078 36.9 

Test 37 0.927 0.075 0.076 23.6 

Mars 

Train 172 0.897 0.122 0.144 81.1 

Validation 37 0.852 0.129 0.162 40.6 

Test 37 0.839 0.11 0.149 72.8 

ANNs 

Train 172 0.956 0.08 0.081 38.7 

Validation 37 0.946 0.077 0.094 34.8 

Test 37 0.924 0.077 0.094 38.8 

In scenario 1, Ds/y was assumed to be a function 

of Fr, ơ, and D50/y; all the surrogate models 

yielded a very poor estimation of Ds/y in the test 

dataset (table 6), concluding that the assumed 

input variables had a low modeling importance. In 

this scenario, ANNs performed the worst in the 

test dataset despite its slightly reasonable 

performance in estimating the training and 

validation datasets. Overall, herein the Kriging 

model has had the best performance among all 

models. 

In scenario 2, Ds/y was assumed to be a function 

of Fr, ơ, and b/y; all the surrogate models yielded 

better results than scenario 1 (table 6). In general, 

all models had a similar performance, Kriging 

was slightly better, and MARS was slightly worse 

in the training and validation datasets. 

In scenario 3, the non-dimensional scour depth 

was assumed to be a function of Fr, D50/y, and b/y 

decision variables (table 7). All the surrogate 

models performed reasonably but ANNs and 

Kriging were better than the others. 

In the last scenario, ơ, D50/y, and b/y were defined 

as the model input parameters (table 7). As shown 

in tables 6 and 7, this scenario had the best 

performance compared to the others; Kriging and 

ANNs performed better but the MARS 

performance was exactly the same as in scenario 

3. 

Finally, the sensitivity analyses showed that 

among the variables in (4), non-dimensional b/y 

had the highest and Fr and ơ had the least effect 

on the estimated normalized local scour depth 

(Ds/y) for all models according to the definition of 

database under live bed conditions with a uniform 

sediment and a sub-critical flow regime.  

 

6. Comparison with Related Works 

Since each earlier similar work is based on some 

data gathered from databases different in terms of 

scales and water flow/sediment 

statistical/hydraulic characteristics, a fair precise 

comparison is almost impossible. However, the 

results of the present work are presented in table 8 

along with those of some other related works most 

of which are mentioned in the ―Introduction‖. 
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Table 8. Comparison of the results of this study with those of some previous works. 

Source Data type 
Number 

of data 
Reviewed models 

Comparison 

with 

empirical 

formula 

Selected 

model 

Most influential 

parameter 

(sensitivity analysis) 

Bateni et al. 

[7] 

Laboratory 

data 
263 

ANNs methods (MLP/BP & 
RBF/OLS) & ANFIS 

(adaptive neuro-fuzzy 

inference system) 

Yes 
ANN 

(MLP/BP) 
pier diameter 

Firat and 

Gungor 

[14] 

Laboratory 

data 
165 

Generalized Regression 

Neural Networks (GRNN) 

and Feed Forward Neural 
Networks 

(FFNN) 

Yes GRNN 
pier dimension and 

grain size 

Najafzadeh 

et al. [15] 

Laboratory 

data 
95 GMDH Yes GMDH 

clay percentage 

(cohesive bed 
material ) 

Bateni et al. 

[8] 

Laboratory 

data 
347 

Genetic expression 

programming 
(GEP) and MARS 

Yes MARS pile diameter 

Azamathull

a et al. [19] 
Field data 398 

Genetic programming 

(GP) and ANNs 
Yes GP _ 

Najafzadeh 

[43] 

Laboratory 
data 

321 
 NF-GMDH-PSO and NF- 

GMDH-GSA 
Yes 

NF-

GMDH-

PSO 

pier diameter 

This study 
Laboratory 

data 
246 

ANN,GMDH, MARS and 

Kriging 
Yes Kriging pier diameter 

 

As mentioned earlier, the model inputs (table 8) 

have been gathered from different references 

under different water flow/sediment conditions, 

and have different statistical characteristics and 

distributions. However, the deduction from table 8 

is that the alternative models in all the mentioned 

references had performed better than the 

experimental relationships, and the index related 

to the bridge pier-section shape-dimension 

parameter, in most references, had the greatest 

impact on the outputs of different models. 

However, this work that has compared the 

Kriging model performance with those of the 

GMDH, ANNs, MARS and some existing 

traditional equations, shows the Kriging model‘s 

efficiency and reveals that it can have an 

acceptable performance in estimating the bridge-

pier scour depth.  

 

7. Summary and Conclusions 

In this work, we investigated four surrogate 

models, namely artificial neural networks 

(ANNs), group method of data handling 

(GMDH), multivariate adaptive regression splines 

(MARS), and Gaussian process models (Kriging) 

that use the non-dimensional decision variables in 

order to estimate the local scour depth at circular 

piers. The optimal structure of each model was 

extracted with the training and validation datasets, 

and comparison of their statistical indicators 

showed that Kriging and MARS, respectively, had 

the highest and lowest precision in the Ds/y 

estimation among the other surrogate models.; 

according to this comparison, the statistical  

 

 

indicators in the training dataset showed that 

Kriging and MARS had RMSE, MAPE, and 

MPEs equal to 0.0070%, 0.002%, and 10.7%, and 

0.122%, 0.144%, and 81.1%, respectively. 

Then the testing dataset was used in order to 

evaluate the performance of these methods 

through a comparison with four empirical 

equations, namely Laursen-Toch (1956), Johnson 

(1992), CSU (1993), and modified HN/GC 

(2016). The results obtained showed that all 

methods were good enough to estimate Ds/y with 

the dataset used in this work but the traditional 

equations led to conservative and overestimated 

results. Most of the values estimated by the 

surrogate models were within the -20% to +20% 

accuracy range, and most of those estimated by 

the empirical formulas were beyond this range, 

concluding that all the surrogate models estimated 

the non-dimensional local scour depth (Ds/y) 

much more accurately than the empirical 

equations. Among all the tested surrogate models, 

Kriging and ANNs had the highest match to the 

target values with the RMSE, MAPE, MPE, and 

R
2
 statistical indicators of 0.065, 0.067, 25.1%, 

and 94.7%, and 0.078, 0.094, 22.9% and 91.9%, 

respectively. Finally, the results obtained showed 

that Kriging had the best estimations in all the 

three parts (training, validation, and test datasets), 

concluding that it was the most robust among all 

models. 

The sensitivity of the estimated local scour depth 

(Ds/y) to the approach flow Froude number (Fr), 

sediment gradation coefficient (σ), pier width-to-

flow depth ratio (b/y), and ratio of average 
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sediment size-to-flow depth ratio (D50/y) was 

analyzed, and the results obtained showed that 

(b/y) was the most effective parameter in the 

normalized scour depth (Ds/y) for all the surrogate 

models, and Fr and ơ had the least effects on the 

estimations. 
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 .0011سال  ،اولشماره  دوره نهم، ،کاویمصنوعی و دادهمجله هوش مصنوعی                              و همکاران                                                           بحرپیما

 

 

 Kriging و ANNs ،GMDH  ،MARSروش های با یتجرب روابط سهی: مقاپایه ییعمق آبشو تخمین

 

  3یئناصر صفائیان حمزه کلا و2محسن راشکی ،،*1دالحمید بحرپیمابع ، 1عباسعلی قادری ،1سیاهکلی مسلم زربازو

 .ایران، زاهدان، دانشگاه سیستان وبلوچستان، مهندسی عمرانگروه  1

 . ایران، زاهدان، دانشگاه سیستان وبلوچستان، مهندسی معماریگروه  2

 .ایران، قائن، دانشگاه بزرگمهر قائن، مهندسی عمرانگروه  3

 60/06/6161 پذیرش؛ 62/01/6161 بازنگری؛ 62/10/6161 ارسال

 چکیده:

 ایمنیی جدی در ارزیابی ایهمسال ،پدیدهاین  که، هدقرار دشستشو مورد مواد بستر اطراف سازه پایه پل را  ،هد که جریان آبدیرخ م آبشستگی هنگامی

. در این مقالیه توانیایی تخمیین تاکنون ارائه گردیده استهای مختلفی لروابط و مد ،پل باشد. لذا به منظور تخمین عمق آبشستگی اطراف پایهیا مهلپ

. بدین منظیور واقع شده استمورد بررسی  ،ای جایگزین در مقایسه با روابط تجربی معمولهلبا استفاده از مد ،ای شکلهپایه دایراطراف عمق آبشستگی 

، ANN ،GMDHای هیلبا شرایط جریان زیربحرانی و شرایط جریان آب و رسوب بستر پویا با استفاده از مد در خاک غیرچسبنده ،عمق آبشستگی پایه

MARS  وKriging  بیه منظیور  گردییده آوریعاز مطالعات مختلف جمی، که داده 602یک پایگاه داده آزمایشگاهی شامل  از. لذا شده استتخمین زده

 ،نییز در ادامه وتقسیم  (تست3(اعتبارسنجی و 6( آموزش 0های مسه بخش تصادفی به ناداده به  مجموعه این استفاده گردید. ای جایگزینهلساخت مد

 میانگین درصد خطاو  (MAPE) خطا مطلیق میانگین صددر ،(RMSE) مییانگین مربعیات خطیا جذر ،(2Rضریب تعیین ) از معیارهای آماری همچون

(MPE) لنتایج بدست آمده بیانگر دقت تخمیین بهتیر مید .شدهای تجربی مرسوم استفاده لدر برابر برخی از فرموها لبه منظور مقایسه نتایج این مد-

تحلییل بهتیرین تخمیین را داشیته اسیت. همچنیین  Krigingمیدل  ،نییز های مورد بررسیلروابط تجربی بوده و از بین مد در مقایسه با های جایگزین

   داشته است. (ysD/) آبشستگی بعدبی ( بیشترین تاثیر را در تخمین عمقb/yبی بعد مرتبط با عرض پایه ) ها نشان داد که، عبارتلحساسیت این مد

   .عصبی مصنوعی، کریجینگ، تحلیل حساسیتی هاشبکهجایگزین، ی هامدلآبشستگی پایه،  :کلمات کلیدی

 


