[1] J. Ma, K. Du, F. Zheng, L. Zhang, Z. Gong, and Z. Sun, "A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network," Computers and Electronics in Agriculture, vol. 154, pp. 18-24, 2018.
[2] T. Sanida, D. Tsiktsiris, A. Sideris, and M. Dasygenis, "A heterogeneous implementation for plant disease identification using deep learning," Multimedia Tools and Applications, vol. 81, no. 11, pp. 15041-15059, 2022.
[3] Y. Zhao, C. Sun, X. Xu, and J. Chen, "RIC-Net: A plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism," Computers and Electronics in Agriculture, vol. 193, no. 2, p. 106644, 2022.
[4] R. K. Singh, A. Tiwari, and R. K. Gupta, "Deep transfer modeling for classification of Maize Plant Leaf Disease," Multimedia Tools and Applications, vol. 81, no. 5, pp. 6051-6067, 2022.
[5] H. Afzaal, A. A. Farooque, A. W. Schumann, N. Hussain, A. McKenzie-Gopsill, T. Esau, F. Abbas and B. Acharya, "Detection of a Potato Disease (Early Blight) Using Artificial Intelligence," Remote Sensing, vol. 13, no. 3, p. 411, 2021.
[6] Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, "Plant leaf disease classification using EfficientNet deep learning model," Ecological Informatics, vol. 61, no. 1, p. 101182, 2021.
[7] A. Elhassouny and F. Smarandache, "Smart mobile application to recognize tomato leaf diseases using Convolutional Neural Networks," in 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), pp. 1-4, 2019.
[8] F. Salimian Najafabadi and M. T. Sadeghi, "AgriNet: a New Classifying Convolutional Neural Network for Detecting Agricultural Products’ Diseases," Journal of AI and Data Mining, vol. 10, no. 2, pp. 285-302, 2022.
[9] A. Abbas, S. Jain, M. Gour, and S. Vankudothu, "Tomato plant disease detection using transfer learning with C-GAN synthetic images," Computers and Electronics in Agriculture, vol. 187, no. 8, p. 106279, 2021.
[10] A. Dey and S. Biswas, "Shot-ViT: Cricket Batting Shots Classification with Vision Transformer Network," International Journal of Engineering, vol. 37, no. 12, pp. 2463-2472, 2024.
[11] D. Hughes and M. Salathé, "An open access repository of images on plant health to enable the development of mobile disease diagnostics," arXiv preprint arXiv:1511.08060, 2015.
[12] D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, and N. Batra, "PlantDoc: a dataset for visual plant disease detection," in Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 249-253, 2020.
[13] H. B. Prajapati, J. P. Shah, and V. K. Dabhi, "Detection and classification of rice plant diseases," Intelligent Decision Technologies, vol. 11, no. 3, pp. 357-373, 2017.
[14] T. Wiesner-Hanks, E. L. Stewart, N. Kaczmar, C. DeChant, H. Wu, R. J. Nelson, H. Lipson and M. A. Gore, "Image set for deep learning: field images of maize annotated with disease symptoms," BMC research notes, vol. 11, no. 1, pp. 1-3, 2018.
[15] J. G. A. Barbedo, L. V. Koenigkan, B. A. Halfeld-Vieira, R. V. Costa, K. L. Nechet, C. V. Godoy, M. L. Junior, F. R. A. Patricio, V. Talamini, L. G. Chitarra, S. A. S. Oliveira, A. K. N. Ishida, J. M. C. Fernandes, T. T. Santos, F. R. Cavalcanti, D. Terao and F. Angelotti, "Annotated Plant Pathology Databases for Image-Based Detection and Recognition of Diseases," IEEE Latin America Transactions, vol. 16, no. 6, pp. 1749-1757, 2018.
[16] X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, "Ip102: A large-scale benchmark dataset for insect pest recognition," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8787-8796, 2019.
[17] E. Moupojou, A. Tagne, F. Retraint, A. Tadonkemwa, D. Wilfried, H. Tapamo and M. Nkenlifack, "FieldPlant: A dataset of field plant images for plant disease detection and classification with deep learning," IEEE Access, vol. 11, pp. 35398-35410, 2023.
[18] H. Zeraatgar, G. Tavakkoli-Korghond, S. Z. Mousavi, N. Pourfateh, "Seedless barberry, limitations and damaging factors," Agricultural Research, Education and Extension Organization (AREEO), 2017. (In Persian)
[19] G. Tavakkoli-Korghond, H. Zeraatgar, K. Ghos, M. Yousefi, A. R. Rezaei-Gazik, M. R. Mirzaee, " Jujube Ziziphus Tingid, preliminary knowledge and available experiences for its control, " Journal of barberry and jujube, vol. 3, no. 1, pp. 22-29, 2021. (In Persian)
[20] V. Gonzalez-Huitron, J. A. León-Borges, A. E. Rodriguez-Mata, L. E. Amabilis-Sosa, B. Ramírez-Pereda, and H. Rodriguez, "Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4," Computers and Electronics in Agriculture, vol. 181, no. 2, p. 105951, 2021.
[21] A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti, and D. De, "Fundamental concepts of convolutional neural network," Recent trends and advances in artificial intelligence and Internet of Things, pp. 519-567, 2020.
[22] S. M. R. Hashemi, H. Hassanpour, E. Kozegar, and T. Tan, "Cystoscopic image classification by unsupervised feature learning and fusion of classifiers," IEEE Access, vol. 9, pp. 126610-126622, 2021.