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 Shadow detection provides worthwhile information for remote 

sensing applications, e.g. building height estimation. Shadow areas 

are formed in the opposite side of the sunlight radiation to tall objects, 

and thus solar illumination angle is required to find probable shadow 

areas. In the recent years, Very High Resolution (VHR) imagery 

provides more detailed data from the objects including shadow areas. 

In this regard, the motivation of this paper is to propose a reliable 

feature, Shadow Low Gradient Direction (SLGD), to automatically 

determine shadow and solar illumination direction in the VHR data. 

The proposed feature is based on the inherent spatial feature of fine-

resolution shadow areas. Therefore, it can facilitate shadow-based 

operations, especially when the solar illumination information is not 

available in remote sensing metadata. Shadow intensity is supposed to 

be dependent on two factors including the surface material and 

sunlight illumination, which is analyzed by directional gradient 

values in low gradient magnitude areas. This feature considers the 

sunlight illumination, and ignores the material differences. The 

method is fully implemented on the Google Earth Engine cloud 

computing platform, and is evaluated on the VHR data with 0.3 m 

resolution. Finally, the SLGD performance is evaluated in 

determining shadow direction and compared in refining shadow 

maps. 
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1. Introduction 

Shadow area analysis is an active research topic in 

Very High resolution (VHR) optical Remote 

Sensing (RS) [1]. In this regard, RS, optical, and 

VHR are three important key points in the current 

research works. Firstly, RS includes all 

instruments that remotely acquire data from the 

earth surface including satellite, airborne, and 

Unmanned Aerial Vehicle (UAV) imagery 

platforms [2]. Secondly, optical RS imagery, 

which is passive and is dependent on the sunlight 

radiation backscattering, provides such an object 

representation that is similar to human vision, and 

thus is popular in an object-based analysis [3]. On 

the other hand, shadow analysis is just meaning-

full in optical RS, in which shadow area is formed 

where the sunlight radiation does not directly 

reach the ground [4]. It means that the shadow is 

the clue of the existing tall object on the ground 

surface [5]. In this regard, detection of tall objects 

such as buildings and trees is interested in many 

applications, especially in the urban areas [6, 7]. 

Thirdly, using VHR images, in which fine object 

analysis becomes possible, is becoming more and 

more accessible due to the continuous 

development of RS technology in the recent years 

[3, 8, 9]. It is also expected to extract more 

informative features from the shadow areas, and 

deploy it to develop more accurate models [10]. 

Therefore, in this work, we proposed a new 

shadow feature in the optical VHR RS data. 

The shadow detection methods are divided into 

two categories including model-based and feature-
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based methods. The model-based methods are 

more accurate than the feature-based ones but 

they require extra information such as solar 

azimuth. On the other hand, the feature-based 

methods are more straight, and just utilize the 

image processing techniques in order to find the 

shadow area [11]. Furthermore, the feature-based 

methods are more practical in the real-world 

applications [12]. Therefore, in order to increase 

the accuracy of the feature-based methods and 

make them more reliable in the real-world 

applications, we proposed a feature to 

automatically extract solar illumination/shadow 

direction angle by just using the image processing 

techniques. The solar illumination angle is an 

important information in supplementary metadata, 

of which the availability can improve the feature-

based methods. In this work, the shadow area is 

analyzed in the VHR images in order to propose a 

new automatic method to determine the shadow 

direction/solar illumination angle. To this end, the 

inherent shadow features are involved in the 

proposed method, and a robust feature is 

provided.   

The shadow applications are reviewed in the next 

section in order to investigate the application of 

solar illumination angle information. The 

proposed method is presented in the third section. 

Finally, the fourth and fifth sections are devoted 

to the evaluation and conclusion, respectively. 

 

2. Related Works 

Shadow is the clue of the existing tall objects in 

the studied area. For instance, the shadow 

information is used to distinguish the buildings 

from the non-building areas such as roads and 

parking lots in the urban areas [13]. In this regard, 

Femiani et al. [14] have fused the shadow 

information and light direction in order to define a 

structural element to construct the initial 

segmentation seeds and extract the individual 

buildings. In another work, Kakooei and Baleghi 

[10] have used the shadow information and the 

Gray Level Cooccurrence Matrix (GLCM) 

features to extract the building map from the pre-

disaster vertical image. 

There are various feature-based methods for 

shadow detection. For example, Femiani et al. 

[14] have deployed a simple method to detect 

shadow areas, which is based on the thresholding 

of the Y band in the YUV color space. In another 

work, Mostafa and Abdelhafiz [15] have defined a 

shadow index by mixing red, green, and blue 

bands with the principle component analysis. 

Moreover, Huang and Zhang [16] have proposed a 

Morphological Shadow Index (MSI) by deploying 

the spectral and structural shadow features. 

Recently, Kakooei and Baleghi [1] have proposed 

a spectral-spatial shadow index and a histogram-

based thresholding to extract shadow map in VHR 

images. 

The model-based methods use supplementary 

metadata such as solar azimuth, which is available 

in many remote sensing platforms such as the 

GeoEye-1, QuickBird, and IKONOS-2 satellites 

[17]. Ok [18] has proposed an automatic two-level 

graph theory to detect the buildings using shadow 

information in GeoEye-1 images with a 0.5 m 

resolution. Moreover, Huang et al. [19] have 

proposed a building detection method using the 

GaoFen-2 satellites, shadow information, and 

illumination direction. To this end, the spectral 

features were mixed with the spatial features 

including morphological attribute profiles and 

local binary patterns [19]. Finally, Manno-Kovács 

and Ok [20] have deployed  the shadow 

information, along with the supplementary 

metadata file with solar azimuth, solar elevation, 

and viewing geometry information to detect 

buildings in the QuickBird and IKONOS-2 

datasets. 

When shadow direction is not available in RS 

metadata, it can be determined through the 

spectral and spatial features. For instance, 

Sirmacek and Unsalan [21] have used the 

geometrical center of shadow and its adjacent 

rooftop in order to calculate the solar illumination 

direction. In this regard, shadow direction was 

supposed to be the line connecting the center of a 

rooftop to the center of its shadow. In another 

work, Ngo et al. [22] have proposed a building 

rooftop detection method based on the shadow 

information. They manually determined the 

illumination angle using a line connecting a 

corner of a rooftop and its corresponding corner in 

the shadow area. Therefore, the shadow direction 

was the ratio between the number of horizontal 

and vertical pixels of the line. 

 

2.1. Motivation 

The shadow direction information is not available 

in many RS platforms, especially airborne and 

UAVs. On the other hand, this information can 

facilitate the object classification methods in 

urban areas such as building detection [10, 18, 23-

26], tree detection [27-29], facade detection [9], 

and road extraction [30, 31]. Furthermore, there is 

no automatic method to determine the solar 

illumination angle, and the manual methods are 

not applicable in the real-world applications. 

The motivation of this paper is to propose a 

reliable feature, Shadow Low Gradient Direction 
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(SLGD), to automatically determine shadow and 

solar illumination direction in the VHR data. The 

proposed feature is based on the inherent spatial 

feature of fine-resolution shadow areas.  

 

3. Dataset  

The accuracy and the level of details in the 

shadow detection methods are highly related to 

the image resolution. The finer resolution of the 

RS image provides the more detailed structure in 

the shadow area. Figure 1 shows three images 

with different resolutions. Figure 1(a) shows the 

WorldView-3 image of Madrid, Spain with a 1.5 

m resolution, in which the shadow area is 

typically dark with no underlying information. 

Figure 1(b) shows a 50 cm-resolution image of 

San Francisco, provided by Digital Globe, in 

which the shadow area contains more information 

compared to Figure 1(a). Furthermore, Figure 1(c) 

shows a 30 cm-resolution image of Chicago, in 

which the underlying texture of the shadow area is 

apparently distinguishable. Furthermore, Figure 

1(c) shows a sample image with detailed shadow 

area that was deployed in this study. 
 

 
Figure 1. Remote sensing images with different 

resolutions. (a) WorldView-3 image of Madrid, Spain, 

with 1.5 m resolution. Free access provided by Digital 

Globe. (b) Image of San Francisco with 0.5 m resolution. 

Free access provided by Digital Globe in building 

footprints project. (c) Image of Chicago with 0.3 m 

resolution in Inria dataset. 

 

In this work, two datasets are used for evaluation, 

which are Inria dataset and Google Earth images. 

The Inria dataset with 0.3 m ground sampling 

distance contains aerial images that covers 810 

km
2
 including the train and test data for building 

detection application. We deployed Chicago 

(USA) and Vienna (Austria) from the train dataset 

for evaluation. Each city comprises 36 tiles, and 

each tile size is 5000 ×5 000 pixels [32]. 

Furthermore, in this work, we used the Google 

Earth VHR images in a part of Virginia Beach. 

The method is implemented on the Google Earth 

Engine (GEE) cloud computing platform [33]. 

GEE is free, and provides various processing tools 

and datasets [34]. It facilitates the geodata 

processing at reginal [35, 36], national [37], and 

global scale [38]. 

 

 

 

4. Proposed Method  

The proposed method is based on the 

investigation of the spatial darkness intensity of 

shadow areas in the VHR images. This method 

can automatically find the solar illumination 

direction without any additional metadata. To this 

end, this section is divided into two sub-sections. 

In the first sub-section, the shadow area is 

analyzed in the VHR images. Then the proposed 

Shadow Low Gradient Direction (SLGD) feature 

is detailed in the second sub-section.  

 

4.1. Shadow Analysis in VHR Images 

The shadow darkness intensity is not constant all 

over the shadow area. Shadow is darker at the 

bottom of the object than its edges, where it 

becomes soft and fuzzy. In other words, the 

darkness intensity decreases in moving from the 

center to the edges [39]. Figure 2 shows two 

scenes of the Vienna and Chicago cities in the 

Inria dataset, in which four factors that affect the 

intensity of the shadow areas are investigated. 
 

 
Figure 2. Different factors that affect darkness intensity 

of shadow. (a) Penumbra effect in Vienna image. (b) 

Diffuse radiation reflection in Vienna image. (c) Adjacent 

facade and window reflection in Chicago. 

 

 Underlying structure: Light reflection factor 

varies according to the material of the 

underlying structure. Figure 2 shows the 

shadow areas over different ground surfaces, 

which apparently differ in brightness 

intensities. 

 Penumbra: Figure 2(a) shows the concept of 

the penumbra, which means the shadow area 

is partly blocked by an obstacle [40]. 

Penumbra causes the shadow to become 

brighter in moving to the edges. 

 Wave behavior of light: Light has two 

different behaviors in physics including  

particle behavior and wave behavior [41]. 

Figure 2(b) shows that the light reflection is 

diffuse (not specular) according to the wave 
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behavior [42, 43]. Therefore, in moving 

from the center of the shadow to its edge, 

this factor causes a brighter shadow area. 

 Opposite facade or wall: Opposite wall or 

building facade can reflect the sunlight into 

the shadow area, especially in the urban 

area. Figure 2(c) shows the reflection light 

from the facade with many windows. This 

factor also decreases the darkness intensity 

in moving to the shadow edges. 

 

All the above-mentioned factors are informative 

in the shadow area, except the underlying material 

in which there is no inherent shadow information 

in moving from one material to another. In order 

to ignore the material intensity differences in 

spatial analysis, the high gradient magnitude areas 

are ignored.  

Penumbra, wave behavior of the light, and the 

opposite facade/wall factors agree that the 

darkness changes in moving towards the shadow 

edges contain an interpretable information. 

Therefore, the shadow intensity decreases in 

moving from the bottom of the shadow to its edge. 

Figure 3 shows several spectral profiles of the 

shadow areas in different directions. The value of 

the blue band in the shadow area is higher than the 

other bands. This fact is observable in all shadow 

profiles in Figure 3, which is considered in the 

next sub-section for the proposed method. This 

behavior is also verified by the previous methods 

[1, 15, 44-47], in which the blue band is 

considered as the numerator of the proposed 

shadow indices. 

Figure 3(a) shows the shadow area over a 

homogenous texture in Chicago. Two orthogonal 

profiles are plotted in Figures 3(d) and 3(e). 

Figure 3(d) shows an ascending trend from the 

bottom of the shadow to its edges in profile 1. 

Considering the transect line of profile 2 in Figure 

3(e) is from a shadow edge to another; it does not 

show a meaningful trend. For Chicago (profile 3) 

and Vienna (profile 5), the profile lines in RGB 

bands are shown in Figures 3(b) and 3(c). From 

the bottom to the edges of shadow, the profiles are 

shown in Figures 3(f) and 3(h) for Chicago and 

Vienna, respectively. They also present an 

ascending trend, like Figure 3(d).  

It can be concluded that the high variations are 

related to the differences of the underlying texture 

that should be ignored in the proposed method. 

Figures 3(g) and 3(i) show the information-less 

transect profile 4 and profile 6 of Chicago and 

Vienna in RGB bands. 

To sum up, the profile analysis of the RGB bands 

in Figure 3 confirms the shadow darkness 

behavior in moving from the bottom of the 

shadow to its edge, which is informative to 

determine the sunlight illumination direction. 

 
Figure 3. Shadow profiles in RGB images of (a, b) 

Chicago, and (c) Vienna. (d-i) Profiles in Red-Green-Blue 

color space. (d) Profile 1. (e) Profile 2. (f) Profile 3. (g) 

Profile 4. (h) Profile 5. (i) Profile 6. 
 

4.2. Shadow Low Gradient Direction (SLGD) 

Feature  
The framework of the proposed method to find the 

shadow/illumination direction is shown in Figure 

4. An RGB VHR image is the only input of the 

system, and the output of the system is the 

shadow/illumination direction angle.  

 
Figure 4. Framework of the proposed method to find 

shadow/illumination direction. VHR RGB image is the 

only input and direction is the output. 
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A feature-based shadow detection method is 

required to highlight the shadow areas. We 

deployed the method proposed by Kakooei and 

Baleghi [1] that is based on the spectral and 

spatial operations. They proposed a Spectral-

Spatial Shadow Index (SSSI) based on the RGB 

bands, Principle Component Analysis (PCA), and 

a GLCM feature. SSSI is shown in Equation 1. 

1

1

PC B SENT
SSSI

R G

 


 
 (1) 

where R, G, and B are the red, green, and blue 

bands, respectively. PC1 is the band corresponding 

to the largest Eigen value of PCA and SENT is the 

sum of entropy derived from the GLCM analysis. 

The SSSI index is thresholded according to the 

histogram information to generate the binary 

shadow map shd [1]. 

In our method, the shadow direction analysis is 

based on the blue band, which has a relatively 

high value in the shadow area and its importance 

was discussed in the previous sub-section. The 

gradient of the blue band was considered for the 

spatial analysis. 

The gradient of the blue band in the x and y 

directions, named Px and Py, are calculated in 

Equations 2, and 3. 

d Blue
Px

d x
  (2) 

d Blue
Py

d y
  (3) 

Afterward, the magnitude mag of the blue band 

gradient is calculated in Equation 4.  
2 2Mag Py Px   (4) 

It can be concluded that the large gradient values 

are related to the underlying material, and are not 

related to the shadow direction. Therefore, this is 

a critical step in the proposed method to ignore 

the areas with a large gradient magnitude and 

decide according to the areas with a low gradient 

magnitude.  

In this method, the threshold value of the gradient 

magnitude is empirically set to 5 in an 8-bit 

unsigned integer data, ranging from 0 to 255. To 

this end, the shadow profiles in Figure 3 were 

investigated and their backgrounds’ materials 

were considered. In other words, it was found that 

moving from one pixel to a neighbourhood pixel 

on the same material did not change the gradient 

magnitude more than 5. 

Therefore, the region of interest ROI is limited to 

the low gradient magnitude areas according to 

Equation 5. 

 

1 1 5

0 . .

IF shd and Mag
ROI

OW

  
 


 (5) 

Then the mean values of Px and Py, named mPx 

and mPy, are found in e ROI according to 

Equations 6 and 7. 

( , ) 1

1
( , )

ROI i j
mPx Px i j

N 
   (6) 

( , ) 1

1
( , )

ROI i j
mPy Py i j

N 
   (7) 

where N is the total number of true pixels in the 

ROI, and the indices i and j show the position of 

the Px and Py pixels in ROI. Finally, the angle θ 

between mPy and mPx was calculated via 

Equation 8 as the shadow direction. 

1 180
tan

mPy

mPx




  
  

 
 (8) 

where tan
-1

 finds the angle between mPy and mPx 

in radians. Then angle θ was converted to degree 

by a constant multiplier 
   

 
, and was refined by 

the conditional statement in Equation 9. Finally, 

the refined value indicates the proposed SLGD 

index, which can automatically determine the 

shadow and solar illumination direction in the 

RGB VHR images. 

180 0 0

180 0 0

0 . .

IF and mPy

SLGD IF and mPy

OW

 

 

   


   



 

(9) 

5. Evaluation 

In the previous studies, the solar illumination 

angle was either in the metadata or determined 

manually, and thus there is no automatic method 

for comparison. We designed two different 

strategies in order to evaluate the proposed 

method. Firstly, we compared the proposed 

automatic shadow direction with the manual 

shadow direction deployed by Ngo et al. [22], 

which was based on the line connecting one 

corner of a building to the corresponding corner in 

the shadow area. This verifies the reliability of the 

proposed automatic procedure. Secondly, we 

utilized the proposed shadow direction in order to 

refine the shadow map proposed by Kakooei and 

Baleghi [1]. To this end, the shadow segments [1] 

that did no align with the proposed automatic 

shadow direction were removed from the shadow 

map. Therefore, this work was evaluated in a real 

application. 

 

5.1. Automatic vs. Manual Shadow Direction 

Figure 5 shows eight scenes of Chicago, Vienna, 

and Virginia Beach. It shows the shortcomings of 

the Ngo et al. [22] method in the manual shadow 
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direction determination, especially for the stand-

alone buildings. 

 

 
Figure 5. Comparing determination of shadow direction 

angle. First Column indicates the row number. Second 

column shows the image location. Third column shows 

the original RGB VHR images. Shadow directions 

determined manually by Ngo et al. [22] are labeled in the 

fourth column. Last column shows the result of our 

proposed method. 

 

The first row of Figure 5 shows a part of Chicago 

in which several shadow directions are determined 

manually and labeled in the fourth column. Our 

proposed method automatically determines the 

shadow direction angle to be 99 degrees. The 

second row shows another part of the Chicago 

image. The manual method by Ngo et al. [22] 

could find the shadow direction in the buildings 1 

and 2 but the mixture of different object shadows 

in the buildings 3-6 made the manual labeling 

impossible. In addition, some shadow areas are 

not reliable as they are affected by an adjacent 

object. For instance, the shadow area is formed on 

the adjacent low-rise building instead of being 

formed on the ground. Therefore, the shadow 

directions of the buildings numbers 3-6 could not 

be determined manually. On the other hand, our 

proposed method finds the shadow direction angle 

to be 110 degrees. 

The third and the fourth rows of Figure 5 show 

two scenes of Vienna, in which our proposed 

method finds the shadow direction to be 146. In 

the third row, the shadow direction of a building is 

determined manually according to two different 

corners of a building. Therefore, the manual 

shadow direction determination according to the 

left and right corners results is 144 and 148, 

respectively. Considering that the procedure is 

manual, even one faulty pixel could result in 

different values. 

The manual shadow direction determination by 

Ngo et al. [22] assumes that the input image is a 

vertical orthophoto without facade information. 

Therefore, if the building facade is visible like in 

the fourth row of Figure 5, the manual shadow 

direction determination does not provide a 

reasonable result. On the other hand, our proposed 

method just considers the shadow inherent 

darkness variation, and is not dependant on the 

imagery angle. 

For more investigation and in order to verify the 

performance of the proposed method, four scenes 

of Virginia Beach are shown in the rows 5 to 8. In 

addition to the adjacent building that misleads the 

manual interpretation, these areas are covered by 

many trees that effect the manual analysis. On the 

other hand, the proposed method can handle the 

scene, and determine the shadow direction 

automatically. 

 

5.2. Shadow Direction in a Real Application 

We used five factors in order to evaluate the effect 

of the proposed shadow direction on refining the 

shadow map proposed by Kakooei and Baleghi 

[1]. Then we compared the shadow detection 

accuracy against the Huang and Zhang [16], 

Femiani et al. [14], Mostafa and Abdelhafiz [15], 

and Kakooei and Baleghi [1] methods. 

These factors are Producer Accuracy (PA), User 

Accuracy (UA), Overall Accuracy (OA), F1 

Score, and Kappa (K) coefficient. Supposing that 

TP is the number of shadow pixels that are truly 

detected as shadow, TN is the number of non-

shadow pixels that are truly detected as non-
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shadow, FP is the number of non-shadow pixels 

that are falsely detected as shadow, and FN is the 

number of shadow pixels that are falsely detected 

as non-shadow; the evaluation factors are defined 

as follow: 
TP

PA
TP FP




 (10) 

TP
UA

TP FN



 (11) 

TP TN
OA

TP TN FP FN




  
 (12) 

1 2
PA UA

F
PA UA





 (13) 

Table 1 summarizes the comparison in different 

studied areas. As the proposed feature is deployed 

just as a post-processing refinement step, it shows 

a little UA reduction in all the studied areas. This 

is due to the potential of removing some TP 

segments when it tries to decrease FP and remove 

the non-shadow areas. However, PA shows such a 

significant improvement that improves the OA, F1 

score, and Kappa coefficient values. Therefore, it 

can be concluded that the proposed method 

provides a reliable and accurate shadow direction 

in large-scale analysis. 

 

Table 1. Analytical evaluation of the proposed 

feature in shadow detection application at Virginia 

Beach, Chicago, and Vienna. 

Area Assessment [14] [15] [16] [1] Proposed 

V
ir

g
in

ia
 B

e
a

c
h

 PA% 37.99 85.05 54.76 85.20 90.43 

UA% 97.81 60.47 96.40 95.95 94.74 

OA% 77.43 74.67 83.01 93.40 95.04 

F1 SCORE 54.72 70.68 69.84 90.26 92.53 

K 0.4334 0.4948 0.5920 0.8529 0.8883 

C
h

ic
a

g
o

 

PA% 5.07 91.23 17.45 90.62 93.49 

UA% 87.12 93.08 94.33 98.02 97.55 

OA% 38.31 89.97 46.10 92.77 94.47 

F1 SCORE 9.58 91.5 29.45 95.32 95.48 

K 0.0268 0.7829 0.1167 0.8469 0.8838 

V
ie

n
n

a
 

PA% 0.11 97.13 45.98 91.37 95.29 

UA% 96.00 89.48 99.49 98.19 97.66 

OA% 52.45 93.19 74.18 95.09 96.83 

F1 SCORE 0.22 93.15 62.89 94.66 96.46 

K 0.0011 0.8642 0.4693 0.9013 0.936 

   

6. Conclusion 

The shadow direction is an informative feature in 

the optical RS applications. It facilitates the 

shadow-based procedure such as object height 

estimation. Furthermore, its role in the urban area 

analysis is undeniable. Therefore, we proposed a 

new feature in order to design an automatic 

shadow direction determination method and 

facilitate the real-world applications. 

The proposed feature SLGD can automatically 

find the shadow direction. Two improvements 

were highlighted in the proposed method. Firstly, 

the manual methods were pixel-based, and were 

limited to the vertical imagery, while the proposed 

method considers the spatial behavior of the 

shadow darkness, and does not limit the imagery 

angle. Secondly, the previous methods could 

hardly be deployed in dense urban areas, while the 

proposed method could handle a batch of shadow 

regions in dense areas. 

The proposed method is based on the inherent 

spatial variation of shadow darkness intensity. 

This is also along with the physical behavior of 

light. Therefore, the underlying material variation 

is ignored through the gradient magnitude 

information. Also the gradient direction in the low 

gradient magnitude areas is considered to 

calculate SLGD. 

The proposed method was evaluated on the VHR 

images of Chicago, Virginia Beach, and Vienna. 

Finally, in order to evaluate the performance of 

the proposed automatic method, it was compared 

against a manual method. 
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سنجش  RGBدر تصاویر سایه با استفاده از ویژگی جهت گرادیان های کوچک تعیین خودکار جهت سایه 

 از دور با رزولوشن خیلی بالا

 

 *یاسر بالغی محمد کاکوئی و

 .رانیبابل، ا ،یعتیشر ابانیخ وتر،یبرق و کامپ یبابل، دانشکده مهندس یروانینوش یدانشگاه صنعت

 00/10/0401 پذیرش؛ 40/40/0401 بازنگری؛ 14/1/0401 ارسال

 چکیده:

بهه تخمهین ارتعهاا سهانتمان اشهاره کهرد. که از این جمله میتوان  استسنجش از دور مختلف ارزشمندی در کاربردهای اطلاعات  دارای تشخیص سایه

تمل تشکیل سایه، به اطلاعهات زاویهه حبرای پیدا کردن مناطق مجهت مقابل تابش نور نورشید به اشیای بلند ایجاد میشود و در نتیجه، مناطق سایه در 

سهایه در ( موجه  شهده کهه جاییهات بیشهتری از منهاطق VHRیر با رزولوشن نیلی بالا )واستعاده از تصادر سالیان انیر، تابش نور نورشید نیاز است. 

توانهد بهه مهی اسهت کهه (SLGD) جهت گرادیان های کوچک سهایه ویژگی قابل اعتمادی به نامی این مقاله پیشنهاد انگیاهاز این روی، دسترس باشد. 

مکانی ذاتی سهایه در منهاطقی بها  مشخصاتویژگی پیشنهادی براساس  تعیین کند. VHRجهت سایه و تابش نور نورشید را در تصاویر صورت نودکار 

شهدت . تسههیل کهرد نصوصا زمانی که اطلاعات تابش نورشید در دسترس نباشهد، سایه راکاربردهای مبتنی بر می توان در نتیجه، رزولوشن بالا است. 

جنس سطح زیرین و نور بازگشتی  نورشید است. نهور بازگشهتی توسهح تحلیهل گرادیهان جههت دار در تاریکی سایه به دو مولعه وابسته است که شامل 

کنهد. گیرد و از اطلاعات جنس زیرین صهر  نظهر مهیاطلاعات بازتاب نورشید را در نظر می این ویژگیشود. ا اندازه گرادیان کوچک بررسی میبمناطق 

متهر اسهتعاده شهده اسهت.  3/4با رزولوشن  VHRپیاده سازی شده است و از داده  Google Earth Engineدر سامانه محاسبات ابری  پیشنهادی روش

 شود.در تعیین جهت سایه و تصحیح نقشه سایه ارزیابی می SLGDدرنهایت، کارایی 

 .VHR ،Google Earth Engineجهت سایه، استخراج ویژگی، شناسایی سایه،  :کلمات کلیدی

 


