
1 

 

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 1, 2023, 119-129. 

 
Shahrood University of 

Technology 

 

Journal of Artificial Intelligence and Data Mining (JAIDM) 
Journal homepage: http://jad.shahroodut.ac.ir 

 

 

Research paper 

A Comparison of CQT Spectrogram with STFT-based Acoustic  

Features in Deep Learning-based Synthetic Speech Detection 
 

Pedram Abdzadeh Ziabari and Hadi Veisi
*
 

 

Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran. 

Article Info  Abstract 

 

Article History: 
Received 28 October 2022 

Revised 20 November 2022 

Accepted 18 December 2022 
 

DOI:10.22044/jadm.2022.12373.2382 

 Automatic Speaker Verification (ASV) systems have proven to be 

vulnerable to various types of presentation attacks, among which 

Logical Access (LA) attacks are manufactured using voice conversion 

and text-to-speech methods. In the recent years, there has been loads of 

work concentrating on synthetic speech detection, and with the 

emergence of deep learning-based approaches and their success in a 

variety of computer science fields, they have been a prevailing tool for 

this very task too. Most of the deep neural network-based techniques 

for synthetic speech detection have employed acoustic features based 

on Short-Term Fourier Transform (STFT), which are extracted from 

the raw audio signal. However, lately, it has been discovered that the 

usage of Constant Q Transform’s (CQT) spectrogram can be a 

beneficial asset both for performance improvement and processing 

power and time reduction of a deep learning-based synthetic speech 

detection. In this work, we provide a comparison between the usage of 

the CQT spectrogram and some most utilized STFT-based acoustic 

features. Utilization of a ResNet-based architecture contemplated in 

this work as this architecture has had lots of success in deepfake 

speech detection. As lateral objectives, we consider improving the 

performance of the model as much as we can using methods such as 

self-attention and one-class learning. Also short-duration synthetic 

speech detection has been one of the lateral goals too. Finally, we see 

that the CQT spectrogram-based model not only outperforms the 

STFT-based acoustic feature extraction methods but also reduces the 

processing time and resources for the detection of genuine speech from 

the fake. Also the CQT spectrogram-based model places well among 

the best works done on the LA subset of the ASVspoof 2019 dataset, 

especially in terms of Equal Error Rate (EER).  
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1. Introduction 

Biometrics have been of paramount importance 

for the identification of the users of systems, and 

have the ability to remove the need for the 

rigorous task of remembering usernames and 

passwords for various systems, websites, and 

mobile applications. Face, iris, voice, and 

fingerprint of the user trying to enter the main 

system, are the main biometrics that can be 

utilized for user identification and verification. 

Automatic Speaker Verification (ASV) systems 

[1], systems that have the primary objective of 

verifying the identity of a user trying to enter the 

main system, have been fairly attractive; hence 

lots of research have been done on them. 

However, similar to systems based on other 

biometrics, it is known that ASV systems are 

susceptible to presentation attacks. Presentation of 

an artifact or made-up human characteristic to a 

biometric system to circumvent security and abuse 

the system is known as a presentation attack. 

Text-To-Speech (TTS) [2], Impersonation [3], 

Voice Conversion (VC) [4], and replay [5] are the 
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predominant voice presentation attacks used to 

penetrate ASV systems. When a fraudulent speech 

signal is directly injected into the ASV system, a 

Logical Access (LA) attack occurs. On the other 

hand, when the signal goes through a microphone, 

the attack is called a Physical Access (PA) attack 

[6]. Figure 1 recapitulates voice spoofing attacks. 

To immune ASV systems against voice 

presentation attacks, various voice spoofing 

detection systems are created. In the recent years, 

and with the increase in the usage of ASV 

systems, the attention to voice spoofing detection 

has also been rising up. In 2015, the ASVspoof 

challenge [7] was inaugurated to address the voice 

spoofing detection problem, provide benchmarks 

and datasets, and consequently, boost voice 

spoofing countermeasures’ capability to discern 

presentation attacks. The 2015 version of the 

ASVspoof challenge was mainly concentrated on 

synthetic speech detection, while The 2017 

version was focused on the replay attack. 

However, the ASVspoof 2019 contemplated both 

LA and PA attacks. For the creation of the LA 

subset of the ASVspoof 2019 database, the state-

of-the-art methods of VC and TTS were exploited 

[8]. The ASVspoof 2021 [9] has provided a 

further enriched evaluation subset of the database 

in terms of variety and quality of attacks, and also, 

the challenge had a section dedicated to the 

detection of compact deepfake audio files. 

 

 
Figure 1. A review of different types of voice spoofing attacks [10]. 

Loads of different methods have been applied to 

detect synthetic speech during the years of 

research in this field. The very first works on 

synthetic speech detection were mainly 

concentrated on feature engineering and the 

suggestion of novel and more beneficial acoustic 

features while using classifiers such as Gaussian 

Mixture Model (GMM) and Support Vector 

Machine (SVM). With the emergence of deep 

learning-based models and their vast success all 

over the computer science fields, from computer 

vision to natural language processing, and with 

the ability to be applied for different tasks such as 

classification and regression, it is not unexpected 

that they have employed in most of the recent 

synthetic speech detection works. In fact, Deep 

Neural Networks (DNN)-based approaches have 

been preponderating in voice spoofing detection 

[11]–[14]. Mainly, acoustic features resulting 

from Fourier analysis such as spectrogram of 

Short Term Fourier Transform (STFT), Linear 

Frequency Cepstral Coefficients (LFCC), and 

Mel-Frequency Cepstral Coefficients (MFCC) 

extracted from the speech signal have been 

contemplated as the input of various DNNs for 

voice spoofing detection and speech processing in 

general [15], [16]. However, recently, Constant Q 

Transform (CQT), a transform initially 

inaugurated with music processing objectives [17] 

has shown capabilities to be applied in other audio 

processing realms, such as audio signal 

classification and separation. The Constant Q 

Cepstral Coefficient (CQCC) features [18] driven 

from cepstral analysis of CQT were the first CQT-

related features considered in works in voice 

spoofing detection [11], [13]. However, in the 

recent works, extraction of the CQT spectrogram 

from the speech and its usage of it as the acoustic 

features that are given as input to the network has 

proven to be lucrative in terms of processing time 

reduction [10] and performance improvement 

[19]. In fact, in [19], the state-of-the-art result on 

synthetic speech detection on the evaluation 

subset of the LA subset of the ASVspoof 2019 

challenge has been achieved while using the CQT 

spectrogram as input of the DNN.  

In this work, building upon our work in [10], we 

pursue the goal of comparing the newly coming 

into attention acoustic feature CQT spectrogram 

with well-established Fourier transform-based 
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acoustic features to find more about the 

capabilities of this feature. Even though current 

methods of synthetic speech detection have been 

predominantly concentrated on the neural network 

architecture and proposing inventions in this 

regard, the input of the neural network still 

possesses enough importance to be talked about 

and can highly influence the outcome of the 

model. Hence, our work can show how each one 

of the CQT spectrogram and STFT-based features 

can affect the performance of a deepfake speech 

detection model and the required processing 

power and time for it. As the aforementioned 

factors are the main ones in the efficiency and 

performance analysis of a model. Hence, this 

comparison can help with future research choices 

of acoustic features to use with their DNN-based 

model. For the comparison of the STFT-based 

features and CQT spectrogram, we first extract the 

CQT spectrogram, STFT spectrogram, Mel-

Frequency Cepstral Coefficients (MFCC), and 

linear frequency cepstral coefficients for the raw 

speech signal. Then we feed each feature as input 

to a Resnet-18 model, which has been empowered 

with a temporal self-attention layer and a 

feedforward partition that is created from three 

multi-perceptron layers. In the end, we use one 

class learning proposed in [20] for score and loss 

calculation and better generalization against 

unseen attacks. The reason behind the usage of a 

ResNet architecture, other than the success of 

these models in computer vision since their 

inauguration, is their popularity and usage of them 

in many works in the deepfake speech detection 

field [10], [11], [13], [20]–[22]. Hence, most 

likely, a ResNet-based model can help us reach a 

more general conclusion for the comparison of 

features in deep learning-based synthetic speech 

detection.  

As a lateral goal, we want to use the model to 

reach the best possible result to raise the 

performance in the detection of synthetic speech 

the most. The reason is that even though the 

number of works concentrating on synthetic 

speech detection is growing in recent years, at the 

same time, the number of novel spoofing attacks 

and ways of creating synthetic speeches is 

growing, too, even in a quicker way. Hence we 

are using different mechanisms, such as one-class 

learning to improve the performance against 

unseen attacks [20]. Also we are using the 

attention mechanism, which has had lots of 

success in natural language processing. As 

another lateral factor, we are considering the 

employment of short-duration utterances for the 

task of deepfake speech detection, as the shorter 

the length of the input signal is, the better the user 

experience can get working with an ASV system. 

As a result, recently, more research has been 

focusing on Short-duration Speaker Verification 

(SdSV) tasks [23]–[26]. The reason is the shorter 

the After implementing the models based on each 

acoustic feature, and it is observable that CQT 

spectrogram-based model reaches the best EER 

and min t-DCF among all the features mentioned 

earlier, while it uses noticeably less processing 

power and requires less time for training and test. 

Moreover, the CQT spectrogram-based model 

places among the best performers in the field of 

synthetic speech detection, while a considerably 

shorter utterance is being used compared to the 

state-of-the-art models.  

The rest of this paper is structured as what 

follows. Some related works are reviewed in 

Section 2. Section 3 gives some insight into the 

background needed for a more vivid 

understanding of this paper. Section 4 elaborates 

on the details of the proposed method, and Section 

5 describes the experimental setup and results. 

Finally, in Section 6, the work done in this paper 

is concluded. 

2. Related Works 

In this section, the works done in synthetic speech 

detection are reviewed briefly. We divide works 

in this field into Traditional Approaches, which 

are classic works done before the emergence of 

deep learning (mostly based on signal processing 

and feature engineering), and Deep Learning-

based approaches.  

2.1. Traditional approaches  
Early works on synthetic speech detection were 
concentrated on feature discovery [27]. They 
mostly have considered the combination of the 
Support Vector Machine (SVM) or Gaussian 
Mixture Model (GMM) (for the classification of 
genuine and counterfeit inputs) with various 
speech representations, such as LFCC, MFCC, and 
magnitude and phase spectrum of the speech 
signal. Wu et al. [28] have employed a GMM with  
MFCC, modulation features, and modified group 
delay cepstral coefficients as input features. In 
[29], various acoustic features utilized for fake 
speech detection have been compared with the 
usage of the GMM and the SVM as classifiers. 
Also In [30], Phase-information-related features 
such as Relative Phase Shift (RPS) and Modified 
Group Delay (MGD) were exercised with GMM 
for classification. For the first time in [31], 
Todisco et al. gave CQCC features extracted from 
utterances to a GMM classifier to separate fake 
from authentic speech.  
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2.2. Deep learning-based approaches 
Recently and with the astonishing results of deep 
learning-based models in different computer 
science areas, the contributions in synthetic speech 
and voice spoofing detection have been dominated 
by end-to-end deep learning methods. In [11], a 
fusion of ResNets has been considered with 
CQCC, MFCC, and log magnitude of STFT 
spectrogram features of the input signal for the 
tasks of deepfake speech and replay attack 
detection. Also Gomez-Alanis et al. [12] have 
utilized a Light Convolutional Neural Network 
(LCNN) to extract features and a Recurrent Neural 
Network (RNN) with Gated Recurrent Units 
(GRU) to learn the long-term dependencies of 
audio signals. In [13], different configurations of 
ResNets and squeeze-excitation networks were 
used to create a countermeasure. Chettri et al. [32] 
employed deep models such as CNN and CRNN 
along with shallow models constructed of GMM 
and SVM to create three ensemble models for 
synthetic speech detection. Usage of Acoustic 
features of utterances such as Static, Delta, and 
Acceleration (SDA), MFCC, IMFCC, CQCC, and 
Sub-band Centroid Magnitude Coefficients 
(SCMC) was considered in their work. In [14], it is 
noted that genuine speech samples have relatively 
low variance in characteristics compared with 
synthetic speech, and a model based on LCNN and 
feature genuinization is proposed. Monteiro et al. 

[21] used the modified group delay function 
feature and STFT spectrogram along with LCNN 
and ResNet equipped with temporal self-attention. 
A combination of graph attention networks and 
ResNet-18 were used in [22], with Log-linear 
Filter-Bank (LFB) extracted from utterances as 
input to distinguish synthetic speech from real 
samples. A Resnet-18 with self-attention and one-
class learning has been trained on LFCC features 
in [20]. In [33], Fang et al. have proposed a Dual 
Path Res2Net (DP-Res2Net) model, which takes 
the raw waveform as its input. Also with the 
generalizability and improvement in mind as the 
main goal, the [34] authors have considered the 
exploitation of prototypical loss under the meta-
learning paradigm and have utilized Squeeze 
Excitation Residual Network (SE-ResNet). Ma et 
al. [35] have used a knowledge distillation-based 
loss function and have applied continual learning 
for the first time in synthetic speech detection. In 
[10], a countermeasure based on the CQT 
spectrogram has been proposed, with a ResNet-18 
at its core and temporal self-attention. Li et al. [19] 
have proposed a channel-wise gated Res2Net 
model adopting the CQT spectrogram as the 
acoustic feature and have reached the state-of-the-
art results on the ASVspoof 2019 LA dataset. A 
summary of works on deep learning-based 
synthetic speech detection is available in Table 1. 

Table 1. Summary of works in Deep Learning-based synthetic speech detection. 
Min t-DCF EER (%) Dataset Method Author(s) and Reference Year 

0.156 6.02 ASVspoof 2019 
Fusion of (CQCC,MFCC, Spectrogram) 

+ ResNet 
Alzantot et al. [11] 2019 

0.152 6.28 ASVspoof 2019 Spectrogram + LCNN + GRU-RNN Gomez-Alanis et al. [12] 2019 

0.155 6.70 ASVspoof 2019 
Fusion of (Log Spectrogram, CQCC) + 

(SENet, ResNet) 
Lai et al. [13] 2019 

0.075 2.64 ASVspoof 2019 
Ensemble of (Log-spec, Log-Mel-spec) + 

(CNN, CRNN, Wave-U-Net, …) 
Chettri et al. [32] 2019 

0.102 4.07 ASVspoof 2019 
Log Power Spectrogram + LCNN with 

Feature Genuinization 
Wu et al. [14] 2020 

0.1890 9.87 ASVspoof 2019 
(LFCC+Product Spectrum) + (LCNN, 

ResNet)+Self-attention 
Monteiro et al. [21] 2020 

0.047 1.68 ASVspoof 2019 
LFCC+ ResNet+Graph Attention 

Network 
Tak et al. [22] 2021 

0.059 2.19 ASVspoof 2019 
LFCC + ResNet + Self-attention + One 

Class Learning 
Zhang et al. [20] 2021 

0.10 3.53 ASVspoof 2019 
 CQT Spectrogram + ResNet + Self-

attention + One Class Learning 
Ziabary and Veisi [10] 2021 

0.052 1.78 ASVspoof 2019 
CQT Spectrogram +Multi-group 

Channel-wise Res2Net  
Li et al. [19] 2021 

- 0.47 ASVspoof 2019 
Waveform + Dual Path Res2Net + AM-

Softmax 
Fang et al. [33] 2021 

- 7.74 ASVspoof 2019 Continual Learning Ma et al. [35] 2021 

0.048 2.00 ASVspoof 2019 
Meta-Learning + (SE-ResNet, ResNet) + 

(Prototypical Loss, One Class Softmax) 
Pal et al. [34] 2022 
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3. Background 

3.1. Short-time Fourier transform (STFT) 

Short-time Fourier Transform (STFT) is an 

extension of the Fourier transform, and consists of 

a series of Fourier transform of a windowed 

signal, computed every   milliseconds. By this 

method, a signal is decomposed into a series of 

short segments, a 

nd short-term frequency information for each 

frame of the signal is extracted.  

 

The short-time Fourier transform of the  th frame 

of a speech signal is calculated as: 

( )( ) [ ]j j n

m m

n

X e x n e 






   (1) 

where: 

[ ] [ ] [ ]mx n w m n x n   (2) 

 

and   is the window function which, except in a 

small region, possesses a value of zero.  

The STFT is normally visualized by means of its 

spectrogram, which is the intensity plot of  

STFT magnitude over time. An example of an 

STFT spectrogram is shown in Figure 2. 

 

Figure 2. An illustration of an example STFT 

spectrogram 

3.2. Linear frequency and Mel-frequency 

cepstral coefficients (LFCC and MFCC) 

Filter bank-based cepstral features such as Linear 

Frequency Cepstral Coefficients (LFCC) and Mel-

Frequency Cepstral Coefficients (MFCC) have 

been contemplated immensely as a way for 

acoustic signal analysis. These features have been 

inaugurated to overcome the high-dimensionality 

issues of acoustic features such as the STFT 

spectrogram.  

 

Frequency (KHz) 

Figure 3. a) Linear filters for LFCC b) Mel-scale filters 

for MFCC [29]. 
 

To extract the MFCC and LFCC features, first, 

overlapping band-pass filters integrate the power 

spectrum of an audio signal (or each frame of an 

audio signal). Then there will be a logarithmic 

compression step, and afterward, the Discrete 

Cosine Transform (DCT) is performed to produce 

cepstral coefficients. For the production process 

of LFCC features, filters have a triangular shape. 

For the MFCC, however, the overlapping 

triangular filters are placed in the Mel scale. The 

difference between filters used in the LFCC and 

the MFCC is visible in Figure 3.  

3.3. Constant Q transform 

The Constant Q Transform (CQT) was 

inaugurated in 1991 [17] mainly aiming for music 

processing objectives. The CQT provides a 

constant Q factor (the ratio between the center 

frequency    and the bandwidth   , /kQ f f ) 

all over the spectrum, contradictory to the Short-

Term Fourier Transform (STFT) that is mainly 

employed for the computation of a speech signal’s 

spectrogram and has a changing Q factor. 

Moreover, the STFT spectrogram lacks time 

resolution at higher frequencies and lacks 

frequency resolution at lower frequencies, while 

CQT benefits from higher time resolution at 

higher frequencies in addition to higher frequency 

resolution and low frequencies [31]. These 

abilities are achieved by the way of computation 

of the CQT. The better frequency resolution in 

lower frequencies is observable in lower parts of 

Figure 4 (b) where the distance between the CQT 

spectrograms points is very short, while more time 

resolution in higher frequencies is clear in the 

higher parts of the CQT spectrogram. Moreover, 

the research in [36] shows that usage of the CQT 

in shifted non-negative matrix factorization 

models can enhance the quality of individual 

sound source separation. Additionally, in [37], for 

acoustic scene classification, a fusion of the STFT 

spectrogram and the CQT spectrogram features 

and CNNs was suggested. It was shown that the 

fused model could reach better results than the 

solitary STFT spectrogram model. Moreover, as 

8 

Magnitude 
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mentioned earlier, in  [19], the CQT spectrogram 

has been used along with a multi-group channel-

wise Res2Net which has achieved results close to 

ones of the state-of-the-art model. 

3.3.1. CQT computation 

According to [17], to compute the CQT of a time-

domain signal     , the following formulation is 

used: 

2
*

2

( , ) ( ) ( )
2

k

k

N
n

CQ k
k

N
j n

N
X k n x j a j n

 
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 

 
  

 
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(3) 

where    is the  th window length, and   
        is the frequency bin index.   

  is the 

complex conjugate of    and a time-frequency 

atom       is calculated according to: 

1
( )exp 2( ) k

k

k s

k

f
a nin

n

C N f


  
   
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   (4) 

 

 

(a) STFT 

 

 

(c) STFT for a Sample Audio 

 

  

(b) CQT  

 

 

(d) CQT for a Sample Audio 

 

Figure 4. A time-frequency domain comparison of a) STFT and b) CQT spectrograms. H is the duration for sliding window 

analysis [31] c) STFT spectrogram for a sample audio, d) CQT spectrogram for the same sample.

 

where    indicates the sampling rate and    is the 

center frequency of the  th bin. Also k  is the 

phase offset and the scaling factor   calculated 

through: 

2

2

2

k

k

N
k

N kl

N
l

C w
N

 
 
 

 
 

 

 
 

  
 
 

  (5) 

 

Additionally, the    in (2) obeys the following 

formula: 

1

12
k

B
kf f



  
(6) 

where   is the number of bins per octave and     

shows the center frequency for the lowest 

frequency bin. Also the following equation gives 

the   factor: 
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Finally, the window length    is: 

k

k

sN Q
f

f
  (8) 

4. Proposed Method  

In this section, we give the details about the used 

acoustic features of a speech signal and the 

method we use for comparison of them in deep 

learning-based synthetic speech detection. Figure 

5 gives an overview of our model.  

4.1. Input  

In the first step, different acoustic features are 

extracted from the raw signal using the methods 

described in Section 3. The STFT spectrogram, 

LFCC features per each frame of an audio signal, 

MFCC features per each frame of an audio signal, 

and CQT power spectrogram are separately given 

as inputs to the neural network architecture 

discussed in the following paragraphs.
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Figure 5. An overview of  all the steps of our model.

4.2. Neural network model 

A ResNet-18 model has been contemplated as the 

backbone for feature extraction from the input. 

The immense success of ResNet-based models is 

the primary reason for the selection of such a 

network (In [21], it is shown that larger Residual 

Networks such as ResNet-50 are more prone to 

overfitting in the task of synthetic speech 

detection on the ASVspoof 2019 dataset), because 

of the higher number of parameters in ResNet-50 

compared with ResNet-18, especially when 

combined with attention layers. The 

representations resulting from the application of 

ResNet-18 are then mapped to a set of vectors. 

Afterward, based on the prevalence of attention-

based mechanisms in various tasks such as natural 

language processing, there is a self-attention layer 

that gets the aforementioned set of vectors and 

outputs a new vector that contains the temporal 

importance of each part of the input. In the end, 

we have a feedforward network, which is 

consisted of three fully connected layers. 

4.3. Loss function 

While the characteristics of fake audio created by 

different types of attacks can be disparate from 

one attack to another, there is much more 

similarity in the attributes of samples of genuine 

speech. Hence, we consider the usage of the one-

class learning approach presented in [20], where 

the One-Class Softmax (OCS) loss function is 

calculated through: 

 0( )( 1)

( 1)

1
1

yi
y ii

N
m w x

i

L log e
N

  



   (9) 

where    is the only weight vector,   is the input 

vector, and   denotes the target label. Also   and 

  are the cosine similarity margin and the number 

of samples in a batch, respectively. Finally,   is a 

scale factor, and  ̂  and  ̂ are normalized versions 

of   and  . In [20], it is shown that OCS loss can 

attain satisfactory results and can further enhance 

the ability of the model to discern unknown 

attacks from genuine speech. 
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5. Experiments 

In this section, we elaborate on the practical 

details of the work done in this paper. 

 

5.1. Dataset 

The LA subset of the well-known ASVspoof 2019 

challenge dataset [8] that has established itself as 

a benchmark in the area of voice spoofing 

detection and synthetic speech detection is used 

for the training and evaluation of the variation of 

the proposed model. Various Text to Speech 

(TTS) and Voice Conversion (VC) methods have 

been employed to create fake speeches in the LA 

subset of the ASVspoof 2019 dataset. The LA 

subset is divided into Train, Development, and 

Evaluation parts. We have merged the training 

and development parts in our work and used the 

resulting section in the training and validation 

process. The same six different types of synthetic 

speech creation techniques are utilized in both the 

Training and Development subsets of LA. 

However, the evaluation set is comprised of 11 

types of attacks previously unseen in the other 

sets. Table 2. elaborates on some details about the 

LA subset of the ASVspoof 2019 dataset. 

 

Table 2. Details of LA subset of ASVspoof 2019 challenge dataset. 

 #Speakers #Utterances  
Duration 

Subset Female Male Spoof Bonafide 

Training 12 8 22800 2580 24h:10m 

Development 12 8 22296 2548 24h:15m 

Evaluation - - 71747 62h:44m 

5.2. Evaluation metrics 

Equal Error Rate (EER) and minimum tandem 

detection cost function (min t-DCF) metrics have 

been deployed to evaluate and compare the 

proposed methods. These are the two prevailing 

metrics used for the comparison of different voice 

spoofing detection systems in previous research 

works. The min t-DCF metric was introduced at 

the ASVSpoof 2019 challenge, aiming to assess 

the performance of an anti-spoofing 

countermeasure in the presence of an ASV system 

and determine how much a misclassification in 

countermeasure affects the ASV system. On the 

other hand, EER is the threshold where the false 

alarm rate and miss rate are the same and is an 

already established metric in the evaluation of the 

performance of biometrics and anti-spoofing 

systems. Lower values in terms of both EER and 

min t-DCF show higher degrees of performance 

of the countermeasure. 

5.3. Training details 

In the training phase for all models, first, 

trimming and repeat padding are used to create 

input utterances of equal length of 4 seconds, and 

then the inputs are normalized. After that, each 

feature is extracted from the raw input signals for 

each model, respectively. For the MFCC and 

LFCC features, 20 frequency filters are 

considered for each frame of the data, and the 

delta and delta-delta of features are combined 

with them. As a result, the extracted feature vector 

for MFCC and LFCC has a 60*251 size. For the 

STFT spectrogram, 512 frequency bins have been 

considered for each frame of data, with 

rectangular overlapping windows, and a hop 

length of 128, and at the end, the resulting vector 

is 257*251. The GPU implementation of CQT 

proposed in [23] has been employed for the 

creation of CQT spectrogram-based features, with 

a sampling rate of 16KHz, 84 frequency bins, a 

hop length of 512 samples, 12 bins per octave, 

and 32.70Hz as the frequency for the lowest CQT 

bin. This configuration results in a size of 84*126 

for the power CQT spectrogram of each utterance 

as the input.   

As stated earlier, each one of the extracted 

acoustic features is given to a combination of the 

ResNet-18 with self-attention, and feedforward 

layers and the one-class softmax layer proposed in 

[20] are employed for the implementation of 

models. At the end of these layers, an embedding 

vector with a size of 256 is extracted. Finally, the 

embedding vector passes through the one-class 

softmax layer for the calculation of loss and score. 

Additionally, the same values as [20] have been 

considered for the loss function parameters; 

     and      . We trained all models for 

more than 100 epochs on the Kaggle.com servers.  

5.4. Results and Comparison 

After computing the scores for each utterance of 

the test set and calculating EER and min t-DCF 

for each model, it is observable that for the task of 

deepfake speech detection on the LA subset of the 

ASVspoof 2019 dataset, the model with CQT 

spectrogram as a feature extracted from each 

utterance, has the best results compared with the 

models based on other acoustic features. The CQT 

power spectrogram-based model reaches an EER 
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of 2.33% and min t-DCF 0.12, which improves 

baseline models by about 71% in terms of EER. 

As it can be seen in Table 3, CQT based model 

not only outperforms models based on LFCC, 

MFCC, and STFT spectrogram on the grounds of 

performance but also, as a result of smaller feature 

vector size, it needs the least amount of 

computation time and graphical memory, so that 

the STFT spectrogram based model needs 300% 

more graphical memory and about three times of 

training duration per epoch.  

As it was mentioned in Section 5.3, the 

parameters considered for extraction of CQT 

spectrogram features result in smaller feature 

vectors for the CQT spectrogram than other 

STFT-based features. Hence, the usage of CQT-

based features not only has improved the 

performance but also has reduced the required 

processing power drastically. Consequently, the 

user experience of the biometric system will be 

improved, and the implementation cost of the 

system will be less compared to when other 

features are being contemplated. 
 

Table 3. Comparison of acoustic features when  combined 

with ResNet-18+Attention+MLP+OC learning. 

Acoustic 

feature 
EER 

Min  

t-DCF 

Avg. Time 

/ Epoch  

Approx. 

Max  

GPU RAM  

LFCC  4.7 0.15 245s 4.5GB 

MFCC 8.33 0.223 225s 4.5GB 

STFT 
Spectrogram  

5.05 0.186 600s 10GB 

CQT power 

spectrogram 
2.33 0.120 140s 2.4GB 

 

Table 4. Comparison of CQT Model with some of the 

recent works 

* The input dimesion is not calculated as the model has a weaker 

performance than proposed model 

System EER 
min t-

DCF 

Input 

Dim 

CQCC + GMM-baseline [8] 9.57 0.257 * 

LFCC + GMM-baseline [8] 8.09 0.212 * 

Lai et al. [13] 6.70 0.155 * 

Alzantot et al. [11] 6.02 0.156 * 

Wu et al. [14] 4.07 0.102 * 

Proposed (CQT power 

spectrogram) 
2.33 0.120 84*126 

Zhang et al. [20]  2.19 0.059 60*1498 

Pal et al. [34] 1.70 0.048 60*1498 

Tak et al. [22] 1.68 0.047 60*404 

 

Also CQT-based model places among top 

performers even though it is lighter than most 

models in terms of input dimensions, and any kind 

of model fusion or data augmentation has not been 

used, unlike some other works. Table 4 compares 

the proposed models with ASVspoof 2019 

baselines and some of the recent works in 

synthetic speech detection. In Table 4, the input 

dimensions of works that are performing better 

than the proposed method, are calculated and as it 

is evident they have all higher input dimensions. 

5.5. On the effects of short-duration of 

utterances 

As it was spoken of in the previous sections, 

utterances of length 4 seconds have been used for 

feature extraction and synthetic speech detection. 

When compared to other works such as [20],  

which uses utterances of the length of 15 seconds, 

we are clearly using a shorter duration of 

utterances for deepfake speech detection. Short-

duration speaker verification has become a trend 

in recent years [24]–[26]. The Short-duration 

Speaker Verification (SdSV) Challenge has been 

created focusing on this subject, aiming to speaker 

verification in more realistic situations. Synthetic 

speech detection in a shorter duration, which is 

observable in our work, can help the combination 

of ASV systems and countermeasure work to 

achieve a more convenient user experience (as the 

user needs to speak less) and also need 

comparably less amount of processing power and 

computational resources.  

6. Summary and Conclusion 

In this work, we provided a comparison between 

the STFT-based acoustic features and the CQT 

spectrogram in terms of repercussions of their 

usage in deep learning-based synthetic speech 

detection. It is observable that when used with our 

ResNet-based DNN architecture, not only does 

the CQT spectrogram proves to be more effective 

performance-wise, but also, in terms of required 

time and processing power needed, it tops STFT-

based acoustic features. In the future work, other 

network architectures such as transformers and 

Res2Nets can be used for this comparison to give 

more insight into the difference between these 

features. Also, we have not dedicated much time 

to the analysis of the difference that variations of 

parameters of CQT could make, which is the work 

that can be done in the future. 
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در تشخیص گفتار ساختگی مبتنی بر  STFT با ویژگیهای آکوستیک مبتنی بر CQT مقایسه طیف

  یادگیری عمیق

 

  *هادی ویسی و پدرام عبدزاده ضیابری

 .ایران،  تهران، دانشگاه تهران، دانشکده علوم و فنون نوینفناوری ای  بین رشته گروه
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 چکیده:

ت دسترس ی منقی ی ب ا اس ت اده از ابااره ایی      لاآسیب پذیر هستند، که در میان آنها حم   صوت ت ارائهلاحمبه های تایید صحت گوینده نسبت  سیستم

ان د و ب ا وه ور     های زیادی متمرک ا ب ر شناس ایی گ ت ار س اختگی ب وده       های اخیر، پژوهش صوت ایجاد می شوند. در سال-به-مانند تبدیل صوت و متن

ه ای مبتن ی ب ر ی ادگیری      . اکث ر روش رون د  ه شمار میبها در علوم کامپیوتر، الگوریتم غالب در این حوزه نیا  های یادگیری عمیق و موفییت آن الگوریتم

اند. در حالی که اخی را مخ خ     شوند است اده کرده که از سیگنال اولیه استخراج می STFTهای مبتنی بر عمیق برای شناسایی گ تار ساختگی از ویژگی

اباار مناسبی برای بهبود عملکرد و است اده بهینه از توان پردازشی و کاهش زم ان پ ردازش باش د. در ای ن      تواند می CQT شده است که است اده از طیف

. در این کار از ی   ممم اری   شود میکه بیخترین است اده را دارند ارائه  STFT روش مبتنی بر چندینو  CQT پژوهش، میایسه ای بین است اده از طیف

 ه د  . به عن وان  ستا  های فراوانی در در زمینه تخخی  گ تار جملی دست یافته این ممماری به موفییت چرا که است،است اده شده  ResNet مبتنی بر

گ ت ار  پ ردازیم. همنن ین شناس ایی     خود م ی -به-سه و توجهلاجانبی، ما به بهبود حداکثری مدل ارائه شده با است اده از اباارهایی مانند یادگیری ت  ک

، از لح ا  عملک رد   CQTکه مدل مبتن ی ب ر طی ف    شود خخ  میاز سایر اهدا  مورد توجه در کار ماست. در نهایت، م جملات کوتاهطول با  ساختگی

ه ای انج ام    در جایگاه مناس بی در ب ین پ ژوهش    CQTمدل مبتنی بر ،کند. همننین عمل می STFTبهتر از مدل های مبتنی بر  منابع و زمان پردازش

 .گیرد قرار می EERتار ساختگی از نظر ممیار ارزیابی شده در حوزه تخخی  گ 

 .تخخی  گ تار جملی، یادگیری عمیق، تخخی  جمل عمیق صوتی :کلمات کلیدی

 


