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 Image restoration and its different variations are important topics in the 

low-level image processing. One of the main challenges in image 

restoration is the dependency of the current methods to the corruption 

characteristics. In this paper, we propose an image restoration 

architecture that enables us to address different types of corruption 

regardless of the type, amount, and location. The main intuition behind 

our approach is to restore original images from the abstracted 

perceptual features. Using an encoder-decoder architecture, image 

restoration can be defined as an image transformation task. Abstraction 

of the perceptual features is done in the encoder part of the model, and 

determines the sampling point within the Probability Density Function 

(PDF) of the original images. PDF of the original images is learned in 

the decoder section using a Generative Adversarial Network (GAN) 

that receives the sampling point from the encoder part. The pre-trained 

network extracts the perceptual features, and the Restricted Boltzmann 

Machine (RBM) makes the abstraction over them in the encoder 

section. By developing a new algorithm for training RBM, the features 

of the corrupted images are refined. In the decoder, the generator 

network restores the original images from the abstracted perceptual 

features, while the discriminator determines how good the restoration 

result is. The proposed approach is compared with both traditional 

approaches like BM3D and with modern deep models like IRCNN and 

NCSR. We also consider three different categories of corruption 

including denoising, inpainting, and deblurring. The experimental 

results confirm the performance of the model. 
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1. Introduction 

Image restoration is one of the main topics in low-

level digital image processing. Restoring the 

corrupted images as a way to obtain higher quality 

ones has its own importance. At the same time, it 

can be considered as the first step for other high-

level image processing tasks such as object 

detection. Image degradation is generally an 

irreversible problem. The task of image 

restoration is to make a good estimation of the 

original image according to the corrupted image 

using the learned models [1]. 

The researchers have categorized image 

restoration into different separated tasks including 

denoising [2-4], inpainting [5-8], image super 

resolution [9-11], colorizing monochrome images 

[12-14], deblurring [15], and so on; however, all 

of them struggle with a common challenge that 

can be defined as receiving a corrupted image, 

eliminating the corruption, and restoring the 

original image.  

Generally speaking, image restoration can be 

considered as an image transformation task [16] in 

which the model receives a corrupted image as an 

input and transforms it into a desired output. 

Mathematically, this transformation can be 

modeled using a corruption function and an added 

noise [2]. Every corrupted image can be modeled 

using Equation 1: 
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( , ) ( ( , ))C x y H R x y m 
 

(1) 

in which C is the corrupted image, H is the 

corruption function, m is an arbitrary noise that 

can possibly exist depending on the problem, and 

R is the original image. By this definition, all the 

image restoration challenges are considered as 

image transformation tasks to remove H and m in 

Equation 1 and generate an image I that has the 

least difference with R. From the statistical 

viewpoint and by considering the generative 

models for this task, the probability distribution of 

the restored image (I) and the original image (R) 

should have a minimum distance. 

For two random variables, the probability 

distribution that defines their simultaneous 

behavior is their joint probability. Assuming the 

original and corrupted images together, we can 

define their joint probability as follows [17]: 

( , ) ( ) ( | )P R C P R P C R 
 

(2) 

in which P(R) is the probability of the original 

image, P(C) is the probability of the corrupted 

image, and P(C|R) is the conditional probability 

of the corrupted image conditioned to the original 

image. Concretely, the proposed model should 

transform the input image C into I so that the 

difference between P(R) and P(I) is minimized. 

As P(R) is intractable, we may train a model in 

order to generate a synthesized image (I) to 

minimize the following mean square objective: 

 *

2
argmin ,  , i i

w

W R f w C 
 

(3) 

in which W is the parameter set of the model and f 

is the function for mapping C to I using W. 

Although different approaches can be considered 

to define f, according to the previous descriptions, 

a probability-based approach that considers the 

joint probability between the original image and 

its corrupted version is selected. 

The generative models consider the joint 

probability of the input and output, P(X,Y). There 

is no need for an explicit supervision to train the 

generative models, and they map input to output 

using an unsupervised or semi-supervised manner. 

Therefore, the generative models completely fit in 

the image transformation task [17]. 

Many different architectures and models have 

been proposed for addressing the image 

restoration problems [18-23]. Among the neural 

network-based approaches, the deep models have 

recently achieved a great performance for this task 

[2, 3, 14, 16, 17, 24-27]; however, a common 

challenge still exists. Most of them are used for 

only one purpose and handle one image 

restoration problem at a time. Furthermore, they 

are dependent on the corruption type, amount, and 

location. In another work [17], the authors have 

called them the fixated models and have indicated 

that even the deep models suffer from this 

problem. In the fixated models, H in Equation 1 

may be a deterministic function. However, in 

most practical cases, H is unknown for the model 

and a reversing transformation is impossible. 

One of the main approaches for image 

transformation in the deep models is the 

encoding-decoding architecture, in which the 

input is firstly mapped into some latent variables. 

Afterwards, another model generates the desired 

output from the encoder's one. For the image 

processing related tasks, it is common to use the 

deep convolutional models [3, 10, 14, 24]; 

however, other deep models have also been 

observed [2, 11].  

In this paper, we propose an encoding-decoding 

architecture that can be applied to different image 

restoration problems. The encoding part is made 

of a deep convolutional network and a RBM. The 

deep convolutional model maps the input into the 

perceptual features, and the RBM network adds an 

abstraction over them. This abstraction determines 

the sampling point in data PDF for the decoder 

part of the model. A Deep Convolution 

Generative Adversarial Network (DCGAN) [28] 

is in charge for generating an image from the 

sampling point. Finally, the proposed approach is 

compared with the traditional ones like BM3D 

and also with modern deep models like IRCNN 

and NCSR. We also consider three different 

categories of corruptions including denoising, 

inpainting, and deblurring. 

The pre-trained networks are used because as a 

feature extractor, their extracted features are 

robust against changes. Concretely, both an image 

and its corrupted version have almost similar 

outputs in the intermediate convolution layers. 

Furthermore, according to the previously training 

applied to their filters, there is no need to retrain 

them. We remove the fully connected layers and 

call the output of the last convolution layer of the 

model as the perceptual features. The details will 

be discussed in Section 3.  

The RBM model receives the perceptual features 

and then changes their dimension and distribution, 

creating some abstract latent variables. Such 

vectors determine the sampling points in data PDF 

for the decoder network. After extracting the 

corruption independent features, a GAN model is 

used to decode them. The original image is 

restored in the decoding phase. In fact, the GAN 

model learns the probability distribution of the 

original images and RBM determines the 

sampling point. 
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The rest of this paper is organized as what 

follows. In Section 2, the previous works in image 

restoration are reviewed. Section 3 describes the 

architecture of the model and its components. In 

Section 4, the experimental results are explained. 

Finally, in Section 5, a brief conclusion is 

presented. 

 

2. Related Works 

Although deep models are the mostly used 

approaches in these days, there are many other 

methods proposed in various architectures to 

address different types of challenges in image 

restoration. These methods can be categorized 

into two different categories: pixel-level 

approaches and encoding-decoding architectures.  

The pixel-level traditional approaches such as 

total variation [29-32] and BM3D [33] that use 

collaborative filtering for image denoising usually 

work weak on the edges. The dictionary-based 

approaches and sparse coding [19, 20, 22, 23] 

have been proposed by considering a linear 

assumption for restoring images. Colorizing the 

B/W images using SVM have been proposed in 

[34] by assigning a color to each pixel and 

according to their color space. 

Using Multi-Layer perceptron (MLP) was one of 

the first tries for using neural network in image 

restoration [23]. In [18], a patch-based MLP 

approach that achieved comparable results with 

BM3D was proposed. In [35], an auto-encoder 

(AE) has been used for image denoising, and in 

[2], AE has been combined with sparse coding for 

a better parameter optimization. Convolution 

neural networks (CNN) as the main approach for 

working on images has been employed for image 

denoising and has achieved a great performance 

both in the blind and non-blind situations [36]. In 

[37], CNN is used for decoding the JPEG blocks. 

By combining CNN and AE, the authors in [3] 

have proposed the Convolutional Auto-Encoder 

(CAE) for medical image denoising. Using the 

RBM models for image modelling and 

reconstruction has been discussed in [38, 39]. 

The encoding-decoding architecture has been 

considered for addressing different types of 

corruption simultaneously. CNN with the 

encoding-decoding architecture has been applied 

[24] to image denoising and inpainting. They have 

used the convolutional operators as the encoder 

and the deconvolutional operators as the decoder. 

In [13], the encoding-decoding architecture has 

been applied for colorizing the monochrome 

images. This architecture has also been employed 

for image super-resolution in [16].  

The classic deep models struggle with only one 

corruption type and are also dependent on the 

corruption location and amount. In [17], this 

problem has been discussed and an independent 

model has been proposed. In [40], a new model 

based on CNN has been proposed, and the 

knowledge of these networks about generating a 

naturalized image, without training, for image 

restoration has been discussed. 

In [41, 42], the deep generative models have been 

employed and analyzed for use in the image 

restoration task. 

 

3. System Description 

As mentioned earlier, the encoder-decoder 

architecture is the mostly used approach for the 

image transformation tasks in which a model, the 

encoder, is responsible for creating the latent 

variables, and another model, the decoder, is in 

charged for generating the images from those 

encoded latent variables. 

Figure 1 demonstrates the proposed architecture 

and its components. In the encoder section, we 

consider two separated modules. At the first layer, 

the perceptual features are extracted from the 

image, and then a RBM model makes an 

abstraction over these features. The output of 

RBM will be used as the sampling point in the 

decoder model. Thus, RBM should generate a 

corruption independent output. From the 

probability viewpoint, by a good abstraction, an 

image and its corrupted version will reach a 

unique sampling point within the original image 

probability distribution that makes the restoration 

possible. The original image can be restored using 

a generative model that have previously learned 

the probability distribution of the original data. 

 

 

Figure 1. A schematic view of the proposed model: purple 

arrows: CNN; blue Arrows: RBM, and green arrows: 

GAN. 
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3.1. Encoder Model  

The key idea for a good restoration process is that 

the latent variables should include a robust 

information about the original images. Concretely, 

the power of the encoder for extracting the 

encoded data has a major impact on the quality of 

restoration process. In this section, the 

components of the encoder are described.  
 

3.1.1. Perceptual Features 

The pre-trained convolutional networks have been 

applied to different image processing tasks. They 

may be applied directly to the image classification 

tasks, and in some cases, they have been used in 

the transfer learning or fine-tuning applications 

[43, 44]. We used a pre-trained network as the 

first part of the encoder section due to these 

reasons. (1) They are already trained, and there is 

no need to train them again. This feature makes 

the model faster. (2) The features they extract are 

discriminative and robust against some changes. 

In order to extract the perceptual features, we 

removed the fully connected layers from our 

pretrained network. 

Figure 2 shows the output of the VGG16 model 

[45] for the image classification task. Due to the 

richness of the extracted features, the model 

makes a correct decision for a noisy image even 

when some parts are removed. Although the VGG 

model can classify its inputs correctly, the 

intermediate features are affected by the 

considered corruptions. We have to refine these 

perceptual features. The RBM model is 

considered for this task and to make them robust 

against corruptions. 

Figure 3 shows the images and their 

corresponding feature maps of the last 

convolution layer of the pre-trained network. We 

aligned these feature maps and showed them in 

one single image. As it can be seen, these 

intermediate features are visually similar to each 

other due to the similar activated neurons but they 

are corruption-affected. In order to refine the 

corruption effects, we used RBM with a new 

training algorithm to make the feature vectors 

robust against different corruptions. 
 

3.1.2. Feature Abstraction 

In the next step, we used the RBM model to 

handle the impact of corruption on the perceptual 

features. RBM allows our latent variables to be 

robust to the corruptions. The goal, therefore, is to 

find a compromise between the suppressing 

corruption as much as possible and not losing too 

much image details [38]. For doing so, the key 

idea is that using a new training algorithm, RBM 

tries to reconstruct the original feature vector even 

when it receives a corrupted input. 

Figure 3. Perceptual features extracted from the last convolution layer of the VGG16 model 

for different corrupted versions of an image: (a) original, (b) noisy version, (c) blurry with 

removed part, and (d) noisy version with removed part. 

Figure 2. VGG16 model’s robustness against different corruptions. (a) Original image, (b) 

noisy image, and (c) noisy image with one removed part. 
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Once the input data clamped to the visible units, 

the equilibrium distribution of the hidden units 

can be computed. There is a good reason to use 

RBMs for image modelling. Unlike the directed 

models, an RBM conditional distribution over the 

hidden nodes is very easy to compute [39]. 

RBM consists of two components, visible and 

hidden layers, and by forwarding data from the 

visible layer to the hidden layer and sending them 

backward, it tries to learn the important features 

within the data for the input reconstruction. If a 

binary vector, for example, an image, is taken to 

RBM, the model will be able to find how an 

energy state is compatible with that image. 

Although RBM receives a corrupted input, it 

should reconstruct the original images.  

Let v ∈ {0,1}M be the visible layer and h ∈ {0,1}N 

be the hidden layer, where M and N are the natural 

numbers. Given the biases b ∈ RM, c ∈ RN, and 

weights W ∈ RM×N, the probability, partition 

function, and energy function of an RBM are 

given by: 

    
1

| exp |p x E x
z

    (4) 

    
1

, | exp , |p x h E x h
z

    (5) 

  exp ,
v h

Z E v h   (6) 

 
,

,

,

, ,  
v h

h v

N N

RBM i i j j

i j
N N

i j i j

i j

E v h b v c h

W v h

  



 


 (7) 

in which E is the energy function, Z is the 

normalizing constant partition function, W is the 

weight matrix of the model, i refers to the ith 

visible, and j indicates the jth hidden node.  

The goal of RBM training is to find the best 

probable reproduction. When the data in the 

visible and hidden units reach the same 

distribution, the learning will stop. In our model, 

RBM transforms the extracted perceptual features 

into a new space, while the distribution variation 

of its input and output (KL Divergence) is 

minimized. The goal for RBM training is to 

maximize the objective function, demonstrated in 

Equation 8:  

 
 

*

~ ( | ; )

    log

[log , ; ]h p h v

argmax P v

argmax E P v h


 





    


 (8) 

in which θ, P(v) and P(h) are the parameter set of 

RBM, distribution of visible layer, and 

distribution of the hidden layer, respectively.  

As computation of the joint distribution of the 

visible and hidden nodes in RBMs is not feasible, 

the Gibbs sampling is used for the approximation. 

The Contrastive Divergence (CD) algorithm [44] 

and its extensions use the Gibbs sampling for this 

approximation. Obtaining an unbiased estimation 

of the log-likelihood gradient using the MCMC 

methods typically requires many sampling steps. 

This leads to CD become a standard way to train 

RBMs. This algorithm has three main steps 

including positive phase, negative phase, and 

updating weights. The positive phase refers to 

transforming the input data into the hidden layer, 

while the negative phase refers to reconstructing 

the input data from the values obtained in the 

hidden nodes. 

CD
N
 means that the positive and negative phases 

should be repeated for N times and then the 

weights are updated. In order to reach to the 

equilibrium, the algorithm starts with small and 

random values for weights and use CD
1
, i.e. use 

one full step for updating weights. Once the 

weights grow, the Markov chain mixes more 

slowly, and the greater numbers are used for N. 

After repeating the Markov chain, i.e. positive and 

negative phases for k times, the weights and 

biases are updated using Equation 9. 

( )

( )

( )

ji i j o i j k

j j o j k

j i o i k

W v h v h

b h h

c v v





      

      

      

 (9) 

in which W is the weight matrix, o refers to the 

training data index, and b and c are the biases of 

the visible and hidden layers, respectively [46].  

We propose a new extension to the CD algorithm 

for training the RBM model. In the proposed 

algorithm, the positive phase is changed while the 

negative phase remains unchanged. In the new 

approach, the reconstruction error is calculated 

based on the output of the positive phase for the 

non-corrupted data and the output of the negative 

phase for the corrupted samples. In other words, 

both the original and corrupted inputs are clamped 

to the visible layer of the model, and the positive 

phases are calculated for both. The output of the 

clean data is stored temporarily and the negative 

phase continues for the corrupted input regularly. 

In our approach, instead of using the clamped 

corrupted input in the positive phase, we consider 

the output of the positive phase for the original 

non-corrupted input in order to calculate the 

reconstruction error. Thus, the positive phase is 

done using both the corrupted input and its 

corresponding original version. Negative phase is 

done using only the corrupted input. Figure 4 
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demonstrates an overall diagram of the proposed 

method. By this change and according to figure 4 

terminology, Equation 9 can be re-written as 

follows: 

 
 
 

0 1 1

0 1

1

. .ji o k

j o k

j o k

W I h I V C h C

b h I h C

c I V C







       

       

       

 (10) 

According to figure 4, I and C refer to the original 

and corrupted images, respectively. 0. oI h I   

refers to the positive phase for the clean data and 

1 1. kV C h C   refers to the negative phase for the 

corrupted input obtained after repeating the 

reconstruction for K times. These abstracted 

features constitute the latent variables, and as a 

sampling point, they are fed into the decoder. 

RBM allows our latent variables to be robust to 

the corruptions. 

 
 

 

3.2. Decoder Model 

The decoder network is a model that receives a 

vector and generates the corresponding image 

according to the already learned distribution. The 

output of the encoder determines the sampling 

point within the probability distribution of the 

non-corrupted images. For doing so, we have 

considered a GAN model [28] for mapping the 

abstracted features to the original images. GAN 

uses two networks for generating images, i.e. the 

generator and discriminator networks. The 

generator network is responsible for generating 

images, and the discriminator determines the 

quality of the generator's results. The generator 

and discriminator networks play a MinMax game, 

in which the discriminator tries to maximize the 

generator's error by distinguishing between the 

real and fake (generated) images. On the other 

hand, the generator tries to minimize this function 

so that the difference between the real and 

generated images become indistinguishable. A 

well-trained GAN is able to fool its discriminator 

so that it cannot distinguish between the real and 

fake images. The mathematics and the cost 

function of this model are demonstrated in 

Equations 11 to 14. In these equations, D is the 

discriminator, G is the generator, and z indicates 

the latent variables that come from the encoder. 

P(data(x)) refers to the distribution of the original 

images and P(z) indicates the distribution of the 

latent variables.  

 

 *  min max ,
G D

G V D G  (11) 

     

    

~

~

,   log[

log(1

data

z

xx P X

z P z

V D G E D

E D G z



   

 (12) 

 

   

~

~

1
    log

2

1
  log 1

2

data

z

D

x P x

z P

J E D

E D G z

   

  
 

 
(13) 

 G DJ J  (14) 

Despite the regular GANs that use random 

variables for P(z), in our model, the latent 

variables come from the encoder. In our approach, 

the corrupted images are considered as fake in the 

GAN training process. Here are the required steps 

for training: 

1- The discriminator is trained for n epochs using 

the prepared fake samples (both corrupted 

images and images generated by a not fully 

trained generator) and real ones. For doing so, 

beside the random generated samples, the 

corrupted images are also considered as fake 

samples to give the discriminator a better 

insight about the non-corrupted image 

probability distribution.  

2- Train the generator network using the trained 

discriminator.  

3- Repeat steps 1 and 2 for a few epochs. At this 

phase, consider a smaller number for the 

number of epochs in step 1. 

4- Check the fake images. If the generated images 

are good-enough, stop the training, else go to 

step 1. 

Step 1 must not be done once because the 

discriminator could easily reach 100% accuracy 

with a few epochs, and an optimal discriminator 

with zero loss leads to the vanishing gradient 

issue, and hence, the gradient value becomes too 

small to make the generator trainable. As data is 

transformed from a low dimensionality to a space 

with a higher dimensionality, there are some 

spaces in there, ( )rP x  and ( ) 0P z  , that 

make the generator cost goes to infinity [45]. This 

Figure 4. An overview diagram for the new algorithm. 
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is the reason for using different corrupted images 

for training. Using this approach, we covered the 

latent space to prevent the mode dropping issue 

while training GAN. In order to make the 

discriminator more stable, we added noise to its 

input to make the input space continuous [47, 48]. 

The discriminator network is only applied to the 

training process. In the training phase, its output 

determines the quality of the restored image, and 

after training, it will be removed from the 

restoration pipeline. 

 

4. Experimental Results 

In this section, we evaluated the proposed model 

with different types, locations, and amounts of 

corruptions. The implementation details, 

corruption models, and practical results will be 

described in the following sub-sections. 

 

4.1. Implementation Details 

We implemented our proposed pipeline in Keras 

V.2. We also considered the VGG16 model as the 

pre-trained network in our model. We considered 

the following configuration for our model. The 

input images should have the 224×224×3 

dimension. As we used the VGG16 model, the 

pre-trained network has thirteen convolution and 

five pooling layers. Each convolution layer 

includes already trained 3×3 filters. As we 

removed the fully connected layers from the 

model, the RBM input size was equal to the size 

of the Flatten layer of the VGG model. RBM 

receives a 25088 dimension input and maps it into 

a 1000 dimension vector. The generator network 

has five deconvolution layers, and the 

discriminator has a reverse architecture with 

generator to determine the quality of the 

generator's job. At the last layer of the 

discriminator, a Dense (1) layer is used. As the 

proposed method is not end-to-end, all the 

modules can be trained separately.  

For training the model, we created some corrupted 

versions for each image. For doing so, we created 

different noisy and blurry images. We also 

considered different images with removed parts 

with different mask size placed in different 

locations randomly. None of these training images 

was used for testing the model. 

 

4.2. Corruption Models 

In order to test the proposed model, different 

types of corruptions were considered. In the first 

step, the proposed method with some noisy 

images was tested to evaluate it for image 

denoising. Consequently, the inpainting problem 

for evaluation was considered. Image deblurring 

was considered as the last restoration problem for 

testing the model. For a better demonstration, we 

trained the model with images from the ImageNet 

and BSD68 datasets. Furthermore, we considered 

some standard image processing test beds like 

Lena and CameraMan. In order to train the model, 

we added the corrupted version of each image in 

our dataset. No additional data such as the 

accompanying labels in this process. The results 

have been compared with MLP [18], CBM3D 

[49], NCSR [50], and IRCNN [25] regarding the 

problem type. 

 

4.3. Restoration Results 

In this section, the experimental results of the 

model are proposed. Each section will describe 

the results of different types of corruption used for 

evaluating the model. 

 

4.3.1. Image Denoising  
In order to test the model, we have considered 

Gaussian noise with several noise levels. Table 1 

demonstrates the results obtained for the proposed 

method compared to the CBM3D and IRCNN 

methods for the BSD68 (color) dataset. While 

noise level increases from 5 to 35, the proposed 

model can overcome other approaches, whereas it 

performs weak on situations with a higher level of 

noises. This problem has been discussed in [51], 

demonstrating the performance of the VGG model 

against the distorted images. 

 

Table 1. PSNR values for image denoising for the 

BSD68 (color) dataset. 
Noise 

level  
5 15 25 35 50 

CBM3D  40.24  33.52  30.71  28.89  27.38 

IRCNN 40.36  33.86  31.16  29.50  27.86 

Proposed 42.12 39.70 33.81 29.64 25.46 

 

Figure 5 demonstrates the output of our model in 

the image denoising problem for the Gaussian 

noise while the noise level is 10. As it can be 

seen, the original images have been restored 

successfully from their noisy versions. 

Figure 5. Image denoising results of the proposed model; 

top row: original images; second row: image with 

Gaussian noise; and third row: restored images. 
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4.3.2. Image Inpainting 

In order to test the model for image inpainting, we 

have considered different removed parts both in 

size and location. Furthermore, we have combined 

this corruption with a Gaussian noise to make it 

more challenging for the model. Patch size for the 

removed parts has been considered different while 

the noise level was 10. Figure 6 demonstrates the 

output of our model for image inpainting 

challenge. Different types and amounts of 

removed parts have been considered for testing 

the model. It should be noted that the considered 

corruptions are different in amount and location. 

Different types and amounts of blurring filters 

have been considered for testing the model. We 

have used the Gaussian kernel with standard 

deviation 1.6 and two blur kernel from [52]. 

Furthermore, we have added the Gaussian noise 

with different σ values. Figure 7 demonstrates the 

comparable output of the model for the leaves 

image. The proposed method, figure 7 (e), 

achieved a higher PSNR value for the blurry and 

noisy image. 

The PSNR values achieved for the CameraMan, 

House, Lena, Monar, Leaves, and Parrots images 

have been demonstrated in table 2. As it can be 

seen, except for the Lena image, the proposed 

approach achieved better PSNR values compared 

to the others. Perhaps changing the pre-trained 

network with VGG-Face may achieve a better 

performance. 

 

5. Conclusion and Future Works 

In this paper, we have proposed an encoder-

decoder architecture for different image 

restoration problems. Using the proposed 

architecture, we addressed this problem. One of 

the main challenges in the image restoration task 

is that most of the current models and 

architectures are corruption-dependent, which 

means that most of the existing models have bias 

to the corruption type, amount, and location. We 

proposed an encoder-decoder architecture to map 

the corrupted image to its original version. The 

main idea behind our approach is that the original 

image and its corrupted version should return 

Table 2. PSNR values for image debluring for different images. 
Method σ C.man House Lena Monar Leaves Parrots 

Gaussian blur with standard deviation 1.6 

NCSR 

2 

27.99 33.38 30.99 28.32  27.50 30.42 

MLP 27.84 33.43 31.10 28.87 28.91 31.24 
IRCNN 28.12 33.80 31.17 30.00 29.78 32.07 

Proposed 30.11 33.64 31.22 32.49 29.84 34.80 

Kernel 1 (19×19) [57] 

EPLL 
2.55 

25.33 28.19  27.37  22.67  21.67  26.08 
IRCNN 28.11 32.03 29.51 29.20 29.07 31.63 

Proposed 31.42 32.45 28.91 3170 29.14 33.16 

Kernel 2 (17×17) [57] 

EPLL 
7.65 

24.85 28.08  27.03 21.60  21.09  25.77 
IRCNN 27.70 31.94 29.77 28.73 28.63 31.35 

Proposed 28.39 32.54 28.63 29.05 28.93 32.08 

 

Figure 7. Performance of image debluring challenge for the leaves image with Gaussian kernel (standard deviation is 1.6 and 

σ is 2). 

Figure 6. Image inpainting results of the proposed 

model; top row: original images; second row: image 

with Gaussian noise and different removed parts; and 

third row: restored images. 
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almost the same abstract features in the encoding 

phase that is the sampling point for the decoder 

network. The generative adversarial network was 

used in the decoding phase, where it was able to 

learn the probability distribution of the non-

corrupted images. in the proposed architecture, a 

good sampling point leads to good restoration 

results. 

As mentioned earlier, the restoration quality 

completely depends on the power of the encoder 

network. The richer the features, the better the 

result. The output of encoder should be enriched 

and include enough information about the original 

images. In this work, we used only one pre-trained 

model for feature extraction. In order to make the 

model more powerful, combining and merging 

different perceptual features came from different 

pre-trained networks may enrich the output of the 

encoder and lead to better results. By doing so, we 

can make sure that all the discriminative features 

are extracted for restoring an image. Furthermore, 

they can cover each other and make the result 

more robust against noisy inputs. 
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 .0011سال  ،اولشماره  دوره نهم، ،کاویمصنوعی و دادهمجله هوش مصنوعی                                                                                      و فخاری       کیانی

 

 های زایشیهای انتزاعی و مدلمعماری جدید برای بازگردانی تصاویر با استفاده از ویژگی

 

  *کوروش کیانی و علی فخاری

 .ایران، سمنان، دانشگاه سمنان، دانشکده برق و کامپیوتر، گروه هوش مصنوعی و رباتیکز 

 02/10/0101 پذیرش؛ 01/10/0101 بازنگری؛ 01/11/0101 ارسال

 چکیده:

های مهم در موضوع بازگردانی تصوویر، بازگردانی تصویر و انواع مختلف آن، یکی از موضوعات مهم در پردازش تصویر سطح پیکسل هستند. یکی از چالش

صور  نرور  وابستگی متدها به نوع تخریب است. در این مقاله معماری جدیدی برای بازگردانی تصویر ارائه شده است به نحوی که بتوان به انواع تخریوب

انتزاعوی اسوت. بوا اسوتواده از یو  -هوای مهووومیاز نوع، میزان و محل آن در تصویر رسیدگی کرد. ایده اصلی در این مقاله، بازگردانی تصاویر از ویژگی

شووند و سواتته میهای انتزاعوی در بخوش کدگوذار مودل شود. ویژگیمعماری کدگذار/کدگشا، بازگردانی تصویر به ی  موضوع انتقال تصویر تبدیل می

 (GAN)کنند. تابع توزیع احتمال در بخش دوم و توسط ی  شوبکه زایشوی تصومانه گیری را در تابع توزیع احتمال تصاویر اصلی تعیین میمحل نمونه

ال تصواویر اصولی، بوه برداری صوحیح از توابع توزیوع احتموکننود. در نهایوت، نمونوهگیری را از بخش کدگذار دریافت میشود که محل نمونهآموتته می

های موهومی را استخراج کرده و ماشین بولتزموان دیده ویژگیگردد. در بخش کدگذار، ی  شبکه آموزششده منجر میبازگردانی تصویر از تصویر تخریب

تصاوی اصلی را با توجه به تروجوی بخوش  GANکند. در بخش کدگشا نیز، بخش اول شبکه ها را پالایش میبا ی  الگوریتم جدید آن (RBM)محدود 

های و هوم بوا مودل BM3Dهوای سونتی نریور کند. رویکرد پیشنهادی هم با روشکدگذار تولید و بخش دوم آن، کیویت یا تطای نتیجه را تعیین می

و رفوع تواری در نرور گرفتوه  مقایسه شده است. همچنین سه نوع تخریب مشتمل بر حذ  نویز، تکمیول تصوویر NCSRو  IRCNNعمیق مشابه نریر 

 شده اند. نتایج پیاده سازی نشان از برتری روش پیشنهادی دارد.

 های انتزاعی، ماشین بولتزمان محدود، شبکه زایشی تصمانه.های زایشی، بازگردانی تصویر، ویژگیمدل :کلمات کلیدی

 


