B.3. Communication/Networking and Information Technology
Roya Morshedi; S. Mojtaba Matinkhah; Mohammad Taghi Sadeghi
Abstract
IoT devices has witnessed a substantial increase due to the growing demand for smart devices. Intrusion Detection Systems (IDS) are critical components for safeguarding IoT networks against cyber threats. This study presents an advanced approach to IoT network intrusion detection, leveraging deep learning ...
Read More
IoT devices has witnessed a substantial increase due to the growing demand for smart devices. Intrusion Detection Systems (IDS) are critical components for safeguarding IoT networks against cyber threats. This study presents an advanced approach to IoT network intrusion detection, leveraging deep learning techniques and pristine data. We utilize the publicly available CICIDS2017 dataset, which enables comprehensive training and testing of intrusion detection models across various attack scenarios, such as Distributed Denial of Service (DDoS) attacks, port scans, botnet activity, and more. Our goal is to provide a more effective method than the previous methods. Our proposed deep learning model incorporates dense transition layers and LSTM architecture, designed to capture both spatial and temporal dependencies within the data. We employed rigorous evaluation metrics, including sparse categorical cross-entropy loss and accuracy, to assess model performance. The results of our approach show outstanding accuracy, reaching a peak of 0.997 on the test data. Our model demonstrates stability in loss and accuracy metrics, ensuring reliable intrusion detection capabilities. Comparative analysis with other machine learning models confirms the effectiveness of our approach. Moreover, our study assesses the model's resilience to Gaussian noise, revealing its capacity to maintain accuracy in challenging conditions. We provide detailed performance metrics for various attack types, offering insights into the model's effectiveness across diverse threat scenarios.
Z. Shojaee; Seyed A. Shahzadeh Fazeli; E. Abbasi; F. Adibnia
Abstract
Today, feature selection, as a technique to improve the performance of the classification methods, has been widely considered by computer scientists. As the dimensions of a matrix has a huge impact on the performance of processing on it, reducing the number of features by choosing the best subset of ...
Read More
Today, feature selection, as a technique to improve the performance of the classification methods, has been widely considered by computer scientists. As the dimensions of a matrix has a huge impact on the performance of processing on it, reducing the number of features by choosing the best subset of all features, will affect the performance of the algorithms. Finding the best subset by comparing all possible subsets, even when n is small, is an intractable process, hence many researches approach to heuristic methods to find a near-optimal solutions. In this paper, we introduce a novel feature selection technique which selects the most informative features and omits the redundant or irrelevant ones. Our method is embedded in PSO (Particle Swarm Optimization). To omit the redundant or irrelevant features, it is necessary to figure out the relationship between different features. There are many correlation functions that can reveal this relationship. In our proposed method, to find this relationship, we use mutual information technique. We evaluate the performance of our method on three classification benchmarks: Glass, Vowel, and Wine. Comparing the results with four state-of-the-art methods, demonstrates its superiority over them.
Amin Moradbeiky
Abstract
Managing software projects due to its intangible nature is full of challenges when predicting the effort needed for development. Accordingly, there exist many studies with the attempt to devise models to estimate efforts necessary in developing software. According to the literature, the accuracy of estimator ...
Read More
Managing software projects due to its intangible nature is full of challenges when predicting the effort needed for development. Accordingly, there exist many studies with the attempt to devise models to estimate efforts necessary in developing software. According to the literature, the accuracy of estimator models or methods can be improved by correct application of data filtering or feature weighting techniques. Numerous models have also been proposed based on machine learning methods for data modeling. This study proposes a new model consisted of data filtering and feature weighting techniques to improve the estimation accuracy in the final step of data modeling. The model proposed in this study consists of three layers. Tools and techniques in the first and second layers of the proposed model select the most effective features and weight features with the help of LSA (Lightning Search Algorithm). By combining LSA and an artificial neural network in the third layer of the model, an estimator model is developed from the first and second layers, significantly improving the final estimation accuracy. The upper layers of this model filter out and analyze data of lower layers. This arrangement significantly increased the accuracy of final estimation. Three datasets of real projects were used to evaluate the accuracy of proposed model, and the results were compared with those obtained from different methods. The results were compared based on performance criteria, indicating that the proposed model effectively improved the estimation accuracy.
M. Tavakkoli; A. Ebrahimzadeh; A. Nasiraei Moghaddam; J. Kazemitabar
Abstract
One of the most advanced non-invasive medical imaging methods is MRI that can make a good contrast between soft tissues. The main problem with this method is the time limitation in data acquisition, particularly in dynamic imaging. Radial sampling is an alternative for faster data acquisition and has ...
Read More
One of the most advanced non-invasive medical imaging methods is MRI that can make a good contrast between soft tissues. The main problem with this method is the time limitation in data acquisition, particularly in dynamic imaging. Radial sampling is an alternative for faster data acquisition and has several advantages compared to Cartesian sampling. Among them, robustness to motion artifacts makes this acquisition useful in cardiac imaging. Recently, CS has been used to accelerate data acquisition in dynamic MRI. Cartesian acquisition uses irregular undersampling patterns to create incoherent artifacts to meet the Incoherent sampling requirement of CS. Radial acquisition, due to its incoherent artifact, even in regular sampling, has an inherent fitness to CS reconstruction. In this study, we reconstruct the (3D) stack of stars data in cardiac imaging using the combination of the TV penalty function and the GRASP algorithm. We reduced the number of spokes from 21 to 13 and then reduced to 8 to observe the performance of the algorithm at a high acceleration factor. We compared the output images of the proposed algorithm with both GRASP and NUFFT algorithms. In all three modes (21, 13, and 8 spokes), average image similarity was increased by at least by 0.4, 0.1 compared to NUFFT, GRASP respectively. Moreover, streaking artifacts were significantly reduced. According to the results, the proposed method can be used on a clinical study for fast dynamic MRI, such as cardiac imaging with the high image quality from low- rate sampling.
A. Hashemi; M. A. Zare Chahooki
Abstract
Social networks are valuable sources for marketers. Marketers can publish campaigns to reach target audiences according to their interest. Although Telegram was primarily designed as an instant messenger, it is used as a social network in Iran due to censorship of Facebook, Twitter, etc. Telegram neither ...
Read More
Social networks are valuable sources for marketers. Marketers can publish campaigns to reach target audiences according to their interest. Although Telegram was primarily designed as an instant messenger, it is used as a social network in Iran due to censorship of Facebook, Twitter, etc. Telegram neither provides a marketing platform nor the possibility to search among groups. It is difficult for marketers to find target audience groups in Telegram, hence we developed a system to fill the gap. Marketers use our system to find target audience groups by keyword search. Our system has to search and rank groups as relevant as possible to the search query. This paper proposes a method called GroupRank to improve the ranking of group searching. GroupRank elicits associative connections among groups based on membership records they have in common. After detailed analysis, five-group quality factors have been introduced and used in the ranking. Our proposed method combines TF-IDF scoring with group quality scores and associative connections among groups. Experimental results show improvement in many different queries.
M. Kakooei; Y. Baleghi
Abstract
Shadow detection provides worthwhile information for remote sensing applications, e.g. building height estimation. Shadow areas are formed in the opposite side of the sunlight radiation to tall objects, and thus, solar illumination angle is required to find probable shadow areas. In recent years, Very ...
Read More
Shadow detection provides worthwhile information for remote sensing applications, e.g. building height estimation. Shadow areas are formed in the opposite side of the sunlight radiation to tall objects, and thus, solar illumination angle is required to find probable shadow areas. In recent years, Very High Resolution (VHR) imagery provides more detailed data from objects including shadow areas. In this regard, the motivation of this paper is to propose a reliable feature, Shadow Low Gradient Direction (SLGD), to automatically determine shadow and solar illumination direction in VHR data. The proposed feature is based on inherent spatial feature of fine-resolution shadow areas. Therefore, it can facilitate shadow-based operations, especially when the solar illumination information is not available in remote sensing metadata. Shadow intensity is supposed to be dependent on two factors, including the surface material and sunlight illumination, which is analyzed by directional gradient values in low gradient magnitude areas. This feature considers the sunlight illumination and ignores the material differences. The method is fully implemented on the Google Earth Engine cloud computing platform, and is evaluated on VHR data with 0.3m resolution. Finally, SLGD performance is evaluated in determining shadow direction and compared in refining shadow maps.
S. Ahmadluei; K. Faez; B. Masoumi
Abstract
Deep convolutional neural networks (CNNs) have attained remarkable success in numerous visual recognition tasks. There are two challenges when adopting CNNs in real-world applications: a) Existing CNNs are computationally expensive and memory intensive, impeding their use in edge computing; b) there ...
Read More
Deep convolutional neural networks (CNNs) have attained remarkable success in numerous visual recognition tasks. There are two challenges when adopting CNNs in real-world applications: a) Existing CNNs are computationally expensive and memory intensive, impeding their use in edge computing; b) there is no standard methodology for designing the CNN architecture for the intended problem. Network pruning/compression has emerged as a research direction to address the first challenge, and it has proven to moderate CNN computational load successfully. For the second challenge, various evolutionary algorithms have been proposed thus far. The algorithm proposed in this paper can be viewed as a solution to both challenges. Instead of using constant predefined criteria to evaluate the filters of CNN layers, the proposed algorithm establishes evaluation criteria in online manner during network training based on the combination of each filter’s profit in its layer and the next layer. In addition, the novel method suggested that it inserts new filters into the CNN layers. The proposed algorithm is not simply a pruning strategy but determines the optimal number of filters. Training on multiple CNN architectures allows us to demonstrate the efficacy of our approach empirically. Compared to current pruning algorithms, our algorithm yields a network with a remarkable prune ratio and accuracy. Despite the relatively high computational cost of an epoch in the proposed algorithm in pruning, altogether it achieves the resultant network faster than other algorithms.
H.3. Artificial Intelligence
Sajjad Alizadeh Fard; Hossein Rahmani
Abstract
Fraud in financial data is a significant concern for both businesses and individuals. Credit card transactions involve numerous features, some of which may lack relevance for classifiers and could lead to overfitting. A pivotal step in the fraud detection process is feature selection, which profoundly ...
Read More
Fraud in financial data is a significant concern for both businesses and individuals. Credit card transactions involve numerous features, some of which may lack relevance for classifiers and could lead to overfitting. A pivotal step in the fraud detection process is feature selection, which profoundly impacts model accuracy and execution time. In this paper, we introduce an ensemble-based, explainable feature selection framework founded on SHAP and LIME algorithms, called "X-SHAoLIM". We applied our framework to diverse combinations of the best models from previous studies, conducting both quantitative and qualitative comparisons with other feature selection methods. The quantitative evaluation of the "X-SHAoLIM" framework across various model combinations revealed consistent accuracy improvements on average, including increases in Precision (+5.6), Recall (+1.5), F1-Score (+3.5), and AUC-PR (+6.75). Beyond enhanced accuracy, our proposed framework, leveraging explainable algorithms like SHAP and LIME, provides a deeper understanding of features' importance in model predictions, delivering effective explanations to system users.
S. Shadravan; H. Naji; V. Khatibi
Abstract
The SailFish Optimizer (SFO) is a metaheuristic algorithm inspired by a group of hunting sailfish that alternates their attacks on group of prey. The SFO algorithm takes advantage of using a simple method for providing the dynamic balance between exploration and exploitation phases, creating the swarm ...
Read More
The SailFish Optimizer (SFO) is a metaheuristic algorithm inspired by a group of hunting sailfish that alternates their attacks on group of prey. The SFO algorithm takes advantage of using a simple method for providing the dynamic balance between exploration and exploitation phases, creating the swarm diversity, avoiding local optima, and guaranteeing high convergence speed. Nowadays, multi agent systems and metaheuristic algorithms can provide high performance solutions for solving combinatorial optimization problems. These methods provide a prominent approach to reduce the execution time and improve of the solution quality. In this paper, we elaborate a multi agent based and distributed method for sailfish optimizer (DSFO), which improves the execution time and speedup of the algorithm while maintaining the results of optimization in high quality. The Graphics Processing Units (GPUs) using Compute Unified Device Architecture (CUDA) are used for the massive computation requirements in this approach. In depth of the study, we present the implementation details and performance observations of DSFO algorithm. Also, a comparative study of distributed and sequential SFO is performed on a set of standard benchmark optimization functions. Moreover, the execution time of distributed SFO is compared with other parallel algorithms to show the speed of the proposed algorithm for solving unconstrained optimization problems. The final results indicate that the proposed method is executed about maximum 14 times faster than other parallel algorithms and shows the ability of DSFO for solving non-separable, non-convex and scalable optimization problems.
H. Fathi; A.R. Ahmadyfard; H. Khosravi
Abstract
Recently, significant attention has been paid to the development of virtual reality systems in several fields such as commerce. Trying on virtual clothes is becoming a solution for the online clothing industry. In this paper, we propose a method for the problem of virtual clothing using 3D point matching ...
Read More
Recently, significant attention has been paid to the development of virtual reality systems in several fields such as commerce. Trying on virtual clothes is becoming a solution for the online clothing industry. In this paper, we propose a method for the problem of virtual clothing using 3D point matching of a selected cloth and the customer body. For this purpose, we provide a 3D model of the customer and the selected clothes, put up on the mannequin, using a Kinect camera. As the size of the abdominal part of the customer is different from the mannequin, after pre-processing of the two captured point clouds, the 3D point cloud of the selected clothes is deformed to fit the 3D point cloud of the customer’s body. We use Laplacian-Beltrami curvature as a descriptor to find the abdominal part in the two point clouds. Then, the abdominal part of the mannequin is deformed in 3D space to fit the abdominal part of the customer. Finally, the head and neck of the customer are attached to the mannequin point.The proposed method has two main advantages over the existing methods for virtual clothing. First, no need for an expert to design a 3D model for the customer body and the selected clothes in advanced graphical software such as Unity. Second, there is no restriction for the style of the selected clothes and their texture while existing methods have such restrictions. The experimental results justify the ability of the proposed method for virtual clothing.
H.3. Artificial Intelligence
Damianus Kofi Owusu; Christiana Cynthia Nyarko; Joseph Acquah; Joel Yarney
Abstract
Head and neck cancer (HNC) recurrence is ever increasing among Ghanaian men and women. Because not all machine learning classifiers are equally created, even if multiple of them suite very well for a given task, it may be very difficult to find one which performs optimally given different distributions. ...
Read More
Head and neck cancer (HNC) recurrence is ever increasing among Ghanaian men and women. Because not all machine learning classifiers are equally created, even if multiple of them suite very well for a given task, it may be very difficult to find one which performs optimally given different distributions. The stacking learns how to best combine weak classifier models to form a strong model. As a prognostic model for classifying HNSCC recurrence patterns, this study tried to identify the best stacked ensemble classifier model when the same ML classifiers for feature selection and stacked ensemble learning are used. Four stacked ensemble models; in which first one used two base classifiers: gradient boosting machine (GBM) and distributed random forest (DRF); second one used three base classifiers: GBM, DRF, and deep neural network (DNN); third one used four base classifiers: GBM, DRF, DNN, and generalized linear model (GLM); and fourth one used five base classifiers: GBM, DRF, DNN, GLM, and Naïve bayes (NB) were developed, using GBM meta-classifier in each case. The results showed that implementing stacked ensemble technique consisting of five base classifiers on gradient boosted features achieved better performance than achieved on other feature subsets, and implementing this stacked ensemble technique on gradient boosted features achieved better performance compared to other stacked ensemble techniques implemented on gradient boosted features and other feature subsets used. Learning stacked ensemble technique having five base classifiers on GBM features is clinically appropriate as a prognostic model for classifying and predicting HNSCC patients’ recurrence data.
Z. MohammadHosseini; A. Jalaly Bidgoly
Abstract
Social media is an inseparable part of human life, although published information through social media is not always true. Rumors may spread easily and quickly in the social media, hence, it is vital to have a tool for rumor veracity detection. Papers already proved that users’ stance is an important ...
Read More
Social media is an inseparable part of human life, although published information through social media is not always true. Rumors may spread easily and quickly in the social media, hence, it is vital to have a tool for rumor veracity detection. Papers already proved that users’ stance is an important tool for this goal. To the best knowledge of authors, so far, no work has been proposed to study the ordering of users’ stances to achieve the best possible accuracy. In this work, we have investigated the importance of the stances ordering in the efficiency of rumor veracity detection. This paper introduces a concept called trust for stance sequence ordering and shows that proper definition of this function can significantly help improve to improve veracity detection. The paper examines and compares different modes of definition of trust. Then, by choosing the best possible definition, it was able to outperform state-of-the-art results on a well-known dataset in this field, namely SemEval 2019.
M. Yadollahzadeh Tabari; Z. Mataji
Abstract
The Internet of Things (IoT) is a novel paradigm in computer networks which is capable to connect things to the internet via a wide range of technologies. Due to the features of the sensors used in IoT networks and the unsecured nature of the internet, IoT is vulnerable to many internal routing attacks. ...
Read More
The Internet of Things (IoT) is a novel paradigm in computer networks which is capable to connect things to the internet via a wide range of technologies. Due to the features of the sensors used in IoT networks and the unsecured nature of the internet, IoT is vulnerable to many internal routing attacks. Using traditional IDS in these networks has its own challenges due to the resource constraint of the nodes, and the characteristics of the IoT network. A sinkhole attacker node, in this network, attempts to attract traffic through incorrect information advertisement. In this research, a distributed IDS architecture is proposed to detect sinkhole routing attack in RPL-based IoT networks, which is aimed to improve true detection rate and reduce the false alarms. For the latter we used one type of post processing mechanism in which a threshold is defined for separating suspicious alarms for further verifications. Also, the implemented IDS modules distributed via client and router border nodes that makes it energy efficient. The required data for interpretation of network’s behavior gathered from scenarios implemented in Cooja environment with the aim of Rapidminer for mining the produces patterns. The produced dataset optimized using Genetic algorithm by selecting appropriate features. We investigate three different classification algorithms which in its best case Decision Tree could reaches to 99.35 rate of accuracy.
M. Sepahvand; F. Abdali-Mohammadi
Abstract
The success of handwriting recognition methods based on digitizer-pen signal processing is mostly dependent on the defined features. Strong and discriminating feature descriptors can play the main role in improving the accuracy of pattern recognition. Moreover, most recognition studies utilize local ...
Read More
The success of handwriting recognition methods based on digitizer-pen signal processing is mostly dependent on the defined features. Strong and discriminating feature descriptors can play the main role in improving the accuracy of pattern recognition. Moreover, most recognition studies utilize local features or sequences of them. Whereas, it has been shown that the combination of global and local features can increase the recognition accuracy. This paper addresses two mentioned topics. First, a new high discriminative local feature, called Rotation Invariant Histogram of Degrees (RIHoD), is proposed for online digitizer-pen handwriting signals. Second, a feature representation layer is proposed, which maps local features into global ones in a new space using some learning kernels. Different aspects of the proposed local feature and learned global feature are analyzed and its efficiency is evaluated in several online handwriting recognition scenarios.
M. Rahimi; A. A. Taheri; H. Mashayekhi
Abstract
Finding an effective way to combine the base learners is an essential part of constructing a heterogeneous ensemble of classifiers. In this paper, we propose a framework for heterogeneous ensembles, which investigates using an artificial neural network to learn a nonlinear combination of the base classifiers. ...
Read More
Finding an effective way to combine the base learners is an essential part of constructing a heterogeneous ensemble of classifiers. In this paper, we propose a framework for heterogeneous ensembles, which investigates using an artificial neural network to learn a nonlinear combination of the base classifiers. In the proposed framework, a set of heterogeneous classifiers are stacked to produce the first-level outputs. Then these outputs are augmented using several combination functions to construct the inputs of the second-level classifier. We conduct a set of extensive experiments on 121 datasets and compare the proposed method with other established and state-of-the-art heterogeneous methods. The results demonstrate that the proposed scheme outperforms many heterogeneous ensembles, and is superior compared to singly tuned classifiers. The proposed method is also compared to several homogeneous ensembles and performs notably better. Our findings suggest that the improvements are even more significant on larger datasets.
H.3.2.2. Computer vision
Masoumeh Esmaeiili; Kourosh Kiani
Abstract
The classification of emotions using electroencephalography (EEG) signals is inherently challenging due to the intricate nature of brain activity. Overcoming inconsistencies in EEG signals and establishing a universally applicable sentiment analysis model are essential objectives. This study introduces ...
Read More
The classification of emotions using electroencephalography (EEG) signals is inherently challenging due to the intricate nature of brain activity. Overcoming inconsistencies in EEG signals and establishing a universally applicable sentiment analysis model are essential objectives. This study introduces an innovative approach to cross-subject emotion recognition, employing a genetic algorithm (GA) to eliminate non-informative frames. Then, the optimal frames identified by the GA undergo spatial feature extraction using common spatial patterns (CSP) and the logarithm of variance. Subsequently, these features are input into a Transformer network to capture spatial-temporal features, and the emotion classification is executed using a fully connected (FC) layer with a Softmax activation function. Therefore, the innovations of this paper include using a limited number of channels for emotion classification without sacrificing accuracy, selecting optimal signal segments using the GA, and employing the Transformer network for high-accuracy and high-speed classification. The proposed method undergoes evaluation on two publicly accessible datasets, SEED and SEED-V, across two distinct scenarios. Notably, it attains mean accuracy rates of 99.96% and 99.51% in the cross-subject scenario, and 99.93% and 99.43% in the multi-subject scenario for the SEED and SEED-V datasets, respectively. Noteworthy is the outperformance of the proposed method over the state-of-the-art (SOTA) in both scenarios for both datasets, thus underscoring its superior efficacy. Additionally, comparing the accuracy of individual subjects with previous works in cross subject scenario further confirms the superiority of the proposed method for both datasets.
A. Lakizadeh; Z. Zinaty
Abstract
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to ...
Read More
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to assess the sentiment polarity of each aspect in the text. However, these studies do not pay enough attention to the need for vectors to be optimal for the aspect. To address this issue, in the present study, we suggest a Hierarchical Attention-based Method (HAM) for aspect-based polarity classification of the text. HAM works in a hierarchically manner; firstly, it extracts an embedding vector for aspects. Next, it employs these aspect vectors with information content to determine the sentiment of the text. The experimental findings on the SemEval2014 data set show that HAM can improve accuracy by up to 6.74% compared to the state-of-the-art methods in aspect-based sentiment classification task.
F. Baratzadeh; Seyed M. H. Hasheminejad
Abstract
With the advancement of technology, the daily use of bank credit cards has been increasing exponentially. Therefore, the fraudulent use of credit cards by others as one of the new crimes is also growing fast. For this reason, detecting and preventing these attacks has become an active area of study. ...
Read More
With the advancement of technology, the daily use of bank credit cards has been increasing exponentially. Therefore, the fraudulent use of credit cards by others as one of the new crimes is also growing fast. For this reason, detecting and preventing these attacks has become an active area of study. This article discusses the challenges of detecting fraudulent banking transactions and presents solutions based on deep learning. Transactions are examined and compared with other traditional models in fraud detection. According to the results obtained, optimal performance is related to the combined model of deep convolutional networks and short-term memory, which is trained using the aggregated data received from the generative adversarial network. This paper intends to produce sensible data to address the unequal class distribution problem, which is far more effective than traditional methods. Also, it uses the strengths of the two approaches by combining deep convolutional network and Long Short Term Memory network to improve performance. Due to the inefficiency of evaluation criteria such as accuracy in this application, the measure of distance score and the equal error rate has been used to evaluate models more transparent and more precise. Traditional methods were compared to the proposed approach to evaluate the efficiency of the experiment.
M. M. Jaziriyan; F. Ghaderi
Abstract
Most of the existing neural machine translation (NMT) methods translate sentences without considering the context. It is shown that exploiting inter and intra-sentential context can improve the NMT models and yield to better overall translation quality. However, providing document-level data is costly, ...
Read More
Most of the existing neural machine translation (NMT) methods translate sentences without considering the context. It is shown that exploiting inter and intra-sentential context can improve the NMT models and yield to better overall translation quality. However, providing document-level data is costly, so properly exploiting contextual data from monolingual corpora would help translation quality. In this paper, we proposed a new method for context-aware neural machine translation (CA-NMT) using a combination of hierarchical attention networks (HAN) and automatic post-editing (APE) techniques to fix discourse phenomena when there is lack of context. HAN is used when we have a few document-level data, and APE can be trained on vast monolingual document-level data to improve results further. Experimental results show that combining HAN and APE can complement each other to mitigate contextual translation errors and further improve CA-NMT by achieving reasonable improvement over HAN (i.e., BLEU score of 22.91 on En-De news-commentary dataset).
H.3.15.3. Evolutionary computing and genetic algorithms
Mahdieh Maazalahi; Soodeh Hosseini
Abstract
Detecting and preventing malware infections in systems is become a critical necessity. This paper presents a hybrid method for malware detection, utilizing data mining algorithms such as simulated annealing (SA), support vector machine (SVM), genetic algorithm (GA), and K-means. The proposed method combines ...
Read More
Detecting and preventing malware infections in systems is become a critical necessity. This paper presents a hybrid method for malware detection, utilizing data mining algorithms such as simulated annealing (SA), support vector machine (SVM), genetic algorithm (GA), and K-means. The proposed method combines these algorithms to achieve effective malware detection. Initially, the SA-SVM method is employed for feature selection, where the SVM algorithm identifies the best features, and the SA algorithm calculates the SVM parameters. Subsequently, the GA-K-means method is utilized to identify attacks. The GA algorithm selects the best chromosome for cluster centers, and the K-means algorithm has applied to identify malware. To evaluate the performance of the proposed method, two datasets, Andro-Autopsy and CICMalDroid 2020, have been utilized. The evaluation results demonstrate that the proposed method achieves high true positive rates (0.964, 0.985), true negative rates (0.985, 0.989), low false negative rates (0.036, 0.015), and false positive rates (0.022, 0.043). This indicates that the method effectively detects malware while reasonably minimizing false identifications.
A. Omondi; I. Lukandu; G. Wanyembi
Abstract
Variable environmental conditions and runtime phenomena require developers of complex business information systems to expose configuration parameters to system administrators. This allows system administrators to intervene by tuning the bottleneck configuration parameters in response to current changes ...
Read More
Variable environmental conditions and runtime phenomena require developers of complex business information systems to expose configuration parameters to system administrators. This allows system administrators to intervene by tuning the bottleneck configuration parameters in response to current changes or in anticipation of future changes in order to maintain the system’s performance at an optimum level. However, these manual performance tuning interventions are prone to error and lack of standards due to fatigue, varying levels of expertise and over-reliance on inaccurate predictions of future states of a business information system. As a result, the purpose of this research is to investigate on how the capacity of probabilistic reasoning to handle uncertainty can be combined with the capacity of Markov chains to map stochastic environmental phenomena to ideal self-optimization actions. This was done using a comparative experimental research design that involved quantitative data collection through simulations of different algorithm variants. This provided compelling results that indicate that applying the algorithm in a distributed database system improves performance of tuning decisions under uncertainty. The improvement was quantitatively measured by a response-time latency that was 27% lower than average and a transaction throughput that was 17% higher than average.
H.R. Koosha; Z. Ghorbani; R. Nikfetrat
Abstract
In the last decade, online shopping has played a vital role in customers' approach to purchasing different products, providing convenience to shop and many benefits for the economy. E-commerce is widely used for digital media products such as movies, images, and software. So, recommendation systems are ...
Read More
In the last decade, online shopping has played a vital role in customers' approach to purchasing different products, providing convenience to shop and many benefits for the economy. E-commerce is widely used for digital media products such as movies, images, and software. So, recommendation systems are of great importance, especially in today's hectic world, which search for content that would be interesting to an individual. In this research, a new two-steps recommender system is proposed based on demographic data and user ratings on the public MovieLens datasets. In the first step, clustering on the training dataset is performed based on demographic data, grouping customers in homogeneous clusters. The clustering includes a hybrid Firefly Algorithm (FA) and K-means approach. Due to the FA's ability to avoid trapping into local optima, which resolves K-means' main pitfall, the combination of these two techniques leads to much better performance. In the next step, for each cluster, two recommender systems are proposed based on K-Nearest Neighbor (KNN) and Naïve Bayesian Classification. The results are evaluated based on many internal and external measures like the Davies-Bouldin index, precision, accuracy, recall, and F-measure. The results showed the effectiveness of the K-means/FA/KNN compared with other extant models.
H.3. Artificial Intelligence
M. Taghian; A. Asadi; R. Safabakhsh
Abstract
The quality of the extracted features from a long-term sequence of raw prices of the instruments greatly affects the performance of the trading rules learned by machine learning models. Employing a neural encoder-decoder structure to extract informative features from complex input time-series has proved ...
Read More
The quality of the extracted features from a long-term sequence of raw prices of the instruments greatly affects the performance of the trading rules learned by machine learning models. Employing a neural encoder-decoder structure to extract informative features from complex input time-series has proved very effective in other popular tasks like neural machine translation and video captioning. In this paper, a novel end-to-end model based on the neural encoder-decoder framework combined with deep reinforcement learning is proposed to learn single instrument trading strategies from a long sequence of raw prices of the instrument. In addition, the effects of different structures for the encoder and various forms of the input sequences on the performance of the learned strategies are investigated. Experimental results showed that the proposed model outperforms other state-of-the-art models in highly dynamic environments.
H.5. Image Processing and Computer Vision
Sekine Asadi Amiri; Mahda Nasrolahzadeh; Zeynab Mohammadpoory; AbdolAli Movahedinia; Amirhossein Zare
Abstract
Improving the quality of food industries and the safety and health of the people’s nutrition system is one of the important goals of governments. Fish is an excellent source of protein. Freshness is one of the most important quality criteria for fish that should be selected for consumption. It ...
Read More
Improving the quality of food industries and the safety and health of the people’s nutrition system is one of the important goals of governments. Fish is an excellent source of protein. Freshness is one of the most important quality criteria for fish that should be selected for consumption. It has been shown that due to improper storage conditions of fish, bacteria, and toxins may cause diseases for human health. The conventional methods of detecting spoilage and disease in fish, i.e. analyzing fish samples in the laboratory, are laborious and time-consuming. In this paper, an automatic method for identifying spoiled fish from fresh fish is proposed. In the proposed method, images of fish eyes are used. Fresh fish are identified by shiny eyes, and poor and stale fish are identified by gray color changes in the eye. In the proposed method, Inception-ResNet-v2 convolutional neural network is used to extract features. To increase the accuracy of the model and prevent overfitting, only some useful features are selected using the mRMR feature selection method. The mRMR reduces the dimensionality of the data and improves the classification accuracy. Then, since the number of samples is low, the k-fold cross-validation method is used. Finally, for classifying the samples, Naïve bayes and Random forest classifiers are used. The proposed method has reached an accuracy of 97% on the fish eye dataset, which is better than previous references.
M. Zarbazoo Siahkali; A.A. Ghaderi; Abdol H. Bahrpeyma; M. Rashki; N. Safaeian Hamzehkolaei
Abstract
Scouring, occurring when the water flow erodes the bed materials around the bridge pier structure, is a serious safety assessment problem for which there are many equations and models in the literature to estimate the approximate scour depth. This research is aimed to study how surrogate models estimate ...
Read More
Scouring, occurring when the water flow erodes the bed materials around the bridge pier structure, is a serious safety assessment problem for which there are many equations and models in the literature to estimate the approximate scour depth. This research is aimed to study how surrogate models estimate the scour depth around circular piers and compare the results with those of the empirical formulations. To this end, the pier scour depth was estimated in non-cohesive soils based on a subcritical flow and live bed conditions using the artificial neural networks (ANN), group method of data handling (GMDH), multivariate adaptive regression splines (MARS) and Gaussian process models (Kriging). A database containing 246 lab data gathered from various studies was formed and the data were divided into three random parts: 1) training, 2) validation and 3) testing to build the surrogate models. The statistical error criteria such as the coefficient of determination (R2), root mean squared error (RMSE), mean absolute percentage error (MAPE) and absolute maximum percentage error (MPE) of the surrogate models were then found and compared with those of the popular empirical formulations. Results revealed that the surrogate models’ test data estimations were more accurate than those of the empirical equations; Kriging has had better estimations than other models. In addition, sensitivity analyses of all surrogate models showed that the pier width’s dimensionless expression (b/y) had a greater effect on estimating the normalized scour depth (Ds/y).