H.5. Image Processing and Computer Vision
Farima Fakouri; Mohsen Nikpour; Abbas Soleymani Amiri
Abstract
Due to the increased mortality caused by brain tumors, accurate and fast diagnosis of brain tumors is necessary to implement the treatment of this disease. In this research, brain tumor classification performed using a network based on ResNet architecture in MRI images. MRI images that available in the ...
Read More
Due to the increased mortality caused by brain tumors, accurate and fast diagnosis of brain tumors is necessary to implement the treatment of this disease. In this research, brain tumor classification performed using a network based on ResNet architecture in MRI images. MRI images that available in the cancer image archive database included 159 patients. First, two filters called median and Gaussian filters were used to improve the quality of the images. An edge detection operator is also used to identify the edges of the image. Second, the proposed network was first trained with the original images of the database, then with Gaussian filtered and Median filtered images. Finally, accuracy, specificity and sensitivity criteria have been used to evaluate the results. Proposed method in this study was lead to 87.21%, 90.35% and 93.86% accuracy for original, Gaussian filtered and Median filtered images. Also, the sensitivity and specificity was calculated 82.3% and 84.3% for the original images, respectively. Sensitivity for Gaussian and Median filtered images was calculated 90.8% and 91.57%, respectively and specificity was calculated 93.01% and 93.36%, respectively. As a conclusion, image processing approaches in preprocessing stage should be investigated to improve the performance of deep learning networks.
H.5. Image Processing and Computer Vision
Sekine Asadi Amiri; Mahda Nasrolahzadeh; Zeynab Mohammadpoory; AbdolAli Movahedinia; Amirhossein Zare
Abstract
Improving the quality of food industries and the safety and health of the people’s nutrition system is one of the important goals of governments. Fish is an excellent source of protein. Freshness is one of the most important quality criteria for fish that should be selected for consumption. It ...
Read More
Improving the quality of food industries and the safety and health of the people’s nutrition system is one of the important goals of governments. Fish is an excellent source of protein. Freshness is one of the most important quality criteria for fish that should be selected for consumption. It has been shown that due to improper storage conditions of fish, bacteria, and toxins may cause diseases for human health. The conventional methods of detecting spoilage and disease in fish, i.e. analyzing fish samples in the laboratory, are laborious and time-consuming. In this paper, an automatic method for identifying spoiled fish from fresh fish is proposed. In the proposed method, images of fish eyes are used. Fresh fish are identified by shiny eyes, and poor and stale fish are identified by gray color changes in the eye. In the proposed method, Inception-ResNet-v2 convolutional neural network is used to extract features. To increase the accuracy of the model and prevent overfitting, only some useful features are selected using the mRMR feature selection method. The mRMR reduces the dimensionality of the data and improves the classification accuracy. Then, since the number of samples is low, the k-fold cross-validation method is used. Finally, for classifying the samples, Naïve bayes and Random forest classifiers are used. The proposed method has reached an accuracy of 97% on the fish eye dataset, which is better than previous references.
H.5. Image Processing and Computer Vision
Pouria Maleki; Abbas Ramazani; Hassan Khotanlou; Sina Ojaghi
Abstract
Providing a dataset with a suitable volume and high accuracy for training deep neural networks is considered to be one of the basic requirements in that a suitable dataset in terms of the number and quality of images and labeling accuracy can have a great impact on the output accuracy of the trained ...
Read More
Providing a dataset with a suitable volume and high accuracy for training deep neural networks is considered to be one of the basic requirements in that a suitable dataset in terms of the number and quality of images and labeling accuracy can have a great impact on the output accuracy of the trained network. The dataset presented in this article contains 3000 images downloaded from online Iranian car sales companies, including Divar and Bama sites, which are manually labeled in three classes: car, truck, and bus. The labels are in the form of 5765 bounding boxes, which characterize the vehicles in the image with high accuracy, ultimately resulting in a unique dataset that is made available for public use.The YOLOv8s algorithm, trained on this dataset, achieves an impressive final precision of 91.7% for validation images. The Mean Average Precision (mAP) at a 50% threshold is recorded at 92.6%. This precision is considered suitable for city vehicle detection networks. Notably, when comparing the YOLOv8s algorithm trained with this dataset to YOLOv8s trained with the COCO dataset, there is a remarkable 10% increase in mAP at 50% and an approximately 22% improvement in the mAP range of 50% to 95%.
H.5. Image Processing and Computer Vision
Mohammad Mahdi Nakhaie; Sasan Karamizadeh; Mohammad Ebrahim Shiri; Kambiz Badie
Abstract
Lung cancer is a highly serious illness, and detecting cancer cells early significantly enhances patients' chances of recovery. Doctors regularly examine a large number of CT scan images, which can lead to fatigue and errors. Therefore, there is a need to create a tool that can automatically detect and ...
Read More
Lung cancer is a highly serious illness, and detecting cancer cells early significantly enhances patients' chances of recovery. Doctors regularly examine a large number of CT scan images, which can lead to fatigue and errors. Therefore, there is a need to create a tool that can automatically detect and classify lung nodules in their early stages. Computer-aided diagnosis systems, often employing image processing and machine learning techniques, assist radiologists in identifying and categorizing these nodules. Previous studies have often used complex models or pre-trained networks that demand significant computational power and a long time to execute. Our goal is to achieve accurate diagnosis without the need for extensive computational resources. We introduce a simple convolutional neural network with only two convolution layers, capable of accurately classifying nodules without requiring advanced computing capabilities. We conducted training and validation on two datasets, LIDC-IDRI and LUNA16, achieving impressive accuracies of 99.7% and 97.52%, respectively. These results demonstrate the superior accuracy of our proposed model compared to state-of-the-art research papers.
H.5. Image Processing and Computer Vision
Fatemeh Zare mehrjardi; Alimohammad Latif; Mohsen Sardari Zarchi
Abstract
Image is a powerful communication tool that is widely used in various applications, such as forensic medicine and court, where the validity of the image is crucial. However, with the development and availability of image editing tools, image manipulation can be easily performed for a specific purpose. ...
Read More
Image is a powerful communication tool that is widely used in various applications, such as forensic medicine and court, where the validity of the image is crucial. However, with the development and availability of image editing tools, image manipulation can be easily performed for a specific purpose. Copy-move forgery is one of the simplest and most common methods of image manipulation. There are two traditional methods to detect this type of forgery: block-based and key point-based. In this study, we present a hybrid approach of block-based and key point-based methods using meta-heuristic algorithms to find the optimal configuration. For this purpose, we first search for pair blocks suspected of forgery using the genetic algorithm with the maximum number of matched key points as the fitness function. Then, we find the accurate forgery blocks using simulating annealing algorithm and producing neighboring solutions around suspicious blocks. We evaluate the proposed method on CoMoFod and COVERAGE datasets, and obtain the results of accuracy, precision, recall and IoU with values of 96.87, 92.15, 95.34 and 93.45 respectively. The evaluation results show the satisfactory performance of the proposed method.
H.5. Image Processing and Computer Vision
Z. Mehrnahad; A.M. Latif; J. Zarepour Ahmadabadi
Abstract
In this paper, a novel scheme for lossless meaningful visual secret sharing using XOR properties is presented. In the first step, genetic algorithm with an appropriate proposed objective function created noisy share images. These images do not contain any information about the input secret image and ...
Read More
In this paper, a novel scheme for lossless meaningful visual secret sharing using XOR properties is presented. In the first step, genetic algorithm with an appropriate proposed objective function created noisy share images. These images do not contain any information about the input secret image and the secret image is fully recovered by stacking them together. Because of attacks on image transmission, a new approach for construction of meaningful shares by the properties of XOR is proposed. In recovery scheme, the input secret image is fully recovered by an efficient XOR operation. The proposed method is evaluated using PSNR, MSE and BCR criteria. The experimental results presents good outcome compared with other methods in both quality of share images and recovered image.
H.5. Image Processing and Computer Vision
S. Asadi Amiri; Z. Mohammadpoory; M. Nasrolahzadeh
Abstract
Content based image retrieval (CBIR) systems compare a query image with images in a dataset to find similar images to a query image. In this paper a novel and efficient CBIR system is proposed using color and texture features. The color features are represented by color moments and color histograms of ...
Read More
Content based image retrieval (CBIR) systems compare a query image with images in a dataset to find similar images to a query image. In this paper a novel and efficient CBIR system is proposed using color and texture features. The color features are represented by color moments and color histograms of RGB and HSV color spaces and texture features are represented by localized Discrete Cosine Transform (DCT) and localized Gray level co-occurrence matrix and local binary patterns (LBP). The DCT coefficients and Gray level co-occurrence matrix of the blocks are examined for assessing the block details. Also, LBP is used for rotation invariant texture information of the image. After feature extraction, Shannon entropy criterion is used to reduce inefficient features. Finally, an improved version of Canberra distance is employed to compare similarity of feature vectors. Experimental analysis is carried out using precision and recall on Corel-5K and Corel-10K datasets. Results demonstrate that the proposed method can efficiently improve the precision and recall and outperforms the most existing methods.s the most existing methods.
H.5. Image Processing and Computer Vision
S. Mavaddati
Abstract
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification ...
Read More
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts including sparse representation and dictionary learning techniques to yield over-complete models in this processing field. There are color-based, statistical-based and texture-based features to represent the structural content of rice varieties. To achieve the desired results, different features from recorded images are extracted and used to learn the representative models of rice samples. Also, sparse principal component analysis and sparse structured principal component analysis is employed to reduce the dimension of classification problem and lead to an accurate detector with less computational time. The results of the proposed classifier based on the learned models are compared with the results obtained from neural network and support vector machine. Simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the learned dictionaries derived from the combinational features can detect the type of rice grain and determine its quality precisely.
H.5. Image Processing and Computer Vision
M. Saeedzarandi; H. Nezamabadi-pour; S. Saryazdi
Abstract
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the ...
Read More
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wavelet based image denoising, selecting a proper model for wavelet coefficients is very important. In this paper, we model wavelet coefficients in each sub-band by heavy-tail distributions that are from scale mixture of normal distribution family. The parameters of distributions are estimated adaptively to model the correlation between the coefficient amplitudes, so the intra-scale dependency of wavelet coefficients is also considered. The denoising results confirm the effectiveness of the proposed method.
H.5. Image Processing and Computer Vision
A. Azimzadeh Irani; R. Pourgholi
Abstract
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently ...
Read More
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an image processing based approach towards enhancing ray casting technique for object distinction process. The rendering mode is modified to accommodate masking information generated by a K-means based hybrid segmentation algorithm. An effective set of image processing techniques are creatively employed in construction of a generic segmentation system capable of generating object membership information.
H.5. Image Processing and Computer Vision
J. Darvish; M. Ezoji
Abstract
Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, ...
Read More
Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm segments the background dark areas in the proper channels of RGB color space using morphological processing such as closing, opening and top-hat operations. Then an appropriate edge detector discriminates between exudates and cotton-like spots or other artificial effects. To tackle the problem of optical fibers and to discriminate between these brightness and exudates, in the first stage, main vessels are detected from the green channel of RGB color space. Then the optical fiber areas around the vessels are marked up. An algorithm which uses PCA-based reconstruction error is proposed to discard another fundus bright structure named optic disk. Several experiments have been performed with HEI-MED standard database and evaluated by comparing with ground truth images. These results show that the proposed algorithm has a detection accuracy of 96%.
H.5. Image Processing and Computer Vision
A. R. Yamghani; F. Zargari
Abstract
Video abstraction allows searching, browsing and evaluating videos only by accessing the useful contents. Most of the studies are using pixel domain, which requires the decoding process and needs more time and process consuming than compressed domain video abstraction. In this paper, we present a new ...
Read More
Video abstraction allows searching, browsing and evaluating videos only by accessing the useful contents. Most of the studies are using pixel domain, which requires the decoding process and needs more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.264/AVC compressed domain, AVAIF. The method is based on the normalized histogram of extracted I-frame prediction modes in H.264 standard. The frames’ similarity is calculated by intersecting their I-frame prediction modes’ histogram. Moreover, fuzzy c-means clustering is employed to categorize similar frames and extract key frames. The results show that the proposed method achieves on average 85% accuracy and 22% error rate in compressed domain video abstraction, which is higher than the other tested methods in the pixel domain. Moreover, on average, it generates video key frames that are closer to human summaries and it shows robustness to coding parameters.
H.5. Image Processing and Computer Vision
S. Mavaddati
Abstract
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that ...
Read More
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the proposed method involves the learning of comprehensive models with atoms that have the highest atom/data coherence with the training data and the lowest within-class and between-class coherence parameters. Each of these goals can be achieved through the proposed procedures. In order to achieve the desired results, a variety of features are extracted from the images and used to learn the characteristics of face and non-face images. Also, the results of the proposed classifier based on the incoherent dictionary learning technique are compared with the results obtained from the other common classifiers such as neural network and support vector machine. Simulation results, along with a significance statistical test show that the proposed method based on the incoherent models learned by the combinational features is able to detect the face regions with high accuracy rate.
H.5. Image Processing and Computer Vision
V. Patil; T. Sarode
Abstract
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized ...
Read More
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which is more robust against various kind of attacks. In proposed approach, a short hash code is obtained by using minimum magnitude Center Symmetric Local Binary Pattern (CSLBP). The desirable discrimination power of image hash is maintained by modified Local Binary Pattern(LBP) based edge weight factor generated from gradient image. The proposed hashing method extracts texture features using the Center Symmetric Local Binary Pattern (CSLBP). The discrimination power of hashing is increased by weight factor during CSLBP histogram construction. The generated histogram is compressed to 1/4 of the original histogram by minimum magnitude CSLBP. The proposed method, has a twofold advantage, first is a small length and second is acceptable discrimination power. Experimental results are demonstrated by hamming distance, TPR, FPR and ROC curves. Therefore the proposed method successfully does a fair classification of content preserving and content changing images.
H.5. Image Processing and Computer Vision
Seyed M. Ghazali; Y. Baleghi
Abstract
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric ...
Read More
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in outdoor thermal images that adapts to variable atmospheric situations. In the first step, the type of atmospheric situation is estimated based on the global features of the thermal image. Then, for each situation, a relevant algorithm is performed for pedestrian detection. To do this, thermal images are divided into three classes of atmospheric situations: a) fine such as sunny weather, b) bad such as rainy and hazy weather, c) hot such as hot summer days where pedestrians are darker than background. Then 2-Dimensional Double Density Dual Tree Discrete Wavelet Transform (2D DD DT DWT) in three levels is acquired from input images and the energy of low frequency coefficients in third level is calculated as the discriminating feature for atmospheric situation identification. Feed-forward neural network (FFNN) classifier is trained by this feature vector to determine the category of atmospheric situation. Finally, a predetermined algorithm that is relevant to the category of atmospheric situation is applied for pedestrian detection. The proposed method in pedestrian detection has high performance so that the accuracy of pedestrian detection in two popular databases is more than 99%.
H.5. Image Processing and Computer Vision
A. Asilian Bidgoli; H. Ebrahimpour-Komle; M. Askari; Seyed J. Mousavirad
Abstract
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, ...
Read More
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help us obtain good performance by two schemes of task-parallelization and dataparallelization models. Parallel SPK algorithm ran over a cluster of computers and achieved less run time. A speedup value equal to 13 is obtained for a configuration with up to 5 Quad processors.
H.5. Image Processing and Computer Vision
M. Amin-Naji; A. Aghagolzadeh
Abstract
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced ...
Read More
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image fusion processing is very time-saving and appropriate in discrete cosine transform (DCT) domain, especially when JPEG images are used in visual sensor networks (VSN). So the most of the researchers are interested in focus measurements calculation and fusion processes directly in DCT domain. Accordingly, many researchers developed some techniques which are substituting the spatial domain fusion process with DCT domain fusion process. Previous works in DCT domain have some shortcomings in selection of suitable divided blocks according to their criterion for focus measurement. In this paper, calculation of two powerful focus measurements, energy of Laplacian (EOL) and variance of Laplacian (VOL), are proposed directly in DCT domain. In addition, two other new focus measurements which work by measuring correlation coefficient between source blocks and artificial blurred blocks are developed completely in DCT domain. However, a new consistency verification method is introduced as a post-processing, improving the quality of fused image significantly. These proposed methods reduce the drawbacks significantly due to unsuitable block selection. The output images quality of our proposed methods is demonstrated by comparing the results of proposed algorithms with the previous algorithms.
H.5. Image Processing and Computer Vision
M. Shakeri; M.H. Dezfoulian; H. Khotanlou
Abstract
Histogram Equalization technique is one of the basic methods in image contrast enhancement. Using this method, in the case of images with uniform gray levels (with narrow histogram), causes loss of image detail and the natural look of the image. To overcome this problem and to have a better image contrast ...
Read More
Histogram Equalization technique is one of the basic methods in image contrast enhancement. Using this method, in the case of images with uniform gray levels (with narrow histogram), causes loss of image detail and the natural look of the image. To overcome this problem and to have a better image contrast enhancement, a new two-step method was proposed. In the first step, the image histogram is partitioned into some sub-histograms according to mean value and standard deviation, which will be controlled with PSNR measure. In the second step, each sub-histogram will be improved separately and locally with traditional histogram equalization. Finally, all sub-histograms will be combined to obtain the enhanced image. Experimental results shows that this method would not only keep the visual details of the histogram, but also enhance image contrast.
H.5. Image Processing and Computer Vision
F. Abdali-Mohammadi; A. Poorshamam
Abstract
Accurately detection of retinal landmarks, like optic disc, is an important step in the computer aided diagnosis frameworks. This paper presents an efficient method for automatic detection of the optic disc’s center and estimating its boundary. The center and initial diameter of optic disc are ...
Read More
Accurately detection of retinal landmarks, like optic disc, is an important step in the computer aided diagnosis frameworks. This paper presents an efficient method for automatic detection of the optic disc’s center and estimating its boundary. The center and initial diameter of optic disc are estimated by employing an ANN classifier. The ANN classifier employs visual features of vessels and their background tissue to classify extracted main vessels of retina into two groups: the vessels inside the optic disc and the vessels outside the optic disc. To this end, average intensity values and standard deviation of RGB channels, average width and orientation of the vessels and density of the detected vessels their junction points in a window around each central pixel of main vessels are employed. The center of detected vessels, which are belonging to the inside of the optic disc region, is adopted as the optic disc center and the average length of them in vertical and horizontal directions is selected as initial diameter of the optic disc circle. Then exact boundary of the optic disc is extracted using radial analysis of the initial circle. The performance of the proposed method is measured on the publicly available DRIONS, DRIVE and DIARETDB1 databases and compared with several state-of-the-art methods. The proposed method shows much higher mean overlap (70.6%) in the same range of detection accuracy (97.7%) and center distance (12 pixels). The average sensitivity and predictive values of the proposed optic disc detection method are 80.3% and 84.6% respectively.
H.5. Image Processing and Computer Vision
S. Memar Zadeh; A. Harimi
Abstract
In this paper, a new iris localization method for mobile devices is presented. Our system uses both intensity and saturation threshold on the captured eye images to determine iris boundary and sclera area, respectively. Estimated iris boundary pixels which have been placed outside the sclera will be ...
Read More
In this paper, a new iris localization method for mobile devices is presented. Our system uses both intensity and saturation threshold on the captured eye images to determine iris boundary and sclera area, respectively. Estimated iris boundary pixels which have been placed outside the sclera will be removed. The remaining pixels are mainly the boundary of iris inside the sclera. Then, circular Hough transform is applied to such iris boundary pixels in order to localize the iris. Experiments were done on 60 iris images taken by a HTC mobile device from 10 different persons with both left and right eyes images available per person. Also, we evaluate the proposed algorithm on MICHE datasets include iphone5, Samsung Galaxy S4 and Samsung Galaxy Tab2. Experimental evaluation shows that the proposed system can successfully localize iris on tested images.
H.5. Image Processing and Computer Vision
H. Khodadadi; O. Mirzaei
Abstract
In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic ...
Read More
In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic logistic system. Then, the original image is divided into four subimages, and these four images are respectively pushed into the stack based on next number in the series. In the next step, the first element of the stack (which includes one of the four sub-images) is popped, and this image is divided into four other parts. Then, based on the next number in the series, four sub-images are pushed into the stack again. This procedure is repeated until the stack is empty. Therefore, during this process, each pixel unit is encrypted using another series of chaotic numbers (generated by Chen chaotic system). This method is repeated until all pixels of the plain image are encrypted. Finally, several extensive simulations on well-known USC datasets have been conducted to show the efficiency of this encryption algorithm. The tests performed showthat the proposed method has a really large key space and possesses high-entropic distribution. Consequently, it outperforms the other competing algorithms in the case of security
H.5. Image Processing and Computer Vision
R. Davarzani; S. Mozaffari; Kh. Yaghmaie
Abstract
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary ...
Read More
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for perceptual image hashing. In feature extraction, we propose to use both sign and magnitude information of local differences. So, the algorithm utilizes a combination of gradient-based and LBP-based descriptors for feature extraction. To provide security needs, two secret keys are incorporated in feature extraction and hash generation steps. Performance of the proposed hashing method is evaluated with an important application in perceptual image hashing scheme: image authentication. Experiments are conducted to show that the present method has acceptable robustness against perceptual content-preserving manipulations. Moreover, the proposed method has this capability to localize the tampering area, which is not possible in all hashing schemes.
H.5. Image Processing and Computer Vision
A.M. Shafiee; A. M. Latif
Abstract
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting ...
Read More
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorrectly classified patterns. In the CLPSO-based method, each individual of the population is considered to automatically generate a fuzzy classification system. Afterwards, a population member tries to maximize a fitness criterion which is high classification rate and small number of fuzzy rules. To reduce the multidimensional search space for an M-class classification problem, centroid of each class is calculated and then fixed in membership function of fuzzy system. The performance of the proposed method is evaluated in terms of future classification within the RoboCup soccer environment with spatially varying illumination intensities on the scene. The results present 85.8% accuracy in terms of classification.