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 The Internet of Things (IoT) is a novel paradigm in computer networks 

is capable of connecting things to the internet via a wide range of 

technologies. Due to the features of the sensors used in the IoT 

networks and the unsecured nature of the internet, IoT is vulnerable to 

many internal routing attacks. Using the traditional IDS in these 

networks has its own challenges due to the resource constraint of the 

nodes and the characteristics of the IoT network. A sinkhole attacker 

node in this network attempts to attract traffic through an incorrect 

information advertisement. In this research work, a distributed IDS 

architecture is proposed in order to detect the sinkhole routing attack in 

the RPL-based IoT networks, and this is aimed to improve a true 

detection rate and reduce the false alarms. For the latter, we used one 

type of post-processing mechanism in which a threshold is defined for 

separating suspicious alarms for further verifications. Also the 

implemented IDS modules are distributed via the client and router 

border nodes that make it energy efficient. The required data for 

interpretation of the network’s behavior is gathered from the scenarios 

implemented in the Cooja environment with the aim of Rapidminer for 

mining the produced patterns. The produced dataset is optimized using 

the genetic algorithm by selecting appropriate features. We investigate 

three different classification algorithms, and in its best case, Decision 

Tree could reach a 99.35 rate of accuracy. 
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1. Introduction 

Internet of Thing (IoT) is a hybrid network of small 

devices that are used to monitor and control the 

physical environment by collecting, analyzing, and 

processing the data [1,2,3]. The term internet of 

thing generally refers to a set of standards, 

protocols, devices, and technologies required for 

connecting and transferring information between 

smart devices with each other or humans [4]. The 

main idea of IoT is to develop an independent 

world by smart things and a wide range of 

technologies such as RFID, ZigBee, Wi-Fi, and 

3G/4G/5G that are accessible from anywhere, and 

are capable of transferring information and make 

decisions anytime based on the internet 

infrastructure [5,6]. Each IoT devices includes 

three main parts. One for sensing data from the 

environment, a processor unit or microcontroller 

(MCU) that processes data and runs software 

stacks interfaced to a wireless device for 

connectivity, and finally, a communication block 

for sending and receiving data. Due to the lack of 

IPv4 addresses, the only choice for addressing 

massive IoT devices is IPv6, which is possible by 

6LoWPAN, an adaption layer to use IPv6 on the 

resource-constrained IoT devices. 6LoPWAN is a 

vital technology for supporting the IoT 

communications. Figure 1 shows the position of 

6LowPAN in the IPv6 protocol stack. As it can be 

seen, 6LoWPAN has set an adaption layer on the 

top of the data link layer to fragment the IPv6 

packets into smaller sections.  
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Figure 1. IPv6 protocol stack [7]. 

 

This also required to a lower layer to support the 

end to end IPv6 communications among the power-

constrained devices or powerful internet entities.  

Securing communications in the IoT devices using 

standard mechanisms such as the encryption and 

authentication techniques is inefficient for these 

networks as these preventive mechanisms cannot 

identify all the possible threats, especially internal 

routing attacks that are for the different nature of 

wireless communication. Thus IoT is vulnerable 

from both the internet and the inside network [2]. 

Some of the current projects have provided 

methods for increasing security, authentication, 

confidentiality, access control, privacy, and 

trustworthiness between the users and things [2,9]. 

However, in spite of these mechanisms, the IoT 

systems are still vulnerable to attacks aimed at a 

disturbance in the network. For this reason, another 

defensive line is required to identify the attackers. 

This goal can be achieved by using the intrusion 

detection systems to detect threats and 

vulnerabilities in the networks. However, using the 

traditional detection techniques is difficult for IoT. 

This is due to the specific restrictions such as the 

resource constraints, devices type, and specific 

protocol stack and standards [1,8,10].  

     Among the IoT routing protocols, RPL is the 

most famous and usable one. This is a distance 

vector routing protocol. It uses some sort of 

Directed Acyclic Graphs (DAGs) for finding the 

destination node. Also the sinkhole attack, which is 

one of the most effective attacks in the IoT 

networks, operates mostly on networks with the 

RPL protocols. In the sinkhole attacks [11], an 

attacker advertises a beneficial routing path and 

thus makes many node route traffics through it. In 

RPL, an attacker can launch a sinkhole attack by 

advertising a better rank, thus making nodes down 

in the DODAG to select it as parent.  

The principal purpose of this research work was to 

improve the detection rate of the sinkhole routing 

attack and decrease the false alarm rates in the RPL 

routing protocol on the 6LoWPAN-based 

networks, which is a standard for network layer in 

the IoT networks. This will be done through 

classification and analysis of normal and threat 

behavioral patterns using data mining techniques. 

Before that, we used the genetic algorithm to 

specify the effective features in the constructed 

dataset. We used three learning algorithms 

separately in order to train the classification models 

and compared their results. Also for reducing the 

false alarms rate, a mechanism based on the 

generated alarms of k nearest neighbors of nodes 

was used. We simulated the RPL network in the 

Cooja simulator and the learning algorithms 

implemented in the Rapidminer data mining 

software as an offline process. Also the 

implemented IDS modules were distributed via the 

client and router border nodes that made it energy-

efficient. Briefly, the paper includes the following 

contributions: 

 Designing an anomaly-based and distributed 

IDS architecture in the IoT networks based on 

the RPL protocol in collaboration with the 

nodes. 

 Using the genetic algorithm as a feature 

selection mechanism in order to improve the 

classifier accuracy. 

 Defining a threshold-based post-processing 

technique in partnership with the  

 k  nearest neighbors of the nodes for filtering 

the suspicious alarms from the real attack ones. 

 Evaluating the proposed method using multiple 

experiments in terms of the attack detection 

accuracy and energy consumption. 

 

The rest of this paper is organized as what follows. 

Section 2 overviews the foundation of the IoT 

networks, and identifies the security issues, RPL 

routing protocol, and sinkhole attack. At the end of 

Section 2, the related works are presented. The 

model proposed for detecting the sinkhole attack in 

the 6LoWPAN platform based on the RPL routing 

protocol is represented in Section 3. The 

performance of the proposed model in the 

simulated scenarios is presented in Section 4 by 

reporting the simulation results. The paper is 

concluded in Section 5. 

 

2. Routing Protocol for Low Power and Lossy 

Networks (RPL) & Sinkhole Attack 

Due to the inherent characteristics of each 

application and used restricted devices, employing 

an appropriate routing solution in the 6LoWPAN 

environment is a challenging task. In most different 

LoWPAN cases, the sensors are connected to a 

small set of devices named root that is responsible 

for gathering data. For this purpose, for providing 

routing in 6LoWPAN, RPL was developed as a 

routing protocol for low-power and Lossy 
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Networks (LLN) for the Routing Over Low-power 

and Lossy Networks (ROLL). This protocol 

operates at the network layer and is able to create a 

path and distribute the routing information between 

nodes in an optimizing way. RPL is a distance 

vector routing protocol. Accordingly, the 

information path considered as a set of Directed 

Acyclic Graphs (DAGs) is further classified as a set 

of Destination-Oriented Directed Acyclic Graph 

(DODAG). In RPL, each DODAG consists of 

sensor nodes and a sink node that is responsible for 

collecting data of the sensor nodes [8]. In RPL, 

packets forward according to three traffic patterns; 

one-to-one, one-to-many, and many-to-many 

communications by supporting different 

operations such as unidirectional traffic to the 

DODAG root, bidirectional traffic between the 

6LoWPAN nodes, and bidirectional traffic 

between the 6LoWPAN devices and the DODAG 

root [3,5,8].  

According to the DODAG architecture, the nodes 

are organized hierarchically toward the DODAG 

root, which is the final destination to avoid loop in 

the network, meaning that in RPL, the nodes have 

the role of a child or a parent. A child node or a leaf 

collects data as a source node, and a parent node is 

responsible for routing the child’s node data toward 

the root. The DODAG root can be a router that 

connects the IoT networks to the internet. In RPL, 

each node has a rank that represents the node’s 

position to the DODAG root, i.e. the node with a 

lower rank has an optimized path to the DODAG 

root. In order to create the topology, that is 

DODAG, each node selects a set of nodes as 

parents to forward its packets to the DODAG root. 

The nodes selected as the parents have a better path 

to the root. In other words, they have lower ranks 

than their children. RPL uses three control 

messages to form the network topology and 

manage the routing information, DIO, DAO, and 

DIS. 

1. DIO (DODAG Information Object): used to 

distribute rank and the objective function to 

calculate the node rank from the root to the nodes, 

form and update the network topology. 2. DAO 

(DODAG Advertisement Object): to propagate the 

destination information toward the root for 

supporting the downward RPL traffic. 3. DIS 

(DODAG Information Solicitation): to request the 

graph’s information by the neighbor nodes for 

joining the network. Figure 2 represents an RPL 

DODAG graph including the root (sink), leaves, 

two control messages, DIO, and DAO along with 

their propagating in the graph that how RPL 

supports the upward and downward traffics. 

 

2.1. Sinkhole Routing Attack 

In the sinkhole attack, the malicious node attempts 

to attract traffic through incorrect information 

advertisement. In fact, it advertises a falsified 

optimal path that makes the other nodes transfer 

their data packets through it. Then after receiving 

traffic illegally, use it to do its illegitimate purposes 

as dropping or modifying. Consequently, the 

attacker affects a part of the network through a 

disturbance on it. For more details, in the Sinkhole 

attack, the attacker decreases its ETX metric, 

which is to calculate the rank value form the 

network topology [3,12]. 

 

 

 
Figure 2.An RPL network control messages DIO and 

DAO. 

Figure 3 shows a network under the sinkhole 

attack. As it can be seen, an attacker tries to attract 

the data packets of the neighbouring nodes and 

change the optimized topology. As a result, the 

paths will not be optimal and cause delay, data 

modifying, and data loss, and decrease the 

performance of the network. 

 
Figure 3.A network under sinkhole attack [12]. 

 

3. Related Works 

In this section, we present a literature review of the 

intrusion detection systems designed for the IoT 

networks. It should be noted that the provided 

solutions have not been investigated thoroughly, 
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and the research works in this field are in the early 

stages. In the following, we will discuss several 

proposed solutions in terms of the placement 

strategy, detection method, security threats, and 

validation approach.  

Raza et al. [4] have introduced SVELTE, a hybrid 

IDS against RPL routing attacks such as sinkhole 

and selective forwarding. The aim of SVELTE is 

to balance the storing cost of the signature-based 

method and the computational cost related to the 

anomaly-based method. In SVELTE, the border 

router is responsible for the main operations and 

processes, and the network’s nodes host the 

lightweight agents to send data to the border router 

for analyzing. The simulations results have shown 

that SVELTE can detect all malicious nodes. 

However, the true positive rate is not 100%, and 

they have some false alarms during the detection.  

Cervantes et al. [2] have proposed an intrusion 

detection system called INTI in order to detect the 

sinkhole attacks on 6LoWPAN. INTI employed 

distributed placement and combined the concepts 

of the anomaly-based method for monitoring 

packet exchange between nodes, and signature-

based method to extract two kinds of node 

evaluation; trust and reputation. It assumed that 

there was a hierarchical structure and each node 

monitors a superior node by estimating its inbound 

and outbound traffic. If inbound and outbound 

traffic is not equal, that node is considered as an 

attacker. The experiments showed that INTI had a 

better performance for detecting sinkhole attacks 

than SVELTE. The impacts of the proposed model 

on the constrained nodes were not discussed.  

Le et al. [11] have designed a network monitoring 

and an RPL specification-based IDS with a finite 

state machine for malicious checking in each 

monitor node. The proposed IDS is based on a 

hybrid placement and focuses on new topology 

attacks; rank attack and local repair attack. The 

authors developed and evaluated their work [13]. 

The authors have organized the network into 

clusters as demonstrated in [13]. There is an IDS 

agent in each cluster head that eavesdrops the 

cluster members’ communications. Also the cluster 

members report the related information about itself 

and other neighbors to the cluster head. Based on 

the defined rules as specifications, the attack can be 

detected. The simulation results have shown that 

the proposed IDS has a high accuracy rate in 

detecting the RPL topology attacks and creates 

6.3% overhead.  

Wallgren et al. [14] have employed a centralized 

IDS on the border router, and using a heartbeat 

protocol to send the ICMPv6 echo requests to the 

network’s internal nodes at a regular interval. If no 

response is received, the attacks or availability 

issues are expected. The presented model was 

investigated against the RPL routing attacks. In 

spite of additional traffic in the network, the 

authors have shown in the experiments that there is 

no need to allocate an additional memory to run the 

heartbeat. 

Krimmling and Peter [15] have used the anomaly-

based and signature-based techniques as a hybrid 

detection method to detect routing and man in the 

middle attacks. They did their experiments through 

an evaluation framework that they proposed 

themselves. According to the results obtained, the 

provided IDS could detect most of the attacks. 

 

4. Proposed Model 

Our proposed detection model concentrates on 

detecting the sinkhole attacks in the 6LoWPAN 

platform based on the RPL routing protocol with 

the aim to improve the attack detection rate. In the 

suggested sinkhole detection approach, at first, the 

detection agents are learned using the data mining 

algorithms. In order to create a normal profile of 

the network’s behavior, we use the learning 

algorithms such as Decision Tree, Support Vector 

Machines (SVM), and Bayesian Classifier. Then 

the learned models are used to detect the sinkhole 

attack. Finally, using a mechanism to validate the 

generated alarms, we will reduce the false detection 

rate, which decreases the usage of computational 

resources for processing the generated alarms and 

improves a true detection rate.  

In our proposed model, we use a hybrid placement 

strategy. Then the intrusion detection agents place 

both on the border router and the hosts. The central 

IDS agent that demands more energy will be 

located on the border route that is responsible for 

the principal computations and actions.  

Also a type of lightweight detection agent is 

implemented on each of the network nodes without 

the need for robust processing resources. These 

agents are responsible for collecting the required 

information for network analysis, and send the 

specific information of the nodes to the border 

router in a pre-defined time interval. Using this 

hybrid approach, the computational overhead of 

monitoring the total network traffic and 

information from the border router will be 

decreased. Figure 4 shows the hybrid placement of 

our used IDS agents in an RPL-based IoT network, 

which will be explained then. 

In the following, each one of the IDS modules on 

the border router and nodes is explained separately. 

The following two modules are in the IDS agent 

existing on each network node:  
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Data collection: A lightweight module in the 

network node that sends the node information to 

the IDS agent on the border router. It is assumed 

for message security mechanisms as IPsec or 

DTLS used to send such data. 

 
 

Figure 4.IDS agents’ placement on the border router and 

nodes. 

6Mapper client: It has the responsibility to send 

the node coordinates in the network graph, RPL 

identifier, and DODAG version number to the 

6Mapper module on the border router to 

reconstruct the network graph for checking 

suspicious alarms in the post-processing phase. 

The following modules are in the IDS agents 

existing on the border router: 

6Mapper: Through this module, the RPL network 

graph is reconstructed in the border router by the 

information received from 6Mapper client modules 

in the network nodes. 

 Detection: responsible for the main tasks of 

detection including pre-processing, compute 

classifier, and apply the classifier sections 

explained below. 

(1) Pre-processing: Since data collection is done 

by tools, they may record invalid or faulty data if 

the tools get in trouble. Thus the collected data 

must be prepared before any analysis. Figure 5 

shows the pre-processing operations that are 

divided into two sections, the preliminary pre-

processing and feature selection. In the preliminary 

section, the outliers and duplicates in the dataset 

are identified and resolved. Also the existing 

missing values will be initialized. The goal of the 

second section, meaning feature selection, is to 

create simpler models by selecting a subset of 

proper features with a minimum number of 

members whose probability distribution of data 

classes is as close as to the obtained distribution of 

all the primary features. We considered feature 

selection as an optimization problem and employed 

the evolutionary genetic algorithm for this purpose. 

As displayed in figure 5, in the feature selection 

section, the first step is to initialize a random 

population of bit vectors of 0 and 1. It means that 1 

indicates the existence of a feature and 0 denotes 

the absence of a feature in the subset. Then each 

one of these subsets should be evaluated by a 

fitness function in order to determine their fitness 

level. In our suggested scheme, we used the 

multiple linear regression for assessing the fitness 

of the generated subsets. The idea behind the linear 

regression [21] in a (K+1) dimensional data space 

is to fit a (k) dimensional hyper plane space, which 

minimizes the sum of squared residuals (SSR) for 

the points in the training data. The SSR measure 

calculates the difference between the target data 

 iy and the predicted values estimated by the 

model using the regression coefficients
0 ( , ,  )k 

. This value is obtained from the following 

equation: 

n n k
2 2

i i 0 j ij

i 1 i 1 j 1

min e (y β  β x )
  

        (1) 

If we assumed n  data and k  dependent variable, 

iy  is obtained from the following equation:  

i 0 1 i1 k iky  β  β x β x      ò              (2) 

where 1, ,  , i n    is a  1 1  k   dimensional 

matrix of the regression coefficients, ò  is a  1n  

dimensional matrix of fitting error, Y  is a    1n  

dimensional matrix of the dependent variables, and 

X is the  1n k   dimensional matrix of the 

independent variables. Consequently, the multiple 

linear regression is written in the form of a matrix 

as follows: 

Y Xβ ò  (3) 

Now, we can re-write the SSR parameter, willing 

to find the values of   that by replacing them in 

the equation, the obtained value is as low as 

possible: 

 
n

2 '

i

i 1

(y Xβ) y Xβ


  ò òò   
      

(4) 

If all 
iò  values are zero, the minimum value for the 

least squares, i.e. zero, will be obtained: 

ŷ Xβ̂   (5) 

Here, ŷ  is the projection of the n-dimensional data 

vector y  onto the hyperplane spanned by  Χ . The 

ˆ  y values are the predicted values in our regression 

model that all lie on the regression hyper-plane. 

Suppose that ̂  satisfies the equation above. 

Then the residuals ˆy y  are orthogonal to the 

columns of X (by the Orthogonal Decomposition 

Theorem), and thus: 
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We multiplied both sides by the inverse of ' X X  in 

order to find the parameter estimates    ̂ . 

Therefore, the least-squares estimator of β in vector 

form is: 

' 1β (X X) X yˆ                                          (7) 

where X   is the transpose of the matrix  X .  

 

 

 

To calculate the inverse of matrix ' ( )X X , the 

determinant of the equation above is required to be 

zero. The vector of the fitted values ŷ  in a linear 

regression model can be expressed as the HAT 

matrix. It maps the vector of the observed values y  

onto the vector of the fitted values ŷ  that lie on the 

regression hyper-plane. The regression residuals 

can be written in different ways as: 

 y y y Xβ y Hy I H yˆˆ       ò          (9) 

Eventually, in order to compare the fitness of the 

regression line associated with each subset, we 

used RMSE (Root Mean Squared Error), which 

was based on SSR. RMSE is the square root of the 

variance of the residuals, and measures the error 

 X y Xβ 0  X y X Xβ 0  X Xβ X yˆ ˆ ˆ            (6) 

' 1y Xβ (X X) X y Hyˆˆ    

 

(8) 
 

Training Dataset 

Preliminary Preprocess (outlier, missing value, duplicate) 

 

Initialize population P of size N, randomly 

 

Evaluating subsets of features by 

multiple linear regression and 

calculating RMSE measure as a fitness 

function 

Satisfy stop 

criterion? 

An optimal subset 

of features 

Selection of best 

subsets as parents 

Crossover and 

mutation to produce 

fitter subsets as new 

population 

Feature Selection 

Feature

1

Feature Feature … Feature 

1 1 0 … 1 

0 1 1 … 0 

Yes 

No 

Figure 5. A flowchart of feature selection by the genetic algorithm. 
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rate of a regression model. It is expressed as 

follows: 

 
2n

n
obs,i pred,i2 i 1

i

i 1

y y1
RMSE  

n n

ˆ





 


ò       (10) 

where 
oy  is related to the n  observed values, and 

,
ˆ

pred iy  denotes the n  predicted values by 

regression. 

In each generation, after evaluating the generated 

subsets, the stop criterion is checked. If the stop 

criterion is satisfied, a subset with the lowest 

fitness is selected as an optimal subset of features; 

otherwise, according to the fitness values, the best 

subsets are elected as the parents to produce new 

subsets of features (children) through cross-over 

and mutation operations.  

(2) Compute classifier: In this section, after pre-

processing the submitted data from the collection 

modules available in the nodes, the classification 

models will be trained for classifying the network 

data as normal or attack. We used SVM, Tree, and 

Bayesian as the learning algorithms for creating the 

classification models and evaluating their 

performance separately. The details of the learning 

algorithms’ deployment are described as follow. 

For training the classification model by Decision 

Tree [13], we considered the gain ratio as an 

attribute selection measure for selecting the 

splitting criterion that separates the given dataset 

into individual classes. It employs a kind of 

normalization to information gain using a “split 

information” value defined analogously with 

( )Info D  as: 

     
v

A j 2 j

j 1

SplitInfo D D / D log D D


   ƒ       (11) 

D  is a training set of class-labeled tuples, and D  

denotes the number of tuples in D . 
jD  contains 

the number of tuples in D that have outcome 
ia  of 

attribute A . This value represents the potential 

information generated by splitting the training data 

set, D , into v  partitions, corresponding to the v  

outcomes of a test on attribute A . The attribute with 

the maximum gain ratio is selected as the splitting 

attribute. 

For training the classification model by SVM [17], 

the Radial Basis Function (RBF) kernel is used to 

map the samples into a higher dimensional space 

with the aim of searching for the best separator 

hyperplane. For classifying a test tuple, the 

following decision function is used. 

     
TT

i i i 0

i 1

d x y x x b     
l

 


               (12) 

where 
iy  is the class label of the support vector   ix

, Tx  is a test tuple, 
i  and 

0b  are the numeric 

parameters determined automatically by the 

optimization or SVM algorithm, and l  is the 

number of support vectors. 

The last trained model is based on the Bayes’ 

theorem, which is naïve Bayes [18]. In this learning 

algorith for a given test tuple, X , the classifier 

predicts that the tuple belongs to the class having 

the highest posterior probability, conditioned on 

X .For reducing the computation in evaluating

   | iP X C , the naïve assumption of class-

conditional independence is made. This presumes 

that the attributes’ values are conditionally 

independent from one another, given the class label 

of the tuple (i.e. there are no dependency 

relationships among the attributes). Thus: 

       
n

i k i 1 i 2 i n i

k 1

P X|C  P x |C P x |C P x |C P(x | C )


      (13) 

By this equation, we can estimate the probability 

that X belongs to class   iC . Each tuple is 

represented by an n-dimensional attribute vector,

 1 2  , , ,  .nX x x x   Parameter   kx  refers to the value 

of attribute 
kA  for tuple X . Since in our dataset the 

selected features are continuous, the continuous-

valued attributes are typically assumed to have a 

Gaussian distribution with a mean   and standard 

deviation   , defined by: 

g  
 

2

2

x μ

2σ
1

  x,μ,σ e
2πσ




  (14) 

So that 

   | g , ,
i ik i k C CP x C x     

 

(15) 

At first, it is required to compute 
iC  and  

iC , 

which are the mean (i.e. average) and standard 

deviations, respectively, of the values of attribute 

kA  for training tuples of class   iC . Then plug these 

two quantities into Eq. (14), together with   kx , to 

estimate    |k iP x C . 

(3) Apply classifier: After creating and training 

the classification models, using the training data 

and learning algorithms, normal or attack status of 

network’s nodes is detected. According to the 

results of the data classification, alarms are 

produced to indicate the normal or attack states for 

each node. In figure 6, the process of computing 

and applying the classifiers is shown. 



Yadollahzadeh-Tabari & Mataji/ Journal of AI and Data Mining, Vol. 9, No. 1, 2021. 
 

80 
 

 

 

 

Alarm verification: This step is known as the 

post-processing phase. In order to improve the 

accuracy and decrease the computational costs of 

alarm processing, the generated alarms will be 

revised and evaluated by this module. At first, a 

threshold will be defined called the degree of 

confidence, to separate the suspicious alarms that 

are required to be revised. After separating the 

suspicious alarms, the associated nodes that are 

based on their sent data, the alarms produced, and 

their k  nearest neighbors are specified in the 

reconstructed DODAG graph; we considered   3k 

. For investigating and taking the final decision 

about a node, at first, we determined the influence 

level of the neighbors in decision-making about the 

normal or attack state. For this purpose, we used 

the product of the distance (from the node to its 

neighbor) in /ETX Hop  (for the neighbor node). If 

the produced alarm for a neighbor node indicates 

normal state, this equation products in (+1), 

otherwise, will product in (-1).  

 

 

 

This leads to the considerable decrement in false 

positive rate. The Parameter 𝑆 will be defined for 

determining the final status of suspicious alarms as 

below. 

𝑆𝑛 = ∑ (𝐷𝑖 × 𝐶𝑖) × (+1) + ∑ (𝐷𝑖 × 𝐶𝑖) ×𝑘
𝑖=1

𝑘
𝑖=1

(−1) ⇒ {
𝑆 > 0                             𝑠𝑡𝑎𝑡𝑒 = 𝑛𝑜𝑟𝑚𝑎𝑙
𝑆 < 0                             𝑠𝑡𝑎𝑡𝑒 = 𝑎𝑡𝑡𝑎𝑐𝑘
𝑆 = 0      𝑘 = +1    , 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑆 𝑎𝑔𝑎𝑖𝑛

(16) 

 

𝐶𝑖 = 𝐸𝑇𝑋𝑖 ∕ 𝐻𝑜𝑝𝑠𝑖 (17) 

The parameter 𝐶𝑖 is our defined threshold that we 

called the degree of confidence for generated alarm 

related to node 𝑖. Index 𝑘 is the number of 

neighbors participating in validation the suspicious 

alarms. The parameter 𝐷𝑖 is the distance from node 

𝑛 to its neighbor node 𝑖. And index 𝑛 is for the 

nodes that their produced alarms are separated as 

suspicious. The calculated values for each neighbor 

node sum together and display with 𝑆𝑛. If the 

obtained value is positive for a node, the related 

Training dataset 

Training classification model by Training classification model by Training classification model by Simple 

Using Gain Ratio as an 

attribute selection measure 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜
= 𝐺𝑎𝑖𝑛(𝐴) ∕ 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) =
− ∑   𝐷𝑗  𝐷   𝑣

𝑗=1 × 𝑙𝑜𝑔2( 𝐷𝑗 ∕

 𝐷 )      

Using RBF kernel to map into a 

higher dimensional space 

 𝑅𝐹𝐵 𝑘𝑒𝑟𝑛𝑒𝑙: 𝐾 𝑋𝑖 , 𝑋𝑗 =

𝑒−  𝑋𝑖−𝑋𝑗  
2/2𝜎2

 
Decision function: 

𝑑(𝑥𝑇) =  ∝𝑖 𝑦𝑖𝜙(𝑥𝑖)
𝑇𝜙(𝑥) + 𝑏0

𝑙

𝑖=1

 

The naïve Bayesian 

classifier based on the 

assumption of class-

conditional independence 

𝑃(𝑋 𝐶𝑖) =  𝑃(𝑥𝑘 𝐶𝑖)

𝑛

𝑘=1

 

= 𝑃(𝑥1 𝐶𝑖) × 𝑃(𝑥2 𝐶𝑖) …

× 𝑃(𝑥  𝐶 )

Decision Tree SVM Naïve Bayesian 

Evaluating and compare the accuracy of three 

classification models separately 

Apply each classification model individually on the 

test dataset 

Figure 6.Computing and applying the classifier models. 
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alarm classified as normal. Otherwise, for negative 

obtained values, the related alarms categorized as 

the attack. And if  𝑆𝑛 be zero, one will be added to 

the number of neighbors, and  𝑆𝑛 will be calculated 

again. 

5. Simulation and Rsults 

In order to measure the performance metrics and 

show the improvement of sinkhole detection rate, 

we used the Cooja [19] network simulator to 

simulate an IoT network based on the RPL routing 

protocol, and produced the dataset. Cooja is a 

network simulator based on Contiki OS, an open-

source operating system for the Internet of Things 

that focuses on low-power devices. Also 

Rapidminer, as an analytics tool, is used for mining 

the produced dataset. The simulated network has 

two types of nodes, the server node and the sender 

nodes. The sender nodes send their sensed data to 

the server node that acts as a sink. It is assumed that 

the server node does not have any computational 

and energy constraints. The nodes are stationary 

and do not have mobility. The communication 

platform and the employed routing protocol are 

6LoWPAN and RPL, respectively. We used the 

moteT  sky node type, which was compatible with 

other IEEE 802.15.4 [20] devices and had a low-

power consumption. For simulating the network in 

Cooja, the network’s parameters are set as follow: 

the Unit Disk Graph Medium (UDGM): Distance 

Loss is used as a radio medium, mote startup delay 

is set to 1000 (ms), transceiver’s signal strength is 

set to 1-100 (dBm), and the transfer and 

interference ranges are set to 50 (m) and 100 (m), 

respectively. The sending and receiving ratios are 

set to 100%, and the packet transmission rate is 

every 60 seconds. The transfer protocol, the 

network layer, and the routing protocols are UDP, 

IPv6, and RPL, respectively. Figure 7 shows a 

sample snapshot of the network in the normal and 

sinkhole attack states. Figure 7(a) shows the 

network in a normal situation, where all nodes send 

their data to the sink via an optimal path. In figure 

7(b), the node 24 acts as an attacker and attracts the 

total traffic sent by neighbors to itself. Then it tries 

to corrupt or abuse the attracted data and makes 

disturbance in the network through implementation 

of other attacks. 

 

5.1. Pre-process 

First, the preprocessing operations will be done in 

order to remove the unnecessary features to 

expedite the learning time and save on the 

computing resources and also normalizing the data. 

The normalization is conducted using the Z-

transformation [21] method. Then for some 

features that there is no data for them, we used the 

Replace Missing Values operator to replace the 

missing values. Next, the outliers in the data are 

identified and removed by the Detect Outlier 

(distance) operator based on the KNN (K-Nearest 

Neighbors concept. We considered K = 10. As 

mentioned in Section 4, for feature selection, we 

used the evolutionary genetic algorithm to find an 

optimal subset of attributes for classification. 

In order to evaluate subsets searched by the genetic 

algorithm, we used the k-fold Cross-validation 

method, in which k = 10. The sampling type is 

shuffled-sampling. In the Cross-Validation block, 

the linear regression is used to evaluate the subsets 

searched by the genetic algorithm that employs the 

Akaike information criterion (AIC) [21] for 

selecting the model. AIC is a measurement of the 

relative fitness of a statistical model. For 

implementation of the linear regression algorithm, 

the parameter eliminate collinear features sets with 

the minimum tolerance value of 0.05 for bias is 

used, and the ridge parameter is set to 1.0E-8. The 

Root Mean Squared Error (RMSE) was considered 

as a performance measure, and a subset with the 

minimum RMSE was selected as an optimal subset. 

After applying the pre-processing operations to the 

dataset, a subset of five features with an RMSE 

value of 0.357 was selected. 

A model with the minimum AIC is the best among 

all the others. The parameter set for the genetic 

algorithm is shown in table 1. In order to find the 

mentioned parameter values, we conducted several 

experiments with different values. For the 

parameter selection schema, three different 

schemas were investigated as the Roulette Wheel, 

Tournament, and Ranking methods. Among them, 

the Tournament method has a surprisingly better 

AIC value. The same strategy was also conducted 

to find the optimal value for P_crossover, type of 

cross-over, and  P_mutation. To find the best value 

for them, we also conducted numerous 

experiments, and finally, we extracted the 

parameters making a lower AIC value. The final 

selected features are illustrated in table 2. 

Table1. The genetic algorithm parameter values used for 

feature selection. 

Value Parameter No 

60 Population size 1 

100 Maximum number of generations 2 

Tournament Selection scheme 3 

0.5 Tournament size 4 

0.05 P mutation 6 

0.66 P cross-over 7 

Uniform Cross-over type 8 

Infinity maximal fitness 9 
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Table 2. Features selected by the feature selection 

method. 

 

 

Table 3. Parameter sets for Decision Tree. 

 

5.2 Training Phase 

For the same distribution of classes, the stratified 

sampling is used. To increase the accuracy of the 

Decision Tree classification model, the tree 

pruning method [22] is used based on the 

determination of a certain amount of confidence 

level of the branches. In addition to post-pruning, 

pre-pruning is used as well by defining the 

parameters as a threshold, preventing the division 

of samples, and turning the node to a leaf.  

 

 

All the parameter values related to Decision Tree 

are shown in table 3. For the naïve Bayesian 

classifier, the Laplace correction [22] enables to 

prevent the high influence of zero probabilities. 

The tuned parameters for the Decision Tree and 

SVM algorithms are presented in tables 3 and 4, 

respectively. 

Table 4. Parameter sets for SVM classifier. 

 

All the mentioned parameter values were 

investigated using several conducted experiments, 

which resulted in the highest the initial evaluation 

results of three classification models for the data 

collected at 2,4,6,8 and 10 minutes’ intervals of the 

network’s runtime are displayed in table 5.  

DR (Detection Rate) is the percentage of the attack 

samples identified correctly divided by the total 

number of attack samples existing in the dataset  

 

Description Feature No 

Number of hops from the node toward 

the sink node Hops 1 

Amount of routing metric in RPL 
routing Routing metric 2 

Number of expected transmissions of a 

packet received at destination 

successfully 
ETX 3 

Amount of node power utilization CPU power 4 

Amount of node transmission power 

utilization 
Transmit power 5 

Value Parameter No 

Gain 

ratio 
Criterion 1 

20 maximal depth 2 

0.25 
Confidence (used for pessimistic error 
calculation of pruning) 

3 

0.1 minimal gain 4 

4 Minimal leaf size 5 

4 Minimal size for split 6 

3 Number of pre-pruning alternatives 7 

No Parameter Value 

1 kernel type Radial 

2 kernel gamma 1 

3 kernel cache 200 mg 

4 C (complexity constant) 0 

5 convergence epsilon 0.001 

6 Max iterations 100000 

7 L pos ( SVM constant for pos samples) 1.05 

8 L neg ( SVM constant for neg samples) 1.05 

9 Epsilon (the insensitivity constant). 0 

10 epsilon plus 0 

11 epsilon minus 0.2 

(a) network in a normal situation.                                     (b) network under sinkhole attack (node 24).  

Figure 7.An RPL network in the normal and sinkhole attack situations. 
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Table 5. The classification results for 5 different data 

collection time intervals before applying the alarm 

verification method. 

This is calculated by    / 100DR TP FN TP   . 

FPR (False Positive Rate) is the percentage of 

normal samples identified as attack incorrectly by 

IDS divided by the total number of the existing 

normal samples, obtained by

   / 100FPR FP FP TN   .According to the 

mechanism described in Section 4, after separating 

and checking the suspicious alarms, the number of 

false alarms will be decreased for three 

classification models, as shown in figure 8. Also 

the final evaluation of the classification models is 

presented in table 6. As it can be seen, by training 

the models during the time, the detection rate has 

been increased and reached above 90% for the 

three classification models. At each time interval, 

the Bayesian model has the highest sinkhole attack 

detection rate. The lowest false detection rate 

associated with the Decision Tree classifier, which 

at 2, 4, and 6 intervals has no false detection rate, 

and at 6 to 10 intervals has the lowest false 

detection rate. 

At 2 to 8 intervals, the Bayesian classifier has a 

higher false detection rate than the SVM and 

Decision Tree models. The highest FPR belongs to 

the SVM classifier by the 10 minutes’ data 

collection time interval. As another metric, the 

Accuracy has been used to determine the 

performance of the classification models.  

Accuracy is the ratio of samples of a class that are 

classified correctly toward all the predicted data for 

that class, and is calculated by

    Accuracy TP TN / TP FP TN FN 100     

The accuracy value of the three employed 

classification models at specified intervals is 

shown in figure 9 that is generated after the alarm 

verification method. 

 

 

 

 

 

 
Figure 8. Number of generated false alarms by IDS for 

three classification models before and after checking the 

suspicious alarms. 

For the first two data collection time interval 

minutes, the trained model by Bayesian has a 

higher precision than the two others. However, at 

other time intervals, the model trained by Decision 

Tree has the highest precision in classification of 

the normal and attack data. 
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collection 

Intervals FPR DR FPR DR FPR DR 

22.76% 85.48% 13% 74.19%  8.13% 71%  2 min 

21% 82.66% 10% 80.65%  7%  77%  4 min 

19% 80.32% 10% 77% 7%  80%  6 min 

19% 83% 5% 77.37% 8%  81.62% 8 min 

20% 84.35% 6% 78.39% 7% 83.39% 10 min 
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Table 6. The final evaluation results related to the  

classification models after applying the alarm verification 

method. 

 

 
Figure 9. Comparison of precision of Decision Tree, SVM, 

and Bayesian classifiers at the specified time intervals. 

 

5.3. Energy Overhead 
Given the importance of the role of energy in the 

IoT networks in this section, we analyzed the 

amount of energy overhead consumed in the 

proposed method. As described in Section 4, our 

proposed method is supposed to be offline after 

running the 6Mapper module in either of the client 

of border nodes. Then we only investigated the 

impact of running this module for the proposed 

IDS. Also since we assumed that the boundary 

nodes were the devices connected to unlimited 

electricity power, we did not calculate the impact 

of running the 6Mapper module on it. Then in this 

section, we only investigated the impact of running 

light-weight IDS module including (Data 

Collection module and 6Mapper-Clinet module) 

for the client nodes. We used Contiki Powertrace 

[18] to measure the power consumption. The 

output from the Powertrace application was the 

total time the different parts of the system were on. 

We calculated the energy usage and power 

consumption using the nominal values, the typical 

operating conditions of the Tmote sky, shown in 

table 7. As explained in the introduction section 

from three main parts of an IoT device, the MCU 

and Sender/Receiver parts consume energy. It is 

clear that for any sending or receiving in the radio 

part, it is essential that the MCU part should be on. 

Table 7. Energy Cnsumption for different Tmote Sky 

modes (mA). 

Tmote sky mode Symbol Energy Consumption 

MCU on, Radio RX Listen 21.8 mA 

MCU on, Radio TX Transmit 19.5 mA 

MCU on, Radio off CPU 1.8 mA 

MCU idle, Radio off LPM 0.0545 mA 

 

We symbolized the time where the MCU was idle 

and the radio was off, as low power mode or LPM. 

The time the MCU is on and the radio is off is 

referred to as the CPU time. The time the radio is 

receiving and transmitting with the MCU on is 

referred to as Listen and Transmit, respectively 

[23]. Supposing 3 V (as a default Voltage) and 8 

wakeups per second, the amount of energy 

consumption for the nodes is calculated using 18. 

We calculated this equation for all the network 

nodes and by dividing by the total number of nodes 

gives us the per node average energy consumption. 

Like our previous experiments, we calculated the 

per node energy consumption in terms of data 

collection interval. Another reason for this is that 

the energy consumption of the Data Collection 

module is directly related to the time intervals of 

data retrieval. The experiments were conducted in 

three states, where the simple RPL, RPL with Data 

Collection module, and RPL with Data Collection 

and 6Mapper modules were running. Figure 10 

shows the results obtained. As it is illustrated, in a 

shorter Data Collection time interval, Data 

Collection and 6Mapper modules consume much 

more energy compared with the larger ones. For the 

latter, it does not make much difference by the pure 

RPL. 

 

6. Conclusion 

In this research work, a distributed IDS architecture 

was proposed to detect the sinkhole routing attack 

on the RPL-based IoT networks, s aimed to 

improve a true detection rate and reduce the false 

alarms. The proposed approach was able to classify 

the network data and detect the sinkhole attack by 

creating the network profile and using the data 

mining techniques. According to our experiments, 

among the three employed classification models, 

the Decision Tree had the highest level of 

precision.  
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5.6% 93.6% 0.8% 87.01% 0 86.29% 2 min 

5% 97.6% 2.5% 91% 0 93.14% 4 min 

3% 98% 2% 90% 0 96.5% 6 min 

2.73% 98.6% 1.56% 89.5% 0.19% 98.58% 8 min 
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Figure 10. Comparison of energy Consumption in client 

nodes for different time intervals in in RPL routing 

protocol and RPL with Data Collection and 6Mapper 

client module. 

 

Our experiments were conducted in terms of data 

collection time intervals in which the lower interval 

produced lower false alarms and a higher detection 

rate. Also comprehensive experiments were 

conducted for investigating the client node energy 

consumptions, which showed that a lower data 

collection time interval consumed more energy in 

comparison to the higher intervals. In this work, by 

checking the suspicious alarms, we were able to 

reduce the produced false alarms significantly. It 

can be considered as an advantage of our suggested 

model that can improve the detection precision and 

save the computational resources. Also due to 

employing the anomaly-based detection technique, 

this approach can be generalized and used for more 

routing attacks. 
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 چکیده:

ها فراهم آوریای از فنرا از طریق طءف گسییترده های کامپءوتری اسییت که توانایی اتصییال اشییءای به ی دیگراینترنت اشییءای یا الگوی جدید در شییب ه

شب هکند. با توجه به ویژگیمی سگرهای به کار رفته در  شءای و ماهءت ناهای ح سءاری از حملات های اینترنت ا شءای در برابر ب امنِ اینترنت، اینترنت ا

سءب سءریابی داخلی آ ست. به دلءل محدودیت منابع گرهم صهپذیر ا شخ سها و م ستفاده از  شءای، ا شب ه اینترنت ا سنتهای  شخءص نفوذ  ستم ت ی ء

شب ه، یا گره مهاجم چالش سعی در جذب ترافءا دارد. در این کار sinkholeهای خاص خود را دارد. در این نوع  ست  ، از طریق تبلءغ اطلاعات نادر

های اینترنت اشءای مبتنی بر در شب ه sinkholeبه منظور تشخءص حمله مسءریابی  (IDS)تحقءقاتی، یا معماری توزیع شده سءستم تشخءص نفوذ 

سءریابی  ست و کاهش آلارمRPLپروت ل م شخءص در سم پس ، با هدف بهبود مءزان ت ست. برای مورد دوم، ما از یا م انء شده ا شتباه، ارائه  های ا

سازی آلارماستفاده کرده( post-processing)پردازش  منظور بررسی بءشتر تعریف شده است.  های مش وک بهایم که در آن یا حد آستانه برای جدا

وری در انرژی آن های روتر مرزی و کلاینت توزیع شییده اند که باعب بهرهسییازی شییده از طریق گرههای سییءسییتم تشییخءص نفوذِ پءادههمچنءن ماژول

شده در محءط شود. دادهمی سناریوهای اجرا  شب ه از  سءر رفتار  شده جمع Rapidminerکاوی در دهبا هدف دا Coojaهای مورد نءاز برای تف آوری 

ستفاده از الگوریتم ژنتءا، برای انتخاب ویژگی شده با ا ست. مجموعه دادهِ جمع آوری  سته ا سه الگوریتم متفاوتِ د ست. ما  شده ا سب بهءنه  های منا

 برسد. 35.99کنءم، و در بهترین حالت درخت تصمءم می تواند به نرخ دقت بندی را بررسی می

 . Sinkhole، حمله مسءریابی RPL، سءستم تشخءص نفوذ، امنءت مسءریابی، حملات 6LoWPAN  اینترنت اشءای، :کلیدیکلمات 

 


