[1] E. Kochkina, M. Liakata, and I. Augenstein, “Turing at semeval-2017 task 8: Sequential approach to rumor stance classification with branch-lstm”, arXiv preprint arXiv:1704.07221, 2017.
[2] A. P. B. Veyseh, J. Ebrahimi, D. Dou, and D. Lowd, “A temporal attentional model for rumor stance classification”, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2335–2338, 2017.
[3] A. Hanselowski, A. PVS, B. Schiller, F. Caspelherr, D. Chaudhuri, C. M. Meyer, and I. Gurevych, “A retrospective analysis of the fake news challenge stance detection task”, arXiv preprint arXiv:1806.05180, 2018.
[4] B. Ghanem, P. Rosso, and F. Rangel, “Stance detection in fake news a combined feature representation”, in: Proceedings of the first workshop on fact extraction and VERification (FEVER), pp. 66–71, 2018.
[5] J. Cao, J. Guo, X. Li, Z. Jin, H. Guo, and J. Li, “Automatic rumor detection on microblogs: A survey”, arXiv preprint arXiv:1807.03505, 2018.
[6] Q. Zhang, S. Zhang, J. Dong, J. Xiong, and X. Cheng, “Automatic detection of rumor on social network”, in: Natural Language Processing and Chinese Computing, Springer, pp. 113–122, 2015.
[7] S. Wang, Q. Kong, Y. Wang, and L. Wang, “enhancing rumor detection in social media using dynamic propagation structures”, in: 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), IEEE, pp. 41–46, 2019.
[8] Z. Wang, Y. Guo, Z. Li, M. Tang, T. Qi, and J. Wang, “Research on microblog rumor events detection via dynamic time series based gru model”, in: ICC 2019 IEEE International Conference on Communications (ICC), IEEE, pp. 1–6, 2019.
[9] J. Ma, W. Gao, and K.-F. Wong, “Rumor detection on twitter with tree-structured recursive neural networks”, Association for Computational Linguistics, 2018.
[10] A. E. Fard, M. Mohammadi, S. Cunningham, and B. Van de Walle, “Rumor as an anomaly: rumor detection with one-class classification”, in: 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), IEEE, pp. 1–9, 2019.
[11] A. Bidgoly, H. Amirkhani, and F. Sadeghi, “Fake news detection on social media using a natural language inference approach”, in: springer/ Multimedia Tools and Applications, 2020.
[12] G. Gorrell, K. Bontcheva, L. Derczynski, E. Kochkina, M. Liakata, and A. Zubiaga, “Rumoreval 2019: Determining rumor veracity and support for rumors”, arXiv preprint arXiv:1809.06683, 2018.
[13] Q. Li, Q. Zhang, and L. Si, “eventai at semeval-2019 task 7: Rumor detection on social media by exploiting content, user credibility and propagation information”, in: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 855–859, 2019.
[14] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to sequence for sets”, arXiv preprint arXiv:1511.06391, 2015.
[15] L. Logeswaran, H. Lee, and D. Radev, “Sentence ordering using recurrent neural networks”, 2016.
[16] S. Dungs, A. Aker, N. Fuhr, and K. Bontcheva, “Can rumor stance alone predict veracity”, in: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3360–3370, 2018.
[17] E. W. Pamungkas, V. Basile, and V. Patti, “Stance classification for rumor analysis in twitter: Exploiting affective information and conversation structure”, arXiv preprint arXiv:1901.01911, 2019.
[18] A. Aker, L. Derczynski, and K. Bontcheva, “Simple open stance classification for rumor analysis”, arXiv preprint arXiv:1708.05286, 2017.
[19] A. Zubiaga, E. Kochkina, M. Liakata, R. Procter, and M. Lukasik, “Stance classification in rumors as a sequential task exploiting the tree structure of social media conversations”, arXiv preprint arXiv:1609.09028, 2016.
[20] H. Bahuleyan and O. Vechtomova, Uwaterloo, “semeval-2017 task 8: Detecting stance towards rumors with topic independent features”, in: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 461–464, 2017.
[21] R. Baly, M. Mohtarami, J. Glass, L. Marquez, A. Moschitti, and P. Nakov, “Integrating stance detection and fact checking in a unified corpus”, arXiv preprint arXiv:1804.08012, 2018.
[22] Amiri, F., S. Abbasi, and M. Babaie Mohamadeh. “Clustering Methods to Analyze Social Media Posts during Coronavirus Pandemic”, in: Iran. Journal of AI and Data Mining 10.2, pp. 159-169, 2022.
[23] E. Kochkina, M. Liakata, and A. Zubiaga, “All-in-one: Multi-task learning for rumor verification’, arXiv preprint arXiv:1806.03713, 2018.
[24] C. Conforti, M. T. Pilehvar, and N. Collier, “Towards automatic fake news detection: cross-level stance detection in news articles”, in: Proceedings of the First Workshop on Fact Extraction and VERification (FEVER), pp. 40–49, 2018.
[25] Q. Li, Q. Zhang, and L. Si, “Rumor detection by exploiting user credibility information, attention and multi-task learning”, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1173–1179, 2019.
[26] J. Ma, W. Gao, and K.-F. Wong, “Detect rumor and stance jointly by neural multi-task learning”, in: Companion proceedings of the the web conference 2018, pp. 585–593, 2018.
[27] M. R. Islam, S. Muthiah, and N. Ramakrishnan, “Rumorsleuth: Joint detection of rumor veracity and user stance”, in: 2019 IEEE/ACM International Conference on Advances, in: Social Networks Analysis and Mining (ASONAM), IEEE, pp. 131–136, 2019.
[28] A. Khandelwal, “Fine-tune longformer for jointly predicting rumor stance and veracity”, in: 8th ACM IKDD CODS and 26th COMAD, pp. 10–19, 2021.
[29] A. P. B. Veyseh, M. T. Thai, T. H. Nguyen, and D. Dou, “Rumor detection in social networks via deep contextual modeling”, in: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 113–120, 2019.
[30] Vosoughi S., Roy D. and Aral S, “The Spread of True and False News Online. Science”, pp. 1146–1151, 2019.
[31] Giachanou A., Rosso P., and Crestani F, “Leveraging Emotional Signals for Credibility Detection”; In: Proc. of the 42nd Int. ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR ’19), July 21–25, Paris, France, 2019.
[32] Ghanem B., Cignarella A., Bosco C., Rosso P., and Rangel F, “UPV-28-UNITO at SemEval-2019 Task 7 Exploiting Post's Nesting and Syntax Information for Rumor Stance Classification”. In: Proc. of the 13th Int. Workshop on Semantic Evaluation (SemEval-2019), co-located with the Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019), Minneapolis, Minnesota, USA, June 6-7, pp. 1125–1131, 2019.
[33] Sadeghi F, Jalaly Bidgoly A. “A survey of rumor detection methods in social networks”. Biannual Journal Monadi for Cyberspace Security (AFTA). 2019 Sep 10;8(1):3-14.