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 The quality of the extracted features from a long-term sequence of raw 

prices of the instruments greatly affects the performance of the trading 

rules learned by the machine learning models. Employing a neural 

encoder-decoder structure to extract informative features from 

complex input time-series has proved very effective in other popular 

tasks like neural machine translation and video captioning.  In this 

paper, a novel end-to-end model based on the neural encoder-decoder 

framework combined with DRL is proposed to learn single instrument 

trading strategies from a long sequence of raw prices of the instrument. 

In addition, the effects of different structures for the encoder and 

various forms of the input sequences on the performance of the learned 

strategies are investigated. The experimental results show that the 

proposed model outperforms other state-of-the-art models in highly 

dynamic environments. 
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1. Introduction 

Forming profitable trading strategies fitted on 

either a single financial instrument or a set of 

instruments in a specific market based on a vast 

historical data is a critical problem for investors. 

Since the introduction of algorithmic trading [1] 

and monitoring the trading process by computers, 

especially at high frequency [2], there has been a 

widespread interest in designing a powerful model 

to learn profitable investment strategies. 

In the recent years, the machine learning (ML) 

models and deep neural networks (DNNs) have 

been widely used for learning profitable 

investment strategies in both single asset trading 

and portfolio management problems [3]. 

Considering the great performance of deep 

reinforcement learning (DRL) models (deep 

neural networks trained with the reinforcement 

learning techniques) in forming investment 

strategies, the proposed methods for portfolio 

management are mainly based on the DNN 

structures and DRL techniques. Ganesh et al. [4] 

have proposed a very-long short-term memory 

(VLSTM) network to deal with extremely long 

sequences in financial markets, exploring the 

importance of VLSTM in the context of high-

frequency trading. Arévalo et al. [5] have 

proposed a DNN structure to forecast the next 

one-minute average price of an instrument given 

its current time and n-lagged one-minute pseudo-

returns to build a trading strategy that buys (sells) 

when the next predicted average price is above 

(below) the last closing price. Dixon et al. [6] 

have proposed a DNN model to learn the spatio-

temporal model of the input, developing a 

classifier trained by out-of-sample predictive 

mean squared error to predict short-term market 

prices. In our former work [7], the DRL 

performance in learning single asset-specific 

trading rules was investigated, and conclusions 

were that: 1) the quality of extracted features from 

the input can greatly affect the performance of the 

learned strategy by DRL models, and 2) proposing 

a good feature extractor from a long-term 

historical price data sequence would obviously 

improve the profitability of the resulting trading 

strategy. Considering the results from our former 

work [7], proposing a model to learn good 

features from a long-term price sequence would 
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effectively contribute to improve the performance 

of DRL models. 

In this work, we first develop a DRL agent based 

on a deep Q-learning algorithm to generate 

trading signals given a sequence of OHLC prices 

of each instrument. Then we design and 

implement an encoder-decoder based model to 

improve the agent’s feature extraction 

performance. In addition, we examine the 

performance of different DNN structures for the 

encoder module. The time-series of candlesticks 

and raw OHLC input types are evaluated, and the 

performance of models is tested using various 

stocks with different behaviors. Furthermore, the 

influence of window size on the agent’s 

performance for the windowed input type is 

studied. The experimental results show that our 

model outperforms the state-of-the-art methods. 

In the next section of this work, we briefly review 

the related works of learning financial asset-

specific trading strategies, and discuss the 

advantages and disadvantages of different 

categories of the proposed methods. Section 3 

discusses the model proposed in this paper. The 

model consists of an encoder part for feature 

extraction and a decoder part for decision-making. 

The details of the architecture of both of these 

parts are discussed in Section 3. Section 4 

provides the experimental results, and the 

conclusions are provided in Section 5.  

 

2. Related Works 

Many researchers proposed methods based on 

reinforcement learning for determining trading 

strategies. RL is applied in portfolio management 

first by Moody et al. [8] using recurrent 

reinforcement learning. Suchaimanacharoen et al. 

[9] first predicts the future prices using a CNN, 

and then feed the output to a policy gradient 

model along with historical data to empower 

trading decisions. 

Following the work by Mnih et al. [10], which 

introduced the deep Q-learning model and its 

successful performance in playing Atari games, 

the researchers have carried out many kinds of 

research works to apply DRL methods to the stock 

market environment. Luo et al. [11] proposed a 

DDPG model with two different convolutional 

neural network (CNN) function approximators. 

The input state to the model is 18 different 

technical indicators converted to multiple 

channels of 1D images fed to the CNN model. 

Wang et al. [12] proposed a novel RL-based 

investment strategy consisting of three phases: 1) 

extracting asset representation from multiple time-

series using a Long Short-Term Memory with a 

History Attention (LSTM-HA) network, 2) 

modeling the interrelationships among assets as 

well as the asset price rising prior using a Cross-

Asset Attention Network (CAAN), and 3) 

generating portfolio and giving the investment 

proportion of each asset according to the output 

winner scores of the attention network. The three 

components are optimized end-to-end using a 

sharp ratio-oriented RL. Xiong et al. [13] 

explored the training power of the deep 

deterministic policy gradient to learn stock trading 

strategy. Chakole et al. [14] proposed a method 

using the Q-learning algorithm to find the optimal 

dynamic trading strategy. They introduced two 

models varied in their representation of the 

environment, the first of which represents 

environment states using a finite set of clusters, 

and the second of which used the candlesticks 

themselves as the states of the environment. 

Théate et al. [15] presented a solution to the 

algorithmic trading problem of generating the 

trading strategy for single stock based on the 

DQN algorithm with a Sharpe ratio-oriented 

manner. Brim et al. [16] used co-integrated stock 

market prices, and incorporated DQN to generate 

pairs of trading strategy.  

Having considered the temporal essence of stock 

market data, some of the researches have 

combined the temporal feature extraction power 

of recurrent neural networks with DRL’s decision-

making ability. Wu et al. [17] applied the Gated 

Recurrent Unit (GRU) to exploit informative 

features from raw financial data along with 

technical indicators to represent stock market 

conditions more robustly. Then they designed a 

risk-adjusted reward function using the Sortino 

ratio proposed by Rollinger et al. [18]. Based on 

the state, action, and reward functions designed, 

they proposed deep Q-learning and deep 

deterministic policy gradient for quantitative stock 

trading. Weng et al. [19] applied DRL for 

portfolio management, and in order to distinguish 

the critical time when the price changes, they 

proposed using a three-dimensional attention 

gating network that gave higher weights on rising 

moments and assets. Moreover, they applied the 

XGBoost method to quantify the importance of 

features and output the three most relevant 

features from historical data to the model: close 

price, high price, and low price. 

In our former work [7], we studied the 

performance of strategies based on the candlestick 

patterns, SARSA(λ) algorithm, and deep Q-

learning, and concluded that methods based on 

deep reinforcement learning could generate more 

adaptive trading strategies specific to each asset. 
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The encoder-decoder framework is one of the 

most popular neural structures that is used to solve 

complex problems in an end-to-end manner [20].  

In this work, we dedicate focus on the following 

issues: 

1. Proposing a model based on the encoder-

decoder architecture, where the decoder is 

a DRL agent trained to generate a trading 

strategy based on the representation of the 

market produced by the encoder model. 

The encoder is a neural network structure 

responsible for exploiting features from 

the raw input time-series data and 

generating feature vector. 

2. Showing the importance of extracting 

time dependencies of the input prices, and 

proposing different encoder structures are 

proposed to improve the quality of time 

dependencies extraction. 

3. Investigating the impact of window-size 

on exploiting important features and 

generating a proper representation of the 

market. 

The rest of this paper is structured as what 

follows. First, we introduce the details of the 

proposed method, deep Q-learning method, model 

architecture, and DNN models used as encoder. 

Then performances of different encoder models 

are evaluated using various methods explained in 

detail in Section 4. Next, the results of 

experiments are analyzed. 

3. Proposed Model  

In this section, we briefly describe the problem 

formulation, and then drill into different proposed 

model structures. 

3.1. Formulation 

In the financial markets, a candlestick is used to 

represent the price fluctuations in a short time 

period, originating from Japanese rice traders and 

merchants who used candlesticks to track the 

market prices [21]. A candlestick consists of 4-

price elements, namely high (the highest stock 

price during a period-e.g. a day), low (the lowest 

price), open (the stock price at the beginning of 

the period), and close (the stock price at the end of 

the period), abbreviated to OHLC. A candlestick’s 

color can be either green/white, representing a 

bullish candle (open price is lower than close 

price), or red/black representing a bearish candle 

(close price is lower than open price). Figure 1 

shows a sample candlestick. Equation (1) shows a 

vector representing a candlestick. This vector 

consists of the Open, High, Low, and Close 

prices. 

( , , , )t open high low closeC P P P P  (1) 

A candlestick chart is used to demonstrate the 

behavior of the asset price. According to this 

concept, the patterns in this chart show the 

buyers’ and sellers’ behavior and their influence 

on the market. Thus these patterns can be used to 

analyze the price fluctuations and use the analysis 

to devise trade strategies on a financial asset. 
 

 

Figure 1. A candlestick representing the price behavior of 

an asset during a specific time [7]. 

3.2. Model architecture 

The proposed model is based on the encoder-

decoder framework, which consists of the 

following modules: 

1. Encoder: 

Encoder is the first neural structure that 

takes the input of the model and learns a 

good mapping from the input space to the 

feature space that minimizes the decoders’ 

loss function. 

2. Decoder: 

Decoder is the second neural structure in 

the encoder-decoder framework that takes 

the features extracted by the encoder for 

each input record and generates the 

appropriate output based on the input 

feature vector. The gradients of the 

decoder are back-propagated to the 

encoder and train its weights along with 

the weights of the decoder during the 

training phase. 

In the proposed model, the decoder part is a target 

or policy network used in the deep Q-learning 

based model proposed by Taghian et al. [7] to 

learn the trading strategies. The encoder part is a 

deep neural network applied to extract deep 

features from the candlestick chart 

representations. These features are categorized 

into the following two groups: 

1. Features directly learned from candlestick 

representations or raw OHLC data. 

2. Features representing the temporal 

relationships among a sequence of 

candlesticks inside a time window. 
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For each category, NN models exist to efficiently 

analyze and extract those features according to the 

policy network’s performance in trading. The 

encoder part extracts the features from the input, 

and provides a state vector (feature vector) for the 

decoder module, a deep Q-Learning agent that 

uses this state vector as the state of the 

environment to produce trading signals. Based on 

the rewards given to the DRL agent, the model is 

optimized towards producing higher profits. This 

optimization is done in an end-to-end form, back-

propagating error from the decoder part to the 

encoder module. As a result, the encoder extracts 

the features based on the trading performance of 

the DRL. The model architecture is shown in 

figure 2. 

 

3.3. The decoder module 

The decoder module is the trading agent of our 

model, and learns to produce trading signals. This 

module’s architecture is based on the deep Q-

Learning algorithm proposed by Mnih et al. [10] 

to play Atari games. The module’s input is a state 

vector containing the features of the market at 

time-step t. These features can be either vanilla 

input of OHLC prices or the feature vector 

produced by a feature extractor model. We show 

the vector space of the input candles with 

1 2{ , ,..., }TC c c c where T is the final time-step, 

and ic  is the candle representation of different 

time-intervals (here daily). The feature extractor 

module   gets the vector space of candles as 

input, and generates the vector space of states

1 2{ , ,..., }TS s s s . 

( )C S   (2) 

Equation (2) represents  , the feature extraction 

function. This function can be either an identity 

function (state space is the candlesticks 

themselves) or a neural network that extracts deep 

features from the input vector space of 

candlesticks and produces a vector space of 

features. Each vector is  denotes the state of the 

environment at time-step t. This state is given to 

the DQN agent to use in taking action. The action 

space of the DQN agent is 

{' ', ' ', ' '}A buy sell noop , which are the signals 

of the trading strategy at each time-step. After 

taking action, the agent would be given a reward 

based on the signal produced. The rewards of 

buying and selling are a bit different. Equation (3) 

demonstrates the reward function used by the 

Figure 2. Overall structure of the proposed model. 
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environment. The os  parameter is used alongside 

action ' 'a n  showing that whether the money 

has already been invested on the market or not. 

2 2

1

2 1

2

((1 ) * 1)*100 ' ' ( ' ' 1)

((1 ) * 1)*100 ' ' ( ' ' 0)

t

p
Tc a b a n os

p
R

p
Tc a s a n os

p


      


 
       


 
(3) 

 

Reinforcement learning is a framework used to 

learn a sequence of decision tasks. In general, the 

RL agent interacts with the environment, observes 

the state, takes action according to the policy and 

the observed state, and gets a reward. In a 

sequence of decisions made by the RL agent, the 

agent learns a policy π regarding the actions taken 

and rewards earned at each episode. Afterward, 

the agent should optimize its policy to maximize 

cumulative reward after each episode. For this 

purpose, we used deep Q-learning, a critic-based 

reinforcement learning algorithm, which uses 

action-value function ( , )Q S A  denoting the 

expected cumulative reward in state S  when 

action A  is taken. More formally, we use a 

multi-layered perceptron to approximate the 

optimal action-value function, which is 

demonstrated in (4).  

Where   is the discounting factor, tr  is the reward 

at time-step t ,   is the behaviour policy learned, 

s  is the observed state, and a  is the agent’s 

action. The optimal action-value function obeys 

the Bellman equation: 
* *

'
'

( , ) [ max ( ', ')]s
a

Q s a E r Q s a 
 
 (5) 

In order to reduce the mean squared error in the 

Bellman equation, we use two sets of parameters 

(neural networks). The target values are 

approximated using the target network weights 

(from previous iterations) shown with i at 

iteration i . The policy network, which is being 

trained in each iteration to adjust its parameters to 

reduce the mean squared error, is used to 

approximate the Q  function using parameters i  

at iteration i . Thus we have a sequence of loss 

functions ( )i iL   that changes at each iteration. 

2

'( ) [( ( , ; ) ] [ [ ]]i i i sL E y Q s a E V y     (6) 

In order to further stabilize the deep Q-learning 

algorithm, we use the Huber loss proposed by [40] 

instead of the mean squared error, which pays 

attention to large and small errors equally. 

21
| | 1

2
( )

1
| | | | 1

2

e e

Huber e

e e




 
  


 
(7) 

Furthermore, our agent stores the last c 

experiences in the replay memory. The agent’s 

experience vector 1( , , , )t t t t te s a r s   is saved in 

the experience replay memory 1 2{ , ,..., }t cD e e e  

(where c  is the length of the replay memory) and 

used as a batch to optimize the policy network. 

When the model wants to update, it samples a 

batch of experiences uniformly at random from 

D . The steps of the deep Q-learning algorithm 

used in our work are represented in Algorithm 1. 

 

3.4. Encoder module 

So far, we have discussed the input data 

representation, different parts of the trading agent, 

and the deep Q-Learning algorithm, used by the 

agent to optimize its policy to learn devise 

profitable strategies. However, the essential part 

of each RL algorithm is the representation of the 

environment. As mentioned earlier, the 

environment tells the RL agent in which state it 

currently is, based on which the agent would take 

actions and receive rewards from the 

environment. A proper state representation can 

significantly improve the performance of the RL 

agent. Therefore, in this section, we want to 

concentrate on our model’s feature extraction and 

state representation the encoder module.  
 

Algorithm 1. Deep Q-Learning algorithm used for 

training the agent. 

1 Initialize replay memory D to capacity N 

2 Initialize action-value function Q with random weights   

3 Initialize target action-value function  ̂ with weights     
  

4 For episode from 1 to M do 

5     Initialize sequence   and pre-processed sequence 

         
6     For t from 1 to T do 

7         With probability   select a random action    

8         Otherwise select                       
9         Execute action    and observe reward    and state      
10         Set        , and pre-process               

11         Store transition                 
12         Sample random mini-batch of transition 

                     from D 

13         Set 

    {
                                           

          ̂ (      
   )                        

 

14         Perform a gradient descent step on 

(    (       ))
 

with respect to the network parameters 

  
15         Every C steps reset  ̂    

16     End for 

17 End for 

* 2

1 2( , ) max [ ...]t t tQ s a E r r r


       (4) 
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We introduced the φ function, given the input 

candlesticks, extracts features, and outputs the 

state space, which is then fed to the decoder 

module–the DQN model. The φ function can be 

either an identity function or a deep neural 

network. We do not have any feature extraction in 

the first case, and candlesticks are directly fed to 

the DQN model. The DNNs we use as the feature 

extractor are Multi-Layered Perceptron (MLP), 

Gated Recurrent Unit (GRU) proposed by Cho et 

al. for machine translation [22], 1-dimension 

Convolution in the direction of time (CNN) 

proposed by LeCun et al. as an encoder for 

machine translation [23], and GRU with 1-

dimension convolution in the direction of price 

(CNN-GRU).  

The MLP model can extract features from 

candlesticks without considering the temporal 

relationship among candles. In contrast, the other 

four models not only pay attention to the structure 

of each candlestick, but they also consider the 

temporal relationships. In this section, we explain 

the detailed architecture of each feature extractor. 

We will compare the performance of these DNNs 

as the feature extractor for the DQN later. 

Before we dive into each model’s description, we 

need to explain different inputs to these models. 

Our inputs partition into two categories: 

1. Vanilla: 

The OHLC prices without any change. 

This kind of input contains only the 

representation of candle tc  at time-step

t . 

2. Windowed: 

A series of candlesticks with size   are 

grouped together to form a window of 

candles 1{ , ,..., }t w t w tW c c c    at time 

step t . 

All models use the windowed input type but the 

raw OHLC prices are only for MLP encoder and 

DQN without any encoder models. 

3.4.1. MLP 

The MLP model is a NN with only one hidden 

layer. In order to regularize the outputs of layers, 

we used Batch normalization after the hidden 

layer. The dimensions of layers are 
*128, (128),128*InputSize BatchNormalization FeatureVectorSize

. The MLP architecture takes both types of inputs. 

If the raw OHLC is used, then 4InputSize  , and 

in case the input type is windowed, then the 

InputSize  would be equal to the size of the 

window. 

3.4.2. GRU 

The Gated Recurrent Unit (GRU) is a recurrent 

neural network exerted on extracting features 

from time-series data. This model’s input type is 

the windowed input, which contains a sequence of 

candles at each time step. The role of GRU here is 

to extract features from each candlestick, while 

considering the history in each window. The 

architecture of the GRU model is represented in 

figure 3a. 

3.4.3. CNN 

The Convolutional Neural Networks (CNN) has 

been widely used in image processing to extract 

deep features from images, and also it is applied 

in signal processing for analyzing signals. CNN 

has a kernel, which can move in one, two or 

higher directions and extract features from multi-

dimensional data. Here, our input is the OHLC 

prices windowed to form time-series data. Thus 

we have a 2-dimensional input, the first of which 

is the price (candles), and the second one is time. 

The input channel size is the size of each candle 

vector (i.e. 4 for OHLC) and the kernel size is 3 in 

the direction of time (i.e. w the window size). This 

architecture is shown in 3b. 

3.4.4. CNN-GRU 

The combination of CNN and GRU model is 

proposed here, where the CNN model’s kernel 

moves in the direction of candles and extracts 

candlestick features. Then it outputs a sequence of 

features from the windowed input to the GRU 

model. The GRU model here is responsible for the 

input’s temporal behavior, where it takes the 

candlesticks’ features in sequence from the CNN, 

and extracts temporal features. The details of this 

architecture are represented in figure 3c. 

 

4. Experimental Results 

4.1. Dataset 

All the models are tested on real-world financial 

data including stocks and crypto-currencies. Data 

is chosen to be varied in the behavior like the 

bullish trend, bearish trend, and side-markets. 

Furthermore, the data length is chosen to be 20 

years with the last five years as test (trading) data, 

ten years with the last two years as test data, and 

six years (BTC/USD) with the last two years as 

test data. The interval of candlesticks in all data is 

chosen to be daily. All data used in this work is 

available on Yahoo Finance and Google Finance. 

The summary of the datasets is represented in 

Table 1. 

Figure 4 shows the condition of each dataset in 

different periods. The AAL data is bullish on the 

training-set and bearish on the test-set, market GE 

is both bearish on the train and test sets, AAPL 

and GOOGL are both bullish; KSS and HSI are 
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examples of volatile markets, and BTC/USD is 

side on the test-set. These datasets are selected to 

measure the flexibility of different models in 

different market conditions. A robust model can 

generalize its performance to provide a proper 

strategy behaving profitable on the test-set. 

 

4.2. Evaluation Metrics 

The trading strategy proposed by each model is 

evaluated from three perspectives:  

1. How profitable is the proposed strategy. 

2. What is the risk of the proposed strategy.  

3. The effect of hyper-parameters (e.g. 

window size) in proposing a strategy for 

each asset.  

The metrics are mentioned and described in detail 

as follows. 

Table 1. Data used along with train-test split dates. 

Dataset Start date Split point End date 

GOOGL 2010/01/01 2018/01/01 2020/08/25 

AAPL 2010/01/01 2018/01/01 2020/08/25 

AAL 2010/01/01 2018/01/01 2020/08/25 

BTC-USD 2014/09/17 2018/01/01 2020/08/26 

KSS 1999/01/01 2018/01/01 2020/08/24 

GE 2000/01/01 2015/01/01 2020/08/24 

HSI 2000/01/01 2015/01/01 2020/08/24 

 

4.2.1. Profit curve 

This is a qualitative metric showing the 

percentage of profit concerning the initial 

investment. At each point of time  , if the current 

wealth    and the initial investment is    then 

the percentage of the profit at each time step is 

calculated using (8). 

0

0

*100t
t

w w
Rate

w


  (8) 

The profit curve compares the      of profit for 

each model at different time steps. 

4.2.2. Arithmetic return 

This metric is the sum of the rate of increase or 

decrease in the current investment due to the 

decisions made by the model (Buy, Sell, None). 

The rate of wealth change at the current time-step 

if the model has already invested the money (not 

sold before) is as in (9). 

1

1

t t
t

t

w w
AR

w






  (9) 

Using (9), we can calculate the arithmetic return 

in (10). 

1

T

t

t

AR AR


  (10) 

Which shows the cumulative return at each time 

step. 

 

4.2.3. Time Weighted Return 

The amount of return in different periods are not 

independent of each other. In other words, when 

the amount of loss is significant at one time, then 

the capital would be significantly lower to invest 

afterward. For this purpose, we use Time 

Weighted Return (TWR) which is calculated in 

(11). 
1

1

( ( 1)) 1
n

n
i

i

TWR x


    (11) 

To avoid negative values, we add 1 to all the 

return values, then we remove 1 from the result. 

 

4.2.4. Daily Return Variance 

This metric is the variance of daily arithmetic 

returns. 

2

1

( )

1

T

t

t

AR AR

RV
T










 
 

 

(12) 

Where AR  is the average arithmetic return and 

tAR  is the arithmetic return at time t . 

 

4.2.5. Total return 

It is the percentage of the increase in the capital 

during trading time. Total Return is calculated in 

(13) where 0W  and tW  are the initial and final 

wealth, respectively. 

0

0

tw w
TR

w


   

(13) 
 

4.2.6. Value at risk 

The value at risk (   ) is a metric to measure the 

quality level of financial risk within a portfolio 

during a specific period of time.     typically is 

measured with a confidence ratio 1   (e.g., 

with a confidence level of 95% where 5  ) and 

measures the maximum amount of loss in the 

worst situation with confidence 1   in the 

corresponding time period. The higher the value 

of the VaR  (i.e., the absolute value of     ) with 

a fixed value of  , the higher the level of the 

portfolio’s financial risk. There exist two main 

approaches to computeVaR : 1) using the closed-

form which assumes the probability distribution of 

the daily returns of the portfolio follows a Normal 

standard distribution, 2) using the historical 

estimation method, which is a non-parametric 

method and assumes no prior knowledge about 

the portfolio’s daily returns. In this paper, we used 

the closed-form method. To calculate VaR , we 

used Monte Carlo simulation by developing a 

model for futures stock price returns and running  
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multiple hypothetical trials through the model. 

The mean µ and standard deviation   of the 

returns are calculated, then 1000 simulations run 

to generate random outputs with a normal 

distribution ( , )N   . Then the   percent 

lowest value of the outputs is selected and 

reported as VaR . 

 

4.2.7. Daily return volatility 

The volatility of the daily returns evaluates the 

risk level of trading rules by calculating daily 

returns’ standard deviation. This metric is 

calculated for each strategy using (14), where    

is the average daily arithmetic return, 

and    is the daily arithmetic return. 

2

1

( )

1

T

i

i
p

AR AR

T
 







 

(14) 

 

4.2.8. Sharpe ratio 

The Sharpe ratio (  ) was proposed first by 

Sharpe et al. [24] to measure the reward-to-

variability ratio of the mutual funds. This metric 

displays the average return earned in excess of the 

risk-free rate per unit total risk and is computed 

here by (15), in which fR  is the return of the risk-

free asset, and   { }pE R is the expected value of the 

portfolio value. Here we assumed that 0fR  . 

{ }p f

p

E R R
SR




  (15) 

 

4.2.9. Window size heat-map 

This diagram illustrates the impact of window-

size in extracting appropriate patterns from the 

input candlesticks for each asset, which is 

reflected as the total profit earned by the agent 

corresponding to each window size. 

 

4.2.10. Decision curve 

In this curve, the trading signals to trade each 

asset are demonstrated over that asset’s raw price 

curve. This chart gives insight into the quality of 

decision-making power of each model on each 

financial asset. 

 

4.3. Experimental setup 

All the models are implemented using 

        library in Python. In order to optimize 

the models, we used Adam optimizer. The mini-

batch training is also conducted using a batch size 

of 10, and the replay memory size is set to 20. 

 

(a) GRU model architecture 

 

(b) CNN model architecture 

 

(c) CNN-GRU model architecture 

Figure 3. Architecture of different models proposed to 

use as the encoder. 
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The only regularization used in the experiments in  

the policy and target networks is the 

                   . The transaction cost is 

set to zero during the training process; however, it 

may be non-zero during the evaluation. 

 

  
(a) Price history of AAL stock used to train and test the model. (b) Price history of GE stock used to train and test the model. 

  
(c) Price history of GOOGL stock used to train and test the model. (d) Price history of AAPL stock used to train and test the model. 

  

(e) Price history of KSS stock used to train and test the model. (f) Price history of HSI stock used to train and test the model. 

ss 

(g) Price history of BTC/USD stock used to train and test the model. 
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4.4. Performance evaluation of models 

In this section, the overall performance of the 

different models, along with different input types 

for the MLP and DQN models are compared. 

Figure 5 illustrates the profit curves of models on 

the test set for different datasets. DQN-vanilla is 

the DQN model without any encoder and with the 

input of raw OHLC. DQN-windowed and MLP-

windowed are the same as DQN-vanilla and DQN 

windowed, except that MLP contains an encoder 

part, which is an MLP model. CNN, GRU, and 

CNN-GRU are models with the encoder part as 

described in sections 3.4.3, 3.4.2, and 3.4.4, 

respectively, with input type as a window of 

candles (time series).  

The general conclusions we reached from the 

experiments are reported in 5:  

• Stocks can be categorized into two kinds: 

the one in which the sequence of 

candlesticks have effective temporal 

relationships and those with few 

meaningful time dependencies.  

• The most profitable trading strategies for 

data with a high level of time dependency 

in their price history can be generated 

using windowed-input models. 

BTC/USD, GOOGL, AAPL, and GE are 

of this kind. The GRU, and CNN have the 

best performance on the BTC/USD 

model; The CNN, DQN-windowed, and 

MLP-windowed have the best 

performance on GE; The GRU, CNN-

GRU, and MLP-windowed have the best 

performance on GOOGL; MLP-

windowed, GRU, DQN-windowed, and 

CNN provided the most profitable 

strategies for AAPL.  

• On the other hand, we have data with a 

low level of dependency in time among 

candlesticks, which leads to the models 

with raw OHLC input having a better 

performance. AAL, HSI, and KSS are 

among this type of data. By low level of 

dependency in time, we do not mean that 

models with time-series inputs have poor 

performance. Their performance is very 

good, but they behave a little poorly 

compared to models with raw OHLC 

input.  

Figure 2 represents the details of experiments with 

regards to both profit and risk. One crucial point 

that can be inferred from the results is that as the 

models’ total return increases, the Sharpe ratio 

increases correspondingly. It means that the 

models devise strategies in a risk-adjusted way. 

However, if we want to examine the results in 

specific, on some data, the models with the 

highest profitability acted riskily. For example, in 

AAL, the best model in total return is MLP-

vanilla but the Sharpe ratio and     (here we 

consider the absolute value of    ) of its strategy 

are, respectively, lower and higher than those 

strategies proposed by windowed-input models. 

The same is true about GRU in BTC/USD, where 

GRU has the highest total return but CNN 

provided more risk-adjusted strategies with 

respect to     and Sharpe ratio.  

Another important conclusion deducted from 

comparing data diagrams and the models’ 

performance is that stocks with highly volatile 

prices such as KSS, AAL, and HSI can best be 

processed by models with raw OHLC inputs, 

whereas other data with more stable prices are 

best analyzed with windowed-input models. 

Therefore, in order to select among feature 

extractors, we should pay careful attention to the 

type of input data. The best feature extractor for 

stable stocks would be windowed-input models, 

whereas, for highly volatile stocks, models with 

raw OHLC can decide and change their behavior 

more quickly since they only pay attention to the 

current candlestick, not the history of candles. 

 

4.5. Impact of window size 

Now that we have examined the performance of 

different feature extractor models, it is time to 

dive deeper into the temporal feature extractor 

concept. Feature extractors with windowed inputs 

can perform better on data with more stable price 

movements (rather than highly volatile data). 

Moreover, considering 2 and 5, each windowed-

input model has its best performance varying from 

data to data. We want to inspect the impact of 

window size for each model differently using the 

data in which the model has its best performance.  

We test the performance of GRU and CNN-GRU 

using GOOGL; CNN, MLP-windowed, and  

DQN-windowed using GE. Figure 6 demonstrates 

a heat-map showing the relationship between the 

window size and the normalized total profit 

earned by the models with windowed input. 

Window sizes vary from 3 to 75, and the total 

profit is normalized to bring between 0 and 1.  

Blocks having lighter colors earned higher profit 

than those with darker colors. As obvious from 

the heat-map, the number of lighter colors in the 

interval of 10 to 20 is more than other window 

sizes. Therefore, the best feature extraction using 

a sequence of candlesticks can be done with 

window size between 10 and 20. 
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(a) Performance of different models on AAPL (b) Performance of different models on GOOGL 

  

(c) Performance of different models on GE. (d) Performance of different models on AAL. 

  
(e) Performance of different models on KSS. (f) Performance of different models on his. 

  
(g) Performance of different models on BTC/USD. 

Figure 4. Profit curve of the models different from the viewpoint of encoder part. 
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4.6. Sample signaling 

For each data, the trading strategy is illustrated in 

figure 7 based on the decisions made at each time 

step by the most profitable model. The green, red, 

and blue points represent the ’buy’, ’sell’, and 

’none’ signals, respectively. When the agent 

generates a signal, it will influence the next day’s 

investment. In other words, when the agent 

decides to buy a share, this action is actually done 

the next day. As mentioned earlier, we use a 

parameter         , which tells us whether the 

agent already bought the share or not. Thus when 

the agent bought a share at the time step t, the 

         parameter would become true, and if 

the next action is none, the agent’s money will 

continue to be invested. We begin by an initial 

investment at   , and at each time-step, when the 

agent decides to buy or sell, all the money would 

be invested or withdrawn. As shown in figure 7, 

agents could generate signals properly in positions 

where the trend of the market changes. In order to 

represent the strategy behavior for each data, we 

select a period of 100 intervals. The stable 

markets such as GE, GOOGL, and AAPL contain 

’none’ signals in their strategy more than volatile 

markets such as HSI and KSS. That can explain 

the fact that in stable markets, the market trend 

changes less rapidly than highly volatile markets; 

therefore, agents can produce more ’none’ action 

in their strategy. 

4.7. Comparing models with similar works 

Whenever possible, the proposed models in this 

paper are compared with the state-of-the-art 

models of learning single asset trading rules. 

Since most of these models’ implementations are 

not accessible, comparison with each baseline 

model is accomplished just in cases that the 

scompanion paper. The list of sthe used baseline 

models is as follows: 

1. Buy and Hold (B&H) 

B&H is one of the most widely used 

benchmark strategies to compare the 

performance of a model. In this strategy, the 

investor selects an asset and buys it at the first 

time step of the investment. The purchased 

asset is held to the end of the period 

regardless of its price fluctuations. 

2. GDQN 

Proposed by Wu et al. [17], uses the 

concatenation of the technical indicators and 

raw OHLC price data of the last nine time 

steps as the input, a two-layered stacked 

structure of GRUs as the feature extractor, 

and the DQN as the decision-making module. 

3. DQT 

Proposed by Wang et al. [25], implements 

online Q-learning algorithm to maximize the 

long-term profit of the investment using the 

learned rules on a single financial asset. The 

reward function here is formed by computing 

the accumulated wealth over the last   days. 

4. DDPG 

Proposed by Xiong et al. [14] uses Deep 

Deterministic Policy Gradient (DDPG) as the 

deep reinforcement leaning approach to obtain 

an adaptive trading strategy. Then the model’s 

performance is evaluated and compared with 

the Dow Jones Industrial Average and the 

traditional min-variance portfolio allocation 

strategy. 

Tables 2, 3, and 4 represent our models’ 

performance along with the state-of-the-art 

models using the profit metrics. According to the 

results reported in table 2 and table 3, the 

performance of the model with MLP encoder and 

raw OHLC input is significantly better than DQT 

and RRL on stocks HSI and S&P500 proposed by 

Wang et al. [25]. For HSI, time-series models 

achieve a performance close to MLP-vanilla, but 

they behave poorly on S&P500. 

Table 5 represents the rate of return (%) for our 

models with different encoders and models 

proposed by Wu et al. [17]. Wu et al.’s best 

model performance is on AAPL stock with rate of 

return equal to 77.7 but the GRU model gains the 

rate of return 438, which is significantly better.  

Moreover, wherever the models proposed by Wu 

et al. got a negative return, our model returns a 

highly positive return. Consider stock GE, where 

the maximum return value in Wu et al. is -6.39% 

but the best strategy proposed by MLP with 

vanilla input is 130.4%. When examining the 

returns gained by different models on IBM, it is 

obvious that return values for time-series models 

are better than those with raw OHLC input, and 

the GRU encoder gains the highest return of 

174%. This concept explains the existence of a 

temporal relationship in IBM stock in that specific 

period. 

Figure 5. The heat-map generated to show the 

impact of different window sizes on the feature. 
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Table 5 shows the performance of DDPG, the model presented by Xiong et al. [23].  

  
(a) Trading strategy generated for AAL. (b) Trading strategy generated for GE. 

  
(c) Trading strategy generated for GOOGL. (d) Trading strategy generated for AAPL. 

  
(e) Trading strategy generated for KSS. (f) Trading strategy generated for his. 

  
(g) Trading strategy generated for BTC/USD. 

Figure 6.  Histogram of strategies generated on each dataset for a period of time. 
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The final portfolio value of models in our work is 

better than DDPG, starting with an initial portfolio 

value of 10000. The CNN-GRU has the best 

performance with a final portfolio value of 21984, 

while the DDPG model’s final portfolio value is 

19791. 

As the results indicate, our models perform 

significantly better than similar models in 

profitability, ranging from time-series models to 

raw OHLC inputs. As previously mentioned, these 

papers’ codes were not available, and we had to 

compare the performance according to common 

metrics. 

 

5. Conclusion 

In this work, we proposed a method based on the 

encoder-decoder framework, where the encoder 

model is a DNN, which helps extract essential 

features from the raw financial data, and the 

decoder is a DRL agent which makes a decision at 

each time-step and generates trading signals. The 

model is trained end-to-end, and the encoder’s 

feature extraction function is optimized toward the 

policy improvement of the DRL agent.  

DRL is based on the deep Q-learning algorithm, 

and consists of a policy and a target network, both 

sssof which are multi-layered perceptron 

networks. For the encoder part, the feature 

extraction performance of various DNNs is 

evaluated and compared. 

The proposed models for the encoder part are 

categorized into two types: 1) The raw OHLC 

input, which receives candle OHLC prices 

directly. 2) Time-series input, which concatenates 

a window of consecutive candles and receives the 

window as input.  

Based on the experimental results, the 

performance of models depends on the market 

behavior.  

 

Table2. Performance of different models on BTC/USD, GOOGL, AAPL, KSS, and GE. 
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BTC/USD 

DQN-vanilla 262 0.27 12.64 0.002 629 0.076 -5.58 110.6 7287 

DQN-windowed 334 0.34 8.69 0.003 1757 0.117 -4.51 91.7 18567 
MLP-vanilla 324 0.33 12.01 0.003 1296 0.097 -5.37 107.8 13959 

MLP-windowed 320 0.33 10.19 0.003 1402 0.104 -4.93 99.3 15021 

GRU 359 0.37 9.89 0.003 2158 0.118 -4.81 97.8 22577 
CNN 353 0.36 9.42 0.003 2069 0.119 -4.69 95.5 21693 

CNN-GRU 338 0.35 9.47 0.003 1770 0.114 -4.72 95.7 18701 

GOOGL 

DQN-vanilla 138 0.21 2.59 0.002 263 0.128 -2.45 41.6 3631 
DQN-windowed 134 0.20 2.25 0.002 255 0.134 -2.27 38.7 3546 

MLP-vanilla 135 0.20 2.60 0.002 252 0.125 -2.45 41.6 3520 

MLP-windowed 163 0.24 2.29 0.002 371 0.162 -2.25 39.0 4714 
GRU 180 0.27 1.56 0.003 475 0.217 -1.79 32.2 5752 

CNN 139 0.21 2.73 0.002 268 0.127 -2.51 42.6 3678 

CNN-GRU 163 0.25 1.75 0.002 382 0.185 -1.93 34.1 4819 

AAPL 

DQN-vanilla 166 0.25 3.07 0.002 372 0.142 -2.63 45.2 4722 

DQN-windowed 190 0.29 3.22 0.003 500 0.159 -2.67 46.3 5997 

MLP-vanilla 165 0.25 3.16 0.002 366 0.139 -2.68 45.9 4657 

MLP-windowed 200 0.30 3.03 0.003 566 0.172 -2.57 44.9 6658 

GRU 191 0.29 2.99 0.003 511 0.166 -2.56 44.6 6112 

CNN 181 0.27 2.07 0.003 469 0.189 -2.10 37.1 5688 
CNN-GRU 170 0.26 4.03 0.002 379 0.127 -3.05 51.8 4786 

KSS 

DQN-vanilla 272 0.41 9.25 0.004 1024 0.134 -4.60 78.5 11236 

DQN-windowed 251 0.38 9.38 0.003 809 0.123 -4.67 79.0 9088 
MLP-vanilla 287 0.43 9.14 0.004 1205 0.143 -4.55 78.0 13048 

MLP-windowed 242 0.36 8.93 0.003 747 0.122 -4.56 77.1 8467 

GRU 248 0.37 8.84 0.003 801 0.125 -4.52 76.7 9005 
CNN 250 0.37 9.10 0.003 806 0.124 -4.59 77.8 9055 

CNN-GRU 242 0.36 9.19 0.003 737 0.120 -4.63 78.3 8369 

GE 

DQN-vanilla 260 0.18 3.25 0.002 967 0.101 -2.79 68.0 10673 
DQN-windowed 333 0.23 2.87 0.002 2179 0.138 -2.56 63.9 22788 

MLP-vanilla 264 0.19 2.87 0.002 1044 0.110 -2.61 63.9 11442 

MLP-windowed 317 0.22 2.89 0.002 1848 0.131 -2.58 64.1 19482 
GRU 304 0.21 3.12 0.002 1580 0.121 -2.69 66.5 16795 

CNN 335 0.24 2.74 0.002 2242 0.142 -2.49 62.3 23416 
CNN-GRU 283 0.20 2.91 0.002 1278 0.117 -2.61 64.3 13779 
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Table 3. Compare profitability performance with Wang 

et. al. [25]  based on Rate of Return (%). 

 

When the market is highly volatile, meaning that 

the rate of price fluctuation is high, DQN and 

MLP model with the raw OHLC input had the 

best performance since they are able to make 

decisions only based on current input 

representation, disregarding to the historical 

changes of the market. 

On the other hand, there are more stable markets 

where models with time-series input can devise 

more profitable trading strategies because the 

market behavior enables them to exploit efficient 

features from financial data history. The window 

size impact was further studied, and we concluded 

that window sizes in the interval of 10 to 20 had 

the best feature extraction performance. Using the 

trading strategies generated for each data, we 

understand that agents working on stable stocks 

will generate none signal more frequently than in 

strategies devised for highly volatile markets.  

 

Table 4. Compare profitability performance with Wu et. 

al. [17] based on Rate of Return (%). 

 

Table 5. Final portfolio value of different models starting 

with the same initial investment. 

 

The future of the work can be viewed from 

different perspectives.  

• As we have experimented, if we could 

predict the next state of the environment 

using the current state, and feed the 

predicted next state to the DRL model, the 

performance would significantly increase.  

• The actor and actor-critic based DRL 

methods can be tested and compared with 

the performance of critic based Deep Q-

learning algorithm used here.  

•  Working on offering a metric used to 

describe the behavior of the market, based 

on which, we can specify whether the 

time-series models can work efficiently in 

rule extraction or not. Using this metric, 

we can distinguish where to apply models 

with raw OHLC input or apply time-series 

input. 
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 چکیده:

ها بخصوص در حوزه معاملات پربسامد، نسبب  ببه    دسته از مدل های مبتنی بر یادگیری تقویتی عمیق مدلهای معاملاتی یادگرفته شده توسط  استراتژی

هبا   های زمبانی بلندمبدت میمب     های استخراج شده از دنباله اند، کیفی  ویژگی ها نشان داده اند. پژوهش های دیگر عملکرد بهتری از خود نشان داده مدل

در مسباللی کبه    گبذارد. از ررفبی   گیرند، تاثیر می ها یاد می هایی که این مدل های یادگیری تقویتی عمیق، بطور مستقیم بر عملکرد استراتژی توسط مدل

سباختارهای عصببی   ، ها مهم اس ، مانند مسالل ترجمه ماشینی و تولیبد شبرب ببر ویبدیوها     های زمانی پیچیده در آن های غنی از دنباله استخراج ویژگی

-اند. ساختارهای عصبی مبتنبی ببر چبارچوب کباری کدگبذار      از خود به نمایش گذاشتهای  کننده عملکرد خیرهکدگشا -مبتنی بر چارچوب کاری کدگذار

گیبری در خصبوص خریبد و فبروش سبهاا ببر اسبا  ایبن          هبا و تصبمیم   های زمانی میم  های غنی از دنباله کدگشا مادرند بطور توامان استخراج ویژگی

گیبری   هبا و تصبمیم   مدت میم  های زمانی بلند های غنی از دنباله جدید برای استخراج ویژگیها را یاد بگیرند. در این مقاله، یک مدل انتها به انتها  ویژگی

های زمانی مختلف اراله شده اس . ساختار عصبی اراله شده در ایبن مقالبه، از دو بخبش عصببی کدگبذار و       ها در گاا سهم در خصوص خرید و فروش تک

های معاملاتی هسبتند. پارامترهبای ایبن دو بخبش بطبور       استخراج ویژگی و یادگیری استراتژیکدگشا تشکیل شده اس  که به ترتیب مسئول یادگیری 

های عصبی مختلف برای کدگذار و کدگشبا روی عملکبرد نهبایی مبدل مبورد بررسبی مبرار         شوند. بعلاوه در این مقاله، تاثیر معماری توامان یاد گرفته می

سبهم در   هبای معباملاتی تبک    های اراله شبده اخیبر ببرای یبادگیری اسبتراتژی      اراله شده نسب  به مدلدهد، مدل  اس . نتایج آزمایشات نشان می  گرفته

 بازارهای مالی عملکرد بهتری دارد.
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