
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 1, 2023, 103-118.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

A Reinforcement Learning-based Encoder-Decoder Framework for

Learning Stock Trading Rules

Mehran Taghian, Ahmad Asadi, and Reza Safabakhsh
*

Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran.

Article Info Abstract

Article History:
Received 09 June 2022

Revised 05 November 2022
Accepted 07 January 2023

DOI:10.22044/jadm.2023.11979.2347

 The quality of the extracted features from a long-term sequence of raw

prices of the instruments greatly affects the performance of the trading

rules learned by the machine learning models. Employing a neural

encoder-decoder structure to extract informative features from

complex input time-series has proved very effective in other popular

tasks like neural machine translation and video captioning. In this

paper, a novel end-to-end model based on the neural encoder-decoder

framework combined with DRL is proposed to learn single instrument

trading strategies from a long sequence of raw prices of the instrument.

In addition, the effects of different structures for the encoder and

various forms of the input sequences on the performance of the learned

strategies are investigated. The experimental results show that the

proposed model outperforms other state-of-the-art models in highly

dynamic environments.

Keywords:
Deep Reinforcement Learning,

Deep Q-Learning, Single Stock

Trading, Portfolio Management,

Encoder-Decoder Framework.

*Corresponding author:
safa@aut.ac.ir (R. Safabakhsh).

1. Introduction

Forming profitable trading strategies fitted on

either a single financial instrument or a set of

instruments in a specific market based on a vast

historical data is a critical problem for investors.

Since the introduction of algorithmic trading [1]

and monitoring the trading process by computers,

especially at high frequency [2], there has been a

widespread interest in designing a powerful model

to learn profitable investment strategies.

In the recent years, the machine learning (ML)

models and deep neural networks (DNNs) have

been widely used for learning profitable

investment strategies in both single asset trading

and portfolio management problems [3].

Considering the great performance of deep

reinforcement learning (DRL) models (deep

neural networks trained with the reinforcement

learning techniques) in forming investment

strategies, the proposed methods for portfolio

management are mainly based on the DNN

structures and DRL techniques. Ganesh et al. [4]

have proposed a very-long short-term memory

(VLSTM) network to deal with extremely long

sequences in financial markets, exploring the

importance of VLSTM in the context of high-

frequency trading. Arévalo et al. [5] have

proposed a DNN structure to forecast the next

one-minute average price of an instrument given

its current time and n-lagged one-minute pseudo-

returns to build a trading strategy that buys (sells)

when the next predicted average price is above

(below) the last closing price. Dixon et al. [6]

have proposed a DNN model to learn the spatio-

temporal model of the input, developing a

classifier trained by out-of-sample predictive

mean squared error to predict short-term market

prices. In our former work [7], the DRL

performance in learning single asset-specific

trading rules was investigated, and conclusions

were that: 1) the quality of extracted features from

the input can greatly affect the performance of the

learned strategy by DRL models, and 2) proposing

a good feature extractor from a long-term

historical price data sequence would obviously

improve the profitability of the resulting trading

strategy. Considering the results from our former

work [7], proposing a model to learn good

features from a long-term price sequence would

mailto:safa@aut.ac.ir%20(R

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

104

effectively contribute to improve the performance

of DRL models.

In this work, we first develop a DRL agent based

on a deep Q-learning algorithm to generate

trading signals given a sequence of OHLC prices

of each instrument. Then we design and

implement an encoder-decoder based model to

improve the agent’s feature extraction

performance. In addition, we examine the

performance of different DNN structures for the

encoder module. The time-series of candlesticks

and raw OHLC input types are evaluated, and the

performance of models is tested using various

stocks with different behaviors. Furthermore, the

influence of window size on the agent’s

performance for the windowed input type is

studied. The experimental results show that our

model outperforms the state-of-the-art methods.

In the next section of this work, we briefly review

the related works of learning financial asset-

specific trading strategies, and discuss the

advantages and disadvantages of different

categories of the proposed methods. Section 3

discusses the model proposed in this paper. The

model consists of an encoder part for feature

extraction and a decoder part for decision-making.

The details of the architecture of both of these

parts are discussed in Section 3. Section 4

provides the experimental results, and the

conclusions are provided in Section 5.

2. Related Works

Many researchers proposed methods based on

reinforcement learning for determining trading

strategies. RL is applied in portfolio management

first by Moody et al. [8] using recurrent

reinforcement learning. Suchaimanacharoen et al.

[9] first predicts the future prices using a CNN,

and then feed the output to a policy gradient

model along with historical data to empower

trading decisions.

Following the work by Mnih et al. [10], which

introduced the deep Q-learning model and its

successful performance in playing Atari games,

the researchers have carried out many kinds of

research works to apply DRL methods to the stock

market environment. Luo et al. [11] proposed a

DDPG model with two different convolutional

neural network (CNN) function approximators.

The input state to the model is 18 different

technical indicators converted to multiple

channels of 1D images fed to the CNN model.

Wang et al. [12] proposed a novel RL-based

investment strategy consisting of three phases: 1)

extracting asset representation from multiple time-

series using a Long Short-Term Memory with a

History Attention (LSTM-HA) network, 2)

modeling the interrelationships among assets as

well as the asset price rising prior using a Cross-

Asset Attention Network (CAAN), and 3)

generating portfolio and giving the investment

proportion of each asset according to the output

winner scores of the attention network. The three

components are optimized end-to-end using a

sharp ratio-oriented RL. Xiong et al. [13]

explored the training power of the deep

deterministic policy gradient to learn stock trading

strategy. Chakole et al. [14] proposed a method

using the Q-learning algorithm to find the optimal

dynamic trading strategy. They introduced two

models varied in their representation of the

environment, the first of which represents

environment states using a finite set of clusters,

and the second of which used the candlesticks

themselves as the states of the environment.

Théate et al. [15] presented a solution to the

algorithmic trading problem of generating the

trading strategy for single stock based on the

DQN algorithm with a Sharpe ratio-oriented

manner. Brim et al. [16] used co-integrated stock

market prices, and incorporated DQN to generate

pairs of trading strategy.

Having considered the temporal essence of stock

market data, some of the researches have

combined the temporal feature extraction power

of recurrent neural networks with DRL’s decision-

making ability. Wu et al. [17] applied the Gated

Recurrent Unit (GRU) to exploit informative

features from raw financial data along with

technical indicators to represent stock market

conditions more robustly. Then they designed a

risk-adjusted reward function using the Sortino

ratio proposed by Rollinger et al. [18]. Based on

the state, action, and reward functions designed,

they proposed deep Q-learning and deep

deterministic policy gradient for quantitative stock

trading. Weng et al. [19] applied DRL for

portfolio management, and in order to distinguish

the critical time when the price changes, they

proposed using a three-dimensional attention

gating network that gave higher weights on rising

moments and assets. Moreover, they applied the

XGBoost method to quantify the importance of

features and output the three most relevant

features from historical data to the model: close

price, high price, and low price.

In our former work [7], we studied the

performance of strategies based on the candlestick

patterns, SARSA(λ) algorithm, and deep Q-

learning, and concluded that methods based on

deep reinforcement learning could generate more

adaptive trading strategies specific to each asset.

A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Strategies

105

The encoder-decoder framework is one of the

most popular neural structures that is used to solve

complex problems in an end-to-end manner [20].

In this work, we dedicate focus on the following

issues:

1. Proposing a model based on the encoder-

decoder architecture, where the decoder is

a DRL agent trained to generate a trading

strategy based on the representation of the

market produced by the encoder model.

The encoder is a neural network structure

responsible for exploiting features from

the raw input time-series data and

generating feature vector.

2. Showing the importance of extracting

time dependencies of the input prices, and

proposing different encoder structures are

proposed to improve the quality of time

dependencies extraction.

3. Investigating the impact of window-size

on exploiting important features and

generating a proper representation of the

market.

The rest of this paper is structured as what

follows. First, we introduce the details of the

proposed method, deep Q-learning method, model

architecture, and DNN models used as encoder.

Then performances of different encoder models

are evaluated using various methods explained in

detail in Section 4. Next, the results of

experiments are analyzed.

3. Proposed Model

In this section, we briefly describe the problem

formulation, and then drill into different proposed

model structures.

3.1. Formulation

In the financial markets, a candlestick is used to

represent the price fluctuations in a short time

period, originating from Japanese rice traders and

merchants who used candlesticks to track the

market prices [21]. A candlestick consists of 4-

price elements, namely high (the highest stock

price during a period-e.g. a day), low (the lowest

price), open (the stock price at the beginning of

the period), and close (the stock price at the end of

the period), abbreviated to OHLC. A candlestick’s

color can be either green/white, representing a

bullish candle (open price is lower than close

price), or red/black representing a bearish candle

(close price is lower than open price). Figure 1

shows a sample candlestick. Equation (1) shows a

vector representing a candlestick. This vector

consists of the Open, High, Low, and Close

prices.

(, , ,)t open high low closeC P P P P (1)

A candlestick chart is used to demonstrate the

behavior of the asset price. According to this

concept, the patterns in this chart show the

buyers’ and sellers’ behavior and their influence

on the market. Thus these patterns can be used to

analyze the price fluctuations and use the analysis

to devise trade strategies on a financial asset.

Figure 1. A candlestick representing the price behavior of

an asset during a specific time [7].

3.2. Model architecture

The proposed model is based on the encoder-

decoder framework, which consists of the

following modules:

1. Encoder:

Encoder is the first neural structure that

takes the input of the model and learns a

good mapping from the input space to the

feature space that minimizes the decoders’

loss function.

2. Decoder:

Decoder is the second neural structure in

the encoder-decoder framework that takes

the features extracted by the encoder for

each input record and generates the

appropriate output based on the input

feature vector. The gradients of the

decoder are back-propagated to the

encoder and train its weights along with

the weights of the decoder during the

training phase.

In the proposed model, the decoder part is a target

or policy network used in the deep Q-learning

based model proposed by Taghian et al. [7] to

learn the trading strategies. The encoder part is a

deep neural network applied to extract deep

features from the candlestick chart

representations. These features are categorized

into the following two groups:

1. Features directly learned from candlestick

representations or raw OHLC data.

2. Features representing the temporal

relationships among a sequence of

candlesticks inside a time window.

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

106

For each category, NN models exist to efficiently

analyze and extract those features according to the

policy network’s performance in trading. The

encoder part extracts the features from the input,

and provides a state vector (feature vector) for the

decoder module, a deep Q-Learning agent that

uses this state vector as the state of the

environment to produce trading signals. Based on

the rewards given to the DRL agent, the model is

optimized towards producing higher profits. This

optimization is done in an end-to-end form, back-

propagating error from the decoder part to the

encoder module. As a result, the encoder extracts

the features based on the trading performance of

the DRL. The model architecture is shown in

figure 2.

3.3. The decoder module

The decoder module is the trading agent of our

model, and learns to produce trading signals. This

module’s architecture is based on the deep Q-

Learning algorithm proposed by Mnih et al. [10]

to play Atari games. The module’s input is a state

vector containing the features of the market at

time-step t. These features can be either vanilla

input of OHLC prices or the feature vector

produced by a feature extractor model. We show

the vector space of the input candles with

1 2{ , ,..., }TC c c c where T is the final time-step,

and ic is the candle representation of different

time-intervals (here daily). The feature extractor

module  gets the vector space of candles as

input, and generates the vector space of states

1 2{ , ,..., }TS s s s .

()C S  (2)

Equation (2) represents  , the feature extraction

function. This function can be either an identity

function (state space is the candlesticks

themselves) or a neural network that extracts deep

features from the input vector space of

candlesticks and produces a vector space of

features. Each vector is denotes the state of the

environment at time-step t. This state is given to

the DQN agent to use in taking action. The action

space of the DQN agent is

{' ', ' ', ' '}A buy sell noop , which are the signals

of the trading strategy at each time-step. After

taking action, the agent would be given a reward

based on the signal produced. The rewards of

buying and selling are a bit different. Equation (3)

demonstrates the reward function used by the

Figure 2. Overall structure of the proposed model.

A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Strategies

107

environment. The os parameter is used alongside

action ' 'a n showing that whether the money

has already been invested on the market or not.

2 2

1

2 1

2

((1) * 1)*100 ' ' (' ' 1)

((1) * 1)*100 ' ' (' ' 0)

t

p
Tc a b a n os

p
R

p
Tc a s a n os

p


      


 
       


(3)

Reinforcement learning is a framework used to

learn a sequence of decision tasks. In general, the

RL agent interacts with the environment, observes

the state, takes action according to the policy and

the observed state, and gets a reward. In a

sequence of decisions made by the RL agent, the

agent learns a policy π regarding the actions taken

and rewards earned at each episode. Afterward,

the agent should optimize its policy to maximize

cumulative reward after each episode. For this

purpose, we used deep Q-learning, a critic-based

reinforcement learning algorithm, which uses

action-value function (,)Q S A denoting the

expected cumulative reward in state S when

action A is taken. More formally, we use a

multi-layered perceptron to approximate the

optimal action-value function, which is

demonstrated in (4).

Where  is the discounting factor, tr is the reward

at time-step t ,  is the behaviour policy learned,

s is the observed state, and a is the agent’s

action. The optimal action-value function obeys

the Bellman equation:
* *

'
'

(,) [max (', ')]s
a

Q s a E r Q s a 

 (5)

In order to reduce the mean squared error in the

Bellman equation, we use two sets of parameters

(neural networks). The target values are

approximated using the target network weights

(from previous iterations) shown with i at

iteration i . The policy network, which is being

trained in each iteration to adjust its parameters to

reduce the mean squared error, is used to

approximate the Q function using parameters i

at iteration i . Thus we have a sequence of loss

functions ()i iL  that changes at each iteration.

2

'() [((, ;)] [[]]i i i sL E y Q s a E V y    (6)

In order to further stabilize the deep Q-learning

algorithm, we use the Huber loss proposed by [40]

instead of the mean squared error, which pays

attention to large and small errors equally.

21
| | 1

2
()

1
| | | | 1

2

e e

Huber e

e e




 
  


(7)

Furthermore, our agent stores the last c

experiences in the replay memory. The agent’s

experience vector 1(, , ,)t t t t te s a r s  is saved in

the experience replay memory 1 2{ , ,..., }t cD e e e

(where c is the length of the replay memory) and

used as a batch to optimize the policy network.

When the model wants to update, it samples a

batch of experiences uniformly at random from

D . The steps of the deep Q-learning algorithm

used in our work are represented in Algorithm 1.

3.4. Encoder module

So far, we have discussed the input data

representation, different parts of the trading agent,

and the deep Q-Learning algorithm, used by the

agent to optimize its policy to learn devise

profitable strategies. However, the essential part

of each RL algorithm is the representation of the

environment. As mentioned earlier, the

environment tells the RL agent in which state it

currently is, based on which the agent would take

actions and receive rewards from the

environment. A proper state representation can

significantly improve the performance of the RL

agent. Therefore, in this section, we want to

concentrate on our model’s feature extraction and

state representation the encoder module.

Algorithm 1. Deep Q-Learning algorithm used for

training the agent.

1 Initialize replay memory D to capacity N

2 Initialize action-value function Q with random weights

3 Initialize target action-value function ̂ with weights

4 For episode from 1 to M do

5 Initialize sequence and pre-processed sequence

6 For t from 1 to T do

7 With probability select a random action

8 Otherwise select
9 Execute action and observe reward and state
10 Set , and pre-process

11 Store transition
12 Sample random mini-batch of transition

 from D

13 Set

 {

 ̂ (
)

14 Perform a gradient descent step on

(())

with respect to the network parameters

15 Every C steps reset ̂

16 End for

17 End for

* 2

1 2(,) max [...]t t tQ s a E r r r


      (4)

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

108

We introduced the φ function, given the input

candlesticks, extracts features, and outputs the

state space, which is then fed to the decoder

module–the DQN model. The φ function can be

either an identity function or a deep neural

network. We do not have any feature extraction in

the first case, and candlesticks are directly fed to

the DQN model. The DNNs we use as the feature

extractor are Multi-Layered Perceptron (MLP),

Gated Recurrent Unit (GRU) proposed by Cho et

al. for machine translation [22], 1-dimension

Convolution in the direction of time (CNN)

proposed by LeCun et al. as an encoder for

machine translation [23], and GRU with 1-

dimension convolution in the direction of price

(CNN-GRU).

The MLP model can extract features from

candlesticks without considering the temporal

relationship among candles. In contrast, the other

four models not only pay attention to the structure

of each candlestick, but they also consider the

temporal relationships. In this section, we explain

the detailed architecture of each feature extractor.

We will compare the performance of these DNNs

as the feature extractor for the DQN later.

Before we dive into each model’s description, we

need to explain different inputs to these models.

Our inputs partition into two categories:

1. Vanilla:

The OHLC prices without any change.

This kind of input contains only the

representation of candle tc at time-step

t .

2. Windowed:

A series of candlesticks with size are

grouped together to form a window of

candles 1{ , ,..., }t w t w tW c c c   at time

step t .

All models use the windowed input type but the

raw OHLC prices are only for MLP encoder and

DQN without any encoder models.

3.4.1. MLP

The MLP model is a NN with only one hidden

layer. In order to regularize the outputs of layers,

we used Batch normalization after the hidden

layer. The dimensions of layers are
*128, (128),128*InputSize BatchNormalization FeatureVectorSize

. The MLP architecture takes both types of inputs.

If the raw OHLC is used, then 4InputSize  , and

in case the input type is windowed, then the

InputSize would be equal to the size of the

window.

3.4.2. GRU

The Gated Recurrent Unit (GRU) is a recurrent

neural network exerted on extracting features

from time-series data. This model’s input type is

the windowed input, which contains a sequence of

candles at each time step. The role of GRU here is

to extract features from each candlestick, while

considering the history in each window. The

architecture of the GRU model is represented in

figure 3a.

3.4.3. CNN

The Convolutional Neural Networks (CNN) has

been widely used in image processing to extract

deep features from images, and also it is applied

in signal processing for analyzing signals. CNN

has a kernel, which can move in one, two or

higher directions and extract features from multi-

dimensional data. Here, our input is the OHLC

prices windowed to form time-series data. Thus

we have a 2-dimensional input, the first of which

is the price (candles), and the second one is time.

The input channel size is the size of each candle

vector (i.e. 4 for OHLC) and the kernel size is 3 in

the direction of time (i.e. w the window size). This

architecture is shown in 3b.

3.4.4. CNN-GRU

The combination of CNN and GRU model is

proposed here, where the CNN model’s kernel

moves in the direction of candles and extracts

candlestick features. Then it outputs a sequence of

features from the windowed input to the GRU

model. The GRU model here is responsible for the

input’s temporal behavior, where it takes the

candlesticks’ features in sequence from the CNN,

and extracts temporal features. The details of this

architecture are represented in figure 3c.

4. Experimental Results

4.1. Dataset

All the models are tested on real-world financial

data including stocks and crypto-currencies. Data

is chosen to be varied in the behavior like the

bullish trend, bearish trend, and side-markets.

Furthermore, the data length is chosen to be 20

years with the last five years as test (trading) data,

ten years with the last two years as test data, and

six years (BTC/USD) with the last two years as

test data. The interval of candlesticks in all data is

chosen to be daily. All data used in this work is

available on Yahoo Finance and Google Finance.

The summary of the datasets is represented in

Table 1.

Figure 4 shows the condition of each dataset in

different periods. The AAL data is bullish on the

training-set and bearish on the test-set, market GE

is both bearish on the train and test sets, AAPL

and GOOGL are both bullish; KSS and HSI are

A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Strategies

109

examples of volatile markets, and BTC/USD is

side on the test-set. These datasets are selected to

measure the flexibility of different models in

different market conditions. A robust model can

generalize its performance to provide a proper

strategy behaving profitable on the test-set.

4.2. Evaluation Metrics

The trading strategy proposed by each model is

evaluated from three perspectives:

1. How profitable is the proposed strategy.

2. What is the risk of the proposed strategy.

3. The effect of hyper-parameters (e.g.

window size) in proposing a strategy for

each asset.

The metrics are mentioned and described in detail

as follows.

Table 1. Data used along with train-test split dates.

Dataset Start date Split point End date

GOOGL 2010/01/01 2018/01/01 2020/08/25

AAPL 2010/01/01 2018/01/01 2020/08/25

AAL 2010/01/01 2018/01/01 2020/08/25

BTC-USD 2014/09/17 2018/01/01 2020/08/26

KSS 1999/01/01 2018/01/01 2020/08/24

GE 2000/01/01 2015/01/01 2020/08/24

HSI 2000/01/01 2015/01/01 2020/08/24

4.2.1. Profit curve

This is a qualitative metric showing the

percentage of profit concerning the initial

investment. At each point of time , if the current

wealth and the initial investment is then

the percentage of the profit at each time step is

calculated using (8).

0

0

*100t
t

w w
Rate

w


 (8)

The profit curve compares the of profit for

each model at different time steps.

4.2.2. Arithmetic return

This metric is the sum of the rate of increase or

decrease in the current investment due to the

decisions made by the model (Buy, Sell, None).

The rate of wealth change at the current time-step

if the model has already invested the money (not

sold before) is as in (9).

1

1

t t
t

t

w w
AR

w






 (9)

Using (9), we can calculate the arithmetic return

in (10).

1

T

t

t

AR AR


 (10)

Which shows the cumulative return at each time

step.

4.2.3. Time Weighted Return

The amount of return in different periods are not

independent of each other. In other words, when

the amount of loss is significant at one time, then

the capital would be significantly lower to invest

afterward. For this purpose, we use Time

Weighted Return (TWR) which is calculated in

(11).
1

1

((1)) 1
n

n
i

i

TWR x


   (11)

To avoid negative values, we add 1 to all the

return values, then we remove 1 from the result.

4.2.4. Daily Return Variance

This metric is the variance of daily arithmetic

returns.

2

1

()

1

T

t

t

AR AR

RV
T










(12)

Where AR is the average arithmetic return and

tAR is the arithmetic return at time t .

4.2.5. Total return

It is the percentage of the increase in the capital

during trading time. Total Return is calculated in

(13) where 0W and tW are the initial and final

wealth, respectively.

0

0

tw w
TR

w




(13)

4.2.6. Value at risk

The value at risk () is a metric to measure the

quality level of financial risk within a portfolio

during a specific period of time. typically is

measured with a confidence ratio 1  (e.g.,

with a confidence level of 95% where 5 ) and

measures the maximum amount of loss in the

worst situation with confidence 1  in the

corresponding time period. The higher the value

of the VaR (i.e., the absolute value of) with

a fixed value of  , the higher the level of the

portfolio’s financial risk. There exist two main

approaches to computeVaR : 1) using the closed-

form which assumes the probability distribution of

the daily returns of the portfolio follows a Normal

standard distribution, 2) using the historical

estimation method, which is a non-parametric

method and assumes no prior knowledge about

the portfolio’s daily returns. In this paper, we used

the closed-form method. To calculate VaR , we

used Monte Carlo simulation by developing a

model for futures stock price returns and running

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

110

multiple hypothetical trials through the model.

The mean µ and standard deviation  of the

returns are calculated, then 1000 simulations run

to generate random outputs with a normal

distribution (,)N   . Then the  percent

lowest value of the outputs is selected and

reported as VaR .

4.2.7. Daily return volatility

The volatility of the daily returns evaluates the

risk level of trading rules by calculating daily

returns’ standard deviation. This metric is

calculated for each strategy using (14), where

is the average daily arithmetic return,

and is the daily arithmetic return.

2

1

()

1

T

i

i
p

AR AR

T
 








(14)

4.2.8. Sharpe ratio

The Sharpe ratio () was proposed first by

Sharpe et al. [24] to measure the reward-to-

variability ratio of the mutual funds. This metric

displays the average return earned in excess of the

risk-free rate per unit total risk and is computed

here by (15), in which fR is the return of the risk-

free asset, and { }pE R is the expected value of the

portfolio value. Here we assumed that 0fR  .

{ }p f

p

E R R
SR




 (15)

4.2.9. Window size heat-map

This diagram illustrates the impact of window-

size in extracting appropriate patterns from the

input candlesticks for each asset, which is

reflected as the total profit earned by the agent

corresponding to each window size.

4.2.10. Decision curve

In this curve, the trading signals to trade each

asset are demonstrated over that asset’s raw price

curve. This chart gives insight into the quality of

decision-making power of each model on each

financial asset.

4.3. Experimental setup

All the models are implemented using

 library in Python. In order to optimize

the models, we used Adam optimizer. The mini-

batch training is also conducted using a batch size

of 10, and the replay memory size is set to 20.

(a) GRU model architecture

(b) CNN model architecture

(c) CNN-GRU model architecture

Figure 3. Architecture of different models proposed to

use as the encoder.

A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Strategies

111

The only regularization used in the experiments in

the policy and target networks is the

 . The transaction cost is

set to zero during the training process; however, it

may be non-zero during the evaluation.

(a) Price history of AAL stock used to train and test the model. (b) Price history of GE stock used to train and test the model.

(c) Price history of GOOGL stock used to train and test the model. (d) Price history of AAPL stock used to train and test the model.

(e) Price history of KSS stock used to train and test the model. (f) Price history of HSI stock used to train and test the model.

ss

(g) Price history of BTC/USD stock used to train and test the model.

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

112

4.4. Performance evaluation of models

In this section, the overall performance of the

different models, along with different input types

for the MLP and DQN models are compared.

Figure 5 illustrates the profit curves of models on

the test set for different datasets. DQN-vanilla is

the DQN model without any encoder and with the

input of raw OHLC. DQN-windowed and MLP-

windowed are the same as DQN-vanilla and DQN

windowed, except that MLP contains an encoder

part, which is an MLP model. CNN, GRU, and

CNN-GRU are models with the encoder part as

described in sections 3.4.3, 3.4.2, and 3.4.4,

respectively, with input type as a window of

candles (time series).

The general conclusions we reached from the

experiments are reported in 5:

• Stocks can be categorized into two kinds:

the one in which the sequence of

candlesticks have effective temporal

relationships and those with few

meaningful time dependencies.

• The most profitable trading strategies for

data with a high level of time dependency

in their price history can be generated

using windowed-input models.

BTC/USD, GOOGL, AAPL, and GE are

of this kind. The GRU, and CNN have the

best performance on the BTC/USD

model; The CNN, DQN-windowed, and

MLP-windowed have the best

performance on GE; The GRU, CNN-

GRU, and MLP-windowed have the best

performance on GOOGL; MLP-

windowed, GRU, DQN-windowed, and

CNN provided the most profitable

strategies for AAPL.

• On the other hand, we have data with a

low level of dependency in time among

candlesticks, which leads to the models

with raw OHLC input having a better

performance. AAL, HSI, and KSS are

among this type of data. By low level of

dependency in time, we do not mean that

models with time-series inputs have poor

performance. Their performance is very

good, but they behave a little poorly

compared to models with raw OHLC

input.

Figure 2 represents the details of experiments with

regards to both profit and risk. One crucial point

that can be inferred from the results is that as the

models’ total return increases, the Sharpe ratio

increases correspondingly. It means that the

models devise strategies in a risk-adjusted way.

However, if we want to examine the results in

specific, on some data, the models with the

highest profitability acted riskily. For example, in

AAL, the best model in total return is MLP-

vanilla but the Sharpe ratio and (here we

consider the absolute value of) of its strategy

are, respectively, lower and higher than those

strategies proposed by windowed-input models.

The same is true about GRU in BTC/USD, where

GRU has the highest total return but CNN

provided more risk-adjusted strategies with

respect to and Sharpe ratio.

Another important conclusion deducted from

comparing data diagrams and the models’

performance is that stocks with highly volatile

prices such as KSS, AAL, and HSI can best be

processed by models with raw OHLC inputs,

whereas other data with more stable prices are

best analyzed with windowed-input models.

Therefore, in order to select among feature

extractors, we should pay careful attention to the

type of input data. The best feature extractor for

stable stocks would be windowed-input models,

whereas, for highly volatile stocks, models with

raw OHLC can decide and change their behavior

more quickly since they only pay attention to the

current candlestick, not the history of candles.

4.5. Impact of window size

Now that we have examined the performance of

different feature extractor models, it is time to

dive deeper into the temporal feature extractor

concept. Feature extractors with windowed inputs

can perform better on data with more stable price

movements (rather than highly volatile data).

Moreover, considering 2 and 5, each windowed-

input model has its best performance varying from

data to data. We want to inspect the impact of

window size for each model differently using the

data in which the model has its best performance.

We test the performance of GRU and CNN-GRU

using GOOGL; CNN, MLP-windowed, and

DQN-windowed using GE. Figure 6 demonstrates

a heat-map showing the relationship between the

window size and the normalized total profit

earned by the models with windowed input.

Window sizes vary from 3 to 75, and the total

profit is normalized to bring between 0 and 1.

Blocks having lighter colors earned higher profit

than those with darker colors. As obvious from

the heat-map, the number of lighter colors in the

interval of 10 to 20 is more than other window

sizes. Therefore, the best feature extraction using

a sequence of candlesticks can be done with

window size between 10 and 20.

A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Strategies

113

(a) Performance of different models on AAPL (b) Performance of different models on GOOGL

(c) Performance of different models on GE. (d) Performance of different models on AAL.

(e) Performance of different models on KSS. (f) Performance of different models on his.

(g) Performance of different models on BTC/USD.

Figure 4. Profit curve of the models different from the viewpoint of encoder part.

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

114

4.6. Sample signaling

For each data, the trading strategy is illustrated in

figure 7 based on the decisions made at each time

step by the most profitable model. The green, red,

and blue points represent the ’buy’, ’sell’, and

’none’ signals, respectively. When the agent

generates a signal, it will influence the next day’s

investment. In other words, when the agent

decides to buy a share, this action is actually done

the next day. As mentioned earlier, we use a

parameter , which tells us whether the

agent already bought the share or not. Thus when

the agent bought a share at the time step t, the

 parameter would become true, and if

the next action is none, the agent’s money will

continue to be invested. We begin by an initial

investment at , and at each time-step, when the

agent decides to buy or sell, all the money would

be invested or withdrawn. As shown in figure 7,

agents could generate signals properly in positions

where the trend of the market changes. In order to

represent the strategy behavior for each data, we

select a period of 100 intervals. The stable

markets such as GE, GOOGL, and AAPL contain

’none’ signals in their strategy more than volatile

markets such as HSI and KSS. That can explain

the fact that in stable markets, the market trend

changes less rapidly than highly volatile markets;

therefore, agents can produce more ’none’ action

in their strategy.

4.7. Comparing models with similar works

Whenever possible, the proposed models in this

paper are compared with the state-of-the-art

models of learning single asset trading rules.

Since most of these models’ implementations are

not accessible, comparison with each baseline

model is accomplished just in cases that the

scompanion paper. The list of sthe used baseline

models is as follows:

1. Buy and Hold (B&H)

B&H is one of the most widely used

benchmark strategies to compare the

performance of a model. In this strategy, the

investor selects an asset and buys it at the first

time step of the investment. The purchased

asset is held to the end of the period

regardless of its price fluctuations.

2. GDQN

Proposed by Wu et al. [17], uses the

concatenation of the technical indicators and

raw OHLC price data of the last nine time

steps as the input, a two-layered stacked

structure of GRUs as the feature extractor,

and the DQN as the decision-making module.

3. DQT

Proposed by Wang et al. [25], implements

online Q-learning algorithm to maximize the

long-term profit of the investment using the

learned rules on a single financial asset. The

reward function here is formed by computing

the accumulated wealth over the last days.

4. DDPG

Proposed by Xiong et al. [14] uses Deep

Deterministic Policy Gradient (DDPG) as the

deep reinforcement leaning approach to obtain

an adaptive trading strategy. Then the model’s

performance is evaluated and compared with

the Dow Jones Industrial Average and the

traditional min-variance portfolio allocation

strategy.

Tables 2, 3, and 4 represent our models’

performance along with the state-of-the-art

models using the profit metrics. According to the

results reported in table 2 and table 3, the

performance of the model with MLP encoder and

raw OHLC input is significantly better than DQT

and RRL on stocks HSI and S&P500 proposed by

Wang et al. [25]. For HSI, time-series models

achieve a performance close to MLP-vanilla, but

they behave poorly on S&P500.

Table 5 represents the rate of return (%) for our

models with different encoders and models

proposed by Wu et al. [17]. Wu et al.’s best

model performance is on AAPL stock with rate of

return equal to 77.7 but the GRU model gains the

rate of return 438, which is significantly better.

Moreover, wherever the models proposed by Wu

et al. got a negative return, our model returns a

highly positive return. Consider stock GE, where

the maximum return value in Wu et al. is -6.39%

but the best strategy proposed by MLP with

vanilla input is 130.4%. When examining the

returns gained by different models on IBM, it is

obvious that return values for time-series models

are better than those with raw OHLC input, and

the GRU encoder gains the highest return of

174%. This concept explains the existence of a

temporal relationship in IBM stock in that specific

period.

Figure 5. The heat-map generated to show the

impact of different window sizes on the feature.

A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Strategies

115

Table 5 shows the performance of DDPG, the model presented by Xiong et al. [23].

(a) Trading strategy generated for AAL. (b) Trading strategy generated for GE.

(c) Trading strategy generated for GOOGL. (d) Trading strategy generated for AAPL.

(e) Trading strategy generated for KSS. (f) Trading strategy generated for his.

(g) Trading strategy generated for BTC/USD.

Figure 6. Histogram of strategies generated on each dataset for a period of time.

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

116

The final portfolio value of models in our work is

better than DDPG, starting with an initial portfolio

value of 10000. The CNN-GRU has the best

performance with a final portfolio value of 21984,

while the DDPG model’s final portfolio value is

19791.

As the results indicate, our models perform

significantly better than similar models in

profitability, ranging from time-series models to

raw OHLC inputs. As previously mentioned, these

papers’ codes were not available, and we had to

compare the performance according to common

metrics.

5. Conclusion

In this work, we proposed a method based on the

encoder-decoder framework, where the encoder

model is a DNN, which helps extract essential

features from the raw financial data, and the

decoder is a DRL agent which makes a decision at

each time-step and generates trading signals. The

model is trained end-to-end, and the encoder’s

feature extraction function is optimized toward the

policy improvement of the DRL agent.

DRL is based on the deep Q-learning algorithm,

and consists of a policy and a target network, both

sssof which are multi-layered perceptron

networks. For the encoder part, the feature

extraction performance of various DNNs is

evaluated and compared.

The proposed models for the encoder part are

categorized into two types: 1) The raw OHLC

input, which receives candle OHLC prices

directly. 2) Time-series input, which concatenates

a window of consecutive candles and receives the

window as input.

Based on the experimental results, the

performance of models depends on the market

behavior.

Table2. Performance of different models on BTC/USD, GOOGL, AAPL, KSS, and GE.

A
g

en
t

A
ri

th
m

et
ic

R
et

u
rn

A
v

er
ag

e

D
ai

ly
 R

et
u

rn

D
ai

ly
 R

et
u

rn

V
ar

ia
n

ce

T
im

e

W
ei

g
h
te

d

R
et

u
rn

T
o

ta
l

R
et

u
rn

(%
)

S
h

ar
p
e

R
at

io

V
al

u
e

A
t

R
is

k

V
o

la
ti

li
ty

F
in

al

P
o

rt
fo

li
o

V
al

u
e

BTC/USD

DQN-vanilla 262 0.27 12.64 0.002 629 0.076 -5.58 110.6 7287

DQN-windowed 334 0.34 8.69 0.003 1757 0.117 -4.51 91.7 18567
MLP-vanilla 324 0.33 12.01 0.003 1296 0.097 -5.37 107.8 13959

MLP-windowed 320 0.33 10.19 0.003 1402 0.104 -4.93 99.3 15021

GRU 359 0.37 9.89 0.003 2158 0.118 -4.81 97.8 22577
CNN 353 0.36 9.42 0.003 2069 0.119 -4.69 95.5 21693

CNN-GRU 338 0.35 9.47 0.003 1770 0.114 -4.72 95.7 18701

GOOGL

DQN-vanilla 138 0.21 2.59 0.002 263 0.128 -2.45 41.6 3631
DQN-windowed 134 0.20 2.25 0.002 255 0.134 -2.27 38.7 3546

MLP-vanilla 135 0.20 2.60 0.002 252 0.125 -2.45 41.6 3520

MLP-windowed 163 0.24 2.29 0.002 371 0.162 -2.25 39.0 4714
GRU 180 0.27 1.56 0.003 475 0.217 -1.79 32.2 5752

CNN 139 0.21 2.73 0.002 268 0.127 -2.51 42.6 3678

CNN-GRU 163 0.25 1.75 0.002 382 0.185 -1.93 34.1 4819

AAPL

DQN-vanilla 166 0.25 3.07 0.002 372 0.142 -2.63 45.2 4722

DQN-windowed 190 0.29 3.22 0.003 500 0.159 -2.67 46.3 5997

MLP-vanilla 165 0.25 3.16 0.002 366 0.139 -2.68 45.9 4657

MLP-windowed 200 0.30 3.03 0.003 566 0.172 -2.57 44.9 6658

GRU 191 0.29 2.99 0.003 511 0.166 -2.56 44.6 6112

CNN 181 0.27 2.07 0.003 469 0.189 -2.10 37.1 5688
CNN-GRU 170 0.26 4.03 0.002 379 0.127 -3.05 51.8 4786

KSS

DQN-vanilla 272 0.41 9.25 0.004 1024 0.134 -4.60 78.5 11236

DQN-windowed 251 0.38 9.38 0.003 809 0.123 -4.67 79.0 9088
MLP-vanilla 287 0.43 9.14 0.004 1205 0.143 -4.55 78.0 13048

MLP-windowed 242 0.36 8.93 0.003 747 0.122 -4.56 77.1 8467

GRU 248 0.37 8.84 0.003 801 0.125 -4.52 76.7 9005
CNN 250 0.37 9.10 0.003 806 0.124 -4.59 77.8 9055

CNN-GRU 242 0.36 9.19 0.003 737 0.120 -4.63 78.3 8369

GE

DQN-vanilla 260 0.18 3.25 0.002 967 0.101 -2.79 68.0 10673
DQN-windowed 333 0.23 2.87 0.002 2179 0.138 -2.56 63.9 22788

MLP-vanilla 264 0.19 2.87 0.002 1044 0.110 -2.61 63.9 11442

MLP-windowed 317 0.22 2.89 0.002 1848 0.131 -2.58 64.1 19482
GRU 304 0.21 3.12 0.002 1580 0.121 -2.69 66.5 16795

CNN 335 0.24 2.74 0.002 2242 0.142 -2.49 62.3 23416
CNN-GRU 283 0.20 2.91 0.002 1278 0.117 -2.61 64.3 13779

A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Strategies

117

Table 3. Compare profitability performance with Wang

et. al. [25] based on Rate of Return (%).

When the market is highly volatile, meaning that

the rate of price fluctuation is high, DQN and

MLP model with the raw OHLC input had the

best performance since they are able to make

decisions only based on current input

representation, disregarding to the historical

changes of the market.

On the other hand, there are more stable markets

where models with time-series input can devise

more profitable trading strategies because the

market behavior enables them to exploit efficient

features from financial data history. The window

size impact was further studied, and we concluded

that window sizes in the interval of 10 to 20 had

the best feature extraction performance. Using the

trading strategies generated for each data, we

understand that agents working on stable stocks

will generate none signal more frequently than in

strategies devised for highly volatile markets.

Table 4. Compare profitability performance with Wu et.

al. [17] based on Rate of Return (%).

Table 5. Final portfolio value of different models starting

with the same initial investment.

The future of the work can be viewed from

different perspectives.

• As we have experimented, if we could

predict the next state of the environment

using the current state, and feed the

predicted next state to the DRL model, the

performance would significantly increase.

• The actor and actor-critic based DRL

methods can be tested and compared with

the performance of critic based Deep Q-

learning algorithm used here.

• Working on offering a metric used to

describe the behavior of the market, based

on which, we can specify whether the

time-series models can work efficiently in

rule extraction or not. Using this metric,

we can distinguish where to apply models

with raw OHLC input or apply time-series

input.

References
[1] E. P. Chan, Quantitative trading: how to build your

own algorithmic trading business. John Wiley & Sons,

2021.

[2] P. Gomber and M. Haferkorn, “High frequency

trading,” in Encyclopedia of Information Science and

Technology, Third Edition, IGI Global, 2015, pp. 1–9.

[3] Z. Zhang, S. Zohren, and S. Roberts, “Deep

reinforcement learning for trading,” J. Financ. Data

Sci., vol. 2, no. 2, pp. 25–40, 2020.

[4] P. Ganesh and P. Rakheja, “VLSTM: Very Long

Short-Term Memory Networks for High-Frequency

Trading,” arXiv Prepr. arXiv1809.01506, 2018.

[5] A. Arévalo, J. Niño, G. Hernández, and J.

Sandoval, “High-frequency trading strategy based on

deep neural networks,” in International conference on

intelligent computing, 2016, pp. 424–436.

[6] M. F. Dixon, N. G. Polson, and V. O. Sokolov,

“Deep learning for spatio‐temporal modeling: dynamic

traffic flows and high frequency trading,” Appl. Stoch.

Model. Bus. Ind., vol. 35, no. 3, pp. 788–807, 2019.

[7] M. Taghian, A. Asadi, and R. Safabakhsh,

“Learning financial asset-specific trading rules via deep

Model name HSI S&P

MLP-vanilla 13231.2 5032.3
DQN-vanilla 5016 2524

MLP-windowed 7227 4118

DQN-windowed 7576 4289
GRU 10911 3918

CNN 10575 3859

CNN-GRU 12566 2573
DQT [25] 350 214

RRL [25] 174 141

B&H [25] 154 169

Model name AAPL GE AXP CSCO IBM

DQN-vanilla 336 129 183 182 144

MLP-vanilla 262 130 260 259 149

DQN-

windowed

425 70 252 241 118

MLP-

windowed

402 74 280 299 165

GRU 438 129 262 233 174

CNN 290 84 189 251 153

CNN-GRU 411 78 284 227 152

GDQN [17] 77.7 -10.8 20.0 20.6 4.63

GDPG [17] 82.0 -6.39 24.3 13.6 2.55

Turtle [17] 69.5 -17.0 25.6 -1.41 -11.7

Model name Final portfolio value

DQN-vanilla 20275

MLP-vanilla 21580
DQN-windowed 19475

MLP-windowed 20760

GRU 21360
CNN 20287

CNN-GRU 21984

DDPG [23] 19791
Min-Variance [23] 14369

DJIA [23] 15428

Safabakhsh et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

118

reinforcement learning,” Expert Syst. Appl., p. 116523,

2022.

[8] J. Moody, L. Wu, Y. Liao, and M. Saffell,

“Performance functions and reinforcement learning for

trading systems and portfolios,” J. Forecast., vol. 17,

no. 5‐6, pp. 441–470, 1998.

[9] A. Suchaimanacharoen, T. Kasetkasem, S.

Marukatat, I. Kumazawa, and P. Chavalit,

“Empowered pg in forex trading,” in 2020 17th

International Conference on Electrical

Engineering/Electronics, Computer,

Telecommunications and Information Technology

(ECTI-CON), 2020, pp. 316–319.

[10] V. Mnih et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540,

pp. 529–533, 2015.

[11] S. Luo, X. Lin, and Z. Zheng, “A novel CNN-

DDPG based AI-trader: Performance and roles in

business operations,” Transp. Res. Part E Logist.

Transp. Rev., vol. 131, pp. 68–79, 2019.

[12] J. Wang, Y. Zhang, K. Tang, J. Wu, and Z. Xiong,

“Alphastock: A buying-winners-and-selling-losers

investment strategy using interpretable deep

reinforcement attention networks,” in Proceedings of

the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2019, pp. 1900–

1908.

[13] Z. Xiong, X.-Y. Liu, S. Zhong, H. Yang, and A.

Walid, “Practical deep reinforcement learning approach

for stock trading,” arXiv Prepr. arXiv1811.07522,

2018.

[14] J. B. Chakole, M. S. Kolhe, G. D. Mahapurush, A.

Yadav, and M. P. Kurhekar, “A Q-learning agent for

automated trading in equity stock markets,” Expert

Syst. Appl., vol. 163, p. 113761, 2021.

[15] T. Théate and D. Ernst, “An application of deep

reinforcement learning to algorithmic trading,” Expert

Syst. Appl., vol. 173, p. 114632, 2021.

[16] A. Brim, “Deep reinforcement learning pairs

trading with a double deep Q-network,” in 2020 10th

Annual Computing and Communication Workshop and

Conference (CCWC), 2020, pp. 222–227.

[17] X. Wu, H. Chen, J. Wang, L. Troiano, V. Loia,

and H. Fujita, “Adaptive stock trading strategies with

deep reinforcement learning methods,” Inf. Sci. (Ny).,

vol. 538, pp. 142–158, 2020.

[18] T. N. Rollinger and S. T. Hoffman, “Sortino: a

‘sharper’ratio,” Chicago, Illinois Red Rock Cap., 2013.

[19] L. Weng, X. Sun, M. Xia, J. Liu, and Y. Xu,

“Portfolio trading system of digital currencies: A deep

reinforcement learning with multidimensional attention

gating mechanism,” Neurocomputing, vol. 402, pp.

171–182, 2020.

[20] A. Asadi and R. Safabakhsh, “The encoder-

decoder framework and its applications,” in Deep

Learning: Concepts and Architectures, Springer, 2020,

pp. 133–167.

[21] A. Northcott, The complete guide to using

candlestick charting: How to earn high rates of return-

safely. Atlantic Publishing Company, 2009.

[22] K. Cho et al., “Learning phrase representations

using RNN encoder-decoder for statistical machine

translation,” arXiv Prepr. arXiv1406.1078, 2014.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proc. IEEE, Vol. 86, No. 11, pp. 2278–

2324, 1998.

[24] W. F. Sharpe, “The sharpe ratio,” Streetwise–the

Best J. Portf. Manag., pp. 169–185, 1998.

[25] Y. Wang, D. Wang, S. Zhang, Y. Feng, S. Li, and

Q. Zhou, “Deep Q-trading,” cslt. riit. tsinghua. edu. cn,

2017.

 .2041سال ،اول شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده و همکاران صفابخش

های کدگشا با یادگیری تقویتی عمیق برای یادگیری استراتژی-مدل مبتنی بر چارچوب کاری کدگذار

 معاملاتی سهام

 *رضا صفابخش و احمد اسدی، مهران تقیان

 .ایران، تهران، امیرکبیردانشگاه صنعتی ، دانشکده مهندسی کامپیوتر

 20/24/2042 پذیرش؛ 04/40/2042 بازنگری؛ 21/40/2042 ارسال

 چکیده:

ها بخصوص در حوزه معاملات پربسامد، نسبب ببه دسته از مدل های مبتنی بر یادگیری تقویتی عمیق مدلهای معاملاتی یادگرفته شده توسط استراتژی

هبا های زمبانی بلندمبدت میمب های استخراج شده از دنباله اند، کیفی ویژگی ها نشان داده اند. پژوهش های دیگر عملکرد بهتری از خود نشان داده مدل

در مسباللی کبه گبذارد. از ررفبی گیرند، تاثیر می ها یاد می هایی که این مدل های یادگیری تقویتی عمیق، بطور مستقیم بر عملکرد استراتژی توسط مدل

سباختارهای عصببی ، ها مهم اس ، مانند مسالل ترجمه ماشینی و تولیبد شبرب ببر ویبدیوها های زمانی پیچیده در آن های غنی از دنباله استخراج ویژگی

-اند. ساختارهای عصبی مبتنبی ببر چبارچوب کباری کدگبذار از خود به نمایش گذاشتهای کننده عملکرد خیرهکدگشا -مبتنی بر چارچوب کاری کدگذار

گیبری در خصبوص خریبد و فبروش سبهاا ببر اسبا ایبن هبا و تصبمیم های زمانی میم های غنی از دنباله کدگشا مادرند بطور توامان استخراج ویژگی

گیبری هبا و تصبمیم مدت میم های زمانی بلند های غنی از دنباله جدید برای استخراج ویژگیها را یاد بگیرند. در این مقاله، یک مدل انتها به انتها ویژگی

های زمانی مختلف اراله شده اس . ساختار عصبی اراله شده در ایبن مقالبه، از دو بخبش عصببی کدگبذار و ها در گاا سهم در خصوص خرید و فروش تک

های معاملاتی هسبتند. پارامترهبای ایبن دو بخبش بطبور استخراج ویژگی و یادگیری استراتژیکدگشا تشکیل شده اس که به ترتیب مسئول یادگیری

های عصبی مختلف برای کدگذار و کدگشبا روی عملکبرد نهبایی مبدل مبورد بررسبی مبرار شوند. بعلاوه در این مقاله، تاثیر معماری توامان یاد گرفته می

سبهم در هبای معباملاتی تبک های اراله شبده اخیبر ببرای یبادگیری اسبتراتژی اراله شده نسب به مدلدهد، مدل اس . نتایج آزمایشات نشان می گرفته

 بازارهای مالی عملکرد بهتری دارد.

 .کدگشا-سهم در بازارهای مالی، چارچوب کاری کدگذار ، معامله تکDeep Q-Learningیادگیری تقویتی عمیق، مدل :کلمات کلیدی

