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Abstract 

Removing noise from images is a challenging problem in digital image processing. In this paper, we present 

an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is 

implemented in the wavelet domain due to its energy compaction property. Performance of the MAP estimator 

depends on the proposed model for noise-free wavelet coefficients. Thus in the wavelet-based image denoising, 

selecting a proper model for wavelet coefficients is very important. In this paper, we model wavelet 

coefficients in each sub-band by heavy-tail distributions that are from scale mixture of the normal distribution 

family. The parameters of distributions are estimated adaptively to model the correlation between the 

coefficient amplitudes so the intra-scale dependency of wavelet coefficients is also considered. The denoising 

results obtained confirm the effectiveness of the proposed method. 

 

Keywords: Image Denoising, Wavelet Transform, MAP Estimator, Heavy-tail Distributions, Scale Mixture 

of Normal Distributions. 

1. Introduction 

Digital images play an important role in many 

applications such as satellite television, intelligent 

traffic monitoring, and signature validation as well 

as in the areas of research such as geographical 

information systems and astronomy [1]. Noise can 

be introduced into the image while capturing or 

transmitting [2]; therefore, denoising is one of the 

most important tasks in image processing. 

Reserving the details of an image and removing the 

noise as far as possible is the aim of image 

denoising processes [3-5]. In camera systems, the 

noise comes from different sources like thermal 

noise, quantization noise, and photon noise. 

Thermal noise is due to analog circuits and has a 

zero-mean Gaussian distribution, and it is the most 

common noise encountered in different 

applications. In this work, the additive white 

Gaussian noise was considered as the noise model. 

The noise removal can be performed in both the 

transform and spatial domains [4-8]. The spatial 

denoising methods such as local and non-local 

algorithms use the similarity between pixel or 

patches in an image, and the transform domain-

based methods exploit the similarity of transform 

coefficients. In a transform domain, the smaller 

coefficients are related to the high-frequency part 

of the image containing the noise and image 

details. By adjusting these small coefficients of the 

noisy image, the reconstructed image could have 

less noise. 

A wide amount of image processing algorithms are 

constructed based on wavelet transform due to its 

energy compaction property [6, 7]. In fact, in the 

wavelet domain, small coefficients are more likely 

due to noise, and large coefficients represent 

important image features (such as edges) [7-9]. 

Most of the denoising algorithms are based on  the 

thresholding methods, in which each coefficient is 

compared with a proper threshold; if it is smaller 

than the threshold, the coefficient is set to zero; 

otherwise, it is kept (hard thresholding) or modified 

(soft thresholding). Visueshrink [10], Sureshrink 

[11, 12], and Bayesshrink [13, 14] are examples of 

the algorithms that use the thresholding methods 

for denoising.  

http://dx.doi.org/10.22044/jadm.2018.6311.1746
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The statistical wavelet-based image denoising has 

been a fundamental tool in image processing 

analysis over the recent decades, and is still an 

expanding research area [15-18]. In this work, we 

modeled the data as the sum of the clean image plus 

additive white Gaussian noise, and we presented a 

parametric statistical method in the wavelet domain 

to estimate clean coefficients from noisy data by a 
maximum a posteriori (MAP) estimator. The 

MAP estimator has been widely used in wavelet-

based image denoising.  

The success of the MAP estimator strongly 

depends on the employed distribution of clean 

wavelet coefficients as well as the probability 

density function of noise [17, 18].  

Since natural images contain smooth areas 

interspersed with occasional sharp transmissions 

such as edges, the wavelet transform of images is 

sparse so the marginal distributions of wavelet 

coefficients are heavy-tail distributions and have a 

large peak at zero [19, 20]. Various probability 

distribution functions (PDFs) have been proposed 

on modeling clean wavelet coefficients. For 

example, Michak has used a Gaussian PDF [21] 

that is the simplest probability density, and 

Rabbani has proposed the Laplacian and Cauchy 

PDFs for modeling noise-free wavelet coefficients 

[17, 22]. Still, these distributions do not have 

enough flexibility to model the wavelet 

coefficients. Mallat has used generalized Gaussian 

distribution as a priority for the wavelet 

coefficients in image processing [23], and the 

authors in [24] have used   stable  that is a heavy-

tail distribution as a priority to capture the 

sparseness of the wavelet coefficients. Fadili et al. 

[15] have proposed the Bessel k  form density as a 

prior model and have demonstrated that this 

distribution is better than the generalized Gaussian 

and   stable  distributions.  

Despite the many advances mentioned above, it is 

yet a challenging problem to characterize the 

probability distribution function of wavelet 

coefficients accurately. The student-t and Slash 

distributions are heavy-tail distributions that have 

found many applications in robust statistical data 

analysis [25, 26].  

These distributions, which can be expressed as a 

scale mixture of normal distributions, have been 

recently used in machine learning and signal 

processing problems [27, 28]. Since these 

distributions have heavy-tails, they are suitable to 

model the sparseness of wavelet coefficients 

properly, and we use these distributions as the prior 

probability density of clean wavelet coefficients in 

this work. 

In practical problems, parameters of the 

distributions are unknown; in this work, we 

estimated the parameters adaptively to use the 

empirically observed correlation between the 

neighborhood coefficients. The simulation results 

show the superiority of the proposed methods 

among the best univariate methods and even some 

bivariate denoising models.  

In this paper, bold-face letters refer to matrices and 

italic lower-case letters refer to matrix elements. 

The rest of this paper is organized as follows. In 

Section 2, after a brief review of the wavelet 

transform and the basic idea of MAP estimator, we 

will study the scale mixture of Gaussian 

distributions, student-t, and Slash as the prior 

signal distributions. The hyper-parameter 

estimation is introduced in Section 3. In Section 4, 

we use our model for wavelet-based denoising of 

several images corrupted by additive white 

Gaussian noise in various noise levels, and we 

compare our results with several published 

denoising algorithms. Finally, this paper is 

concluded in Section 5. 

 

2. Statistical wavelet-based image denoising 

2.1. Block diagram of denoising process  

Similar to many reported works in the field of 

wavelet-based image denoising, our image 

denoising model uses three levels: a) decomposing 

the noisy image into sub-bands at different 

orientations and scales through wavelet transform, 

b) denoising each high-pass sub-band, c) applying 

the inverse wavelet transform to get the estimated 

noise-free image. The block diagram of the 

denoising process is depicted in figure 1.  

In this work, we considered the case of image 

denoising corrupted by additive white Gaussian 

noise: 

,g d e                                                             (1) 

Here, g , d , and e  are the noisy image, the original 

image, and the independent white Gaussian noise, 

respectively.  

Let  y g ,  x d ,  n e , where   

presents the two-dimensional orthogonal wavelet 

transform (DWT) operator [29]. By applying the 

wavelet transform, the image will be decomposed 

into the sub-bands j
HH  , j

HL , and 

, 1,2,...,
j

LH j J  correspond to the detail 

coefficients in the diagonal, horizontal, and vertical 

orientations, and jLL  is the low-pass sub-band. It 

can be concluded from (1) that: 

, o, j o, j o, j

m,l m,l m,ly x n                                                         (2) 
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Figure 1. Denoising process. 

 

where, o, j

m,ly  is the detail coefficient of the noisy 

image at orientation o , scale j , and location 

(𝑚, 𝑙), and similarly, for o, j

m,lx  and o, j

m,ln  (for original 

image and noise, respectively). The denoising 

algorithm was applied to all sub-bands (except the 

low-pass sub-band) independently. 

 

2.2. MAP estimator 

As aforementioned, we consider the case of 

denoising an image corrupted by white Gaussian 

noise. Based on (2), in the wavelet domain, we 

have y = x+n , where y  is the noisy wavelet 

coefficient, x  is the clean wavelet coefficient that 

we wish to estimate it as well as possible, and n  is 

the independent white zero-mean Gaussian noise. 

The standard MAP estimator for x  given the 

corrupted observation y  is [30]: 

ˆ ( ),x = argmax p x | y                                             (3) 

where, p  denotes the density function. Using the 

Bayesian rule, we have [31]: 

( ) ( )
ˆ ( ) =  ,

( )

p y | x p x
x = argmax p x | y argmax

p y
           (4) 

Since ( )p y  is independent from x , we can omit the 

denominator of the right-hand side of (4); 

therefore, we have: 

ˆ  ( ) ( ),x = argmax p y | x p x                                       (5) 

Because  y x n , ( )p y | x  is the PDF of normal 

distribution, we have: 
ˆ  ( ) ( ),

n
x = argmax p y - x p x                                    (6) 

As we can see, the estimation depends on the prior 

probability of signal and the PDF of noise. In figure 

2, a 256-bin wavelet coefficient histogram for the 

horizontal sub-band of three images is plotted. As 

the figure shows, the histograms have a large peak 

around zero and with heavy tails. Therefore, in this 

paper, we used distributions that were heavy-tail to 

model the sparsity property of wavelet transform. 

 

 

 

 
Figure 2. Histograms of horizontal sub-band of wavelet 

transform (one level decomposition) for three natural 

images. 
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2.3. Scale mixture of normal distributions 

Suppose that T  has a standard normal distribution. 

Then the distribution of: 
1 X U T,                                                     (7) 

is referred to as a scale mixture of normal 

distributions, where   is the location parameter, 

  is the scale parameter, U  is a random variable 

on (0, )  called the scale factor with density 

function (0, )p , and   is a parameter indexing the 

distribution of U . The names of these classes of 

distributions become clear when we note the 

conditional distribution of X , given that U = u  is 

normal. The scale mixture of normal distribution 

has heavier tails than the normal distribution, and 

has been used in several areas such as robust 

inference. 

According to the above, the scale mixture of 

normal distributions can be expressed as [32]: 

   ( )  p x p x|u p u du,                                        (8) 

where,  p .|u  is the conditional density of random 

variable x  given U = u  as follows: 

 
 

2

22

2
.

 



u
x μ

σ
u

p x|u e
πσ

                                    (9) 

It is the normal density with mean   variance 
2 1σ u .  Different distributions for  p u  result in a 

rich class of heavy-tail distributions. In this paper, 

we use heavy-tail distributions such as the student-

t and Slash distributions that have a 

computationally attractive form [32, 33].  

 

Student-t distribution: 

In (8), if we consider ( / 2, / 2) :u gamma , where 

( )gamma a,b  is the gamma distribution with mean 

  /a b , the density of  x  will be: 

1

2

1

2
( ) 1 

2

,

 
 
 

 
 

  
  

   
 
 

υ
υ

Γ
d

p x
υ υ

Γ πυσ

                        (10) 

where:  

 
2

2
.




x μ
d

σ
  

and   is the degree of freedom parameter,   is the 

scale parameter, and   is the location parameter. 

The variance and kurtosis of this distribution are: 

  2 ,
2




υ
var x σ

υ
                                             (11) 

 
6

3.
4

 


kurtosis x
υ

                                      (12) 

Kurtosis is a statistical measure that defines how 

heavily the tails of a distribution differ from the 

tails of the normal distribution. Distributions with 

kurtosis greater than the kurtosis of the normal 

distribution are said to be leptokurtic, which has 

tails that asymptotically approach zero more slowly 

than a Gaussian distribution. 

 

Slash distribution: 

In (8), if we consider    1


υ
p u υu ,  0,1uò , the 

distribution of  x will be [34]: 

   
1 1 2 2

0
( ) , , ,

  
υ

p x υu φ x μ u σ du                          (13) 

where, φ  is the univariate normal distribution,   is 

the shape parameter,   is the scale parameter, and 

  is the location parameter. The variance and 

kurtosis of Slash distribution are: 

  2 ,
2




υ
var x σ

υ
                                              (14) 

 
 

 

2
3 2

.
4






υ
kurtosis x

υ υ
                                     (15) 

 

3. Hyper-parameter estimation 

The standard deviation of noise 
n

   could be 

estimated using a robust median estimator from 

HH  sub-band at the finest scale of wavelet 

transform, as follows [15]: 

 
,

0.6745
̂ 

HH

n

MAD x
                                              (16) 

where, MAD  is the median absolute deviation. 

For the student-t and Slash distributions, we should 

estimate the parameter, degrees of freedom (shape 

parameter for Slash distribution) that will be 

estimated in each sub-band, and the scale 

parameter   that will be estimated using 

neighborhood pixels in a window in which the 

pixel to be denoised is in its center. 

The parameter   of the student-t distribution can 

be estimated using the second- and fourth-order 

cumulants) 
2k and 

4k ) of x  as follows (see 

Appendix I): 

  2 ,var x k                                                       (17) 

  4

2

2

3. 
k

kurtosis x
k

                                          (18) 

In order to estimate 
2k  and 

4k , we use the k  

unbiased statistic estimator, which has a minimum 

variance among all the other unbiased estimators 

[35, 36]: 

2 2
1

ˆ ,ˆ


n
M

n
k                                                     (19) 
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    
   

2 2

4 2

4

ˆ ˆ1 1

1 2 3
ˆ

3
,

  


  

n n M n M

n n n
k                       (20) 

where, n  is the number of samples, and 
2M  and 

4M  are the 2nd and 4th sample central moments, 

respectively. When two or more random variables 

are statistically independent, the nth-order 

cumulant of their sum is equal to the sum of 

their nth-order cumulants. Also the third- and 

higher-order cumulants of a normal 

distribution are zero, and it is the only distribution 

with this property. According to the above and 

using (2), we have: 
2 2

2, .( )  y y nk σ var x σ                                        (21) 

Finally, using (12), (18), and (21) for the student-t 

distribution, we will drive the following estimation 

of 𝜐: 

 
4

2
2

2

6
3 3.

ˆ 4

ˆ

ˆ 
  

 nσ

k

k
                                   (22) 

For estimating the parameter  , using (11), (21), 

and (22), we have: 

2 2 2 2

2

ˆ 2
ˆ ˆˆ ˆ( )  

ˆ ˆ

0

,


 

 


 

 



y n y nσ               if σ  

                                  otherwise

             (23) 

 

where, 2̂ y
  is computed empirically by: 

2 21
ˆ ,  

i

y i

y R

y
M ò

                                                   (24) 

where, M  is the size of the neighborhood R .  

Estimation of the parameter   of wavelet 

coefficients based on a local window will lead to a 

more robust estimation. In fact, due to the locality 

property of wavelet transform, if a particular 

wavelet transform is small/large, then the adjacent 

spatial coefficients are also very likely to be 

small/large. 

For the Slash distribution, the hyper-parameter 

estimation method is the same. After estimating the 

parameters of the proposed distribution, the 

denoised coefficients will be achieved using (6). In 

this paper, we use the “fminbnd" Matlab function 

that uses the golden section and the parabolic 

interpolation methods [41] to maximize the MAP 

estimator. 

 

4. Simulation results 

In order to show the effectiveness of the proposed 

model, some experiments were performed, and the 

results obtained were compared with some well-

known denoising algorithms. We evaluated the 

denoising algorithm on “Lena,” “Barbara,” “Boat,” 

“Bridge,” “Mandrill,” and “Goldhill” 512 512  

standard images with different noise levels of 

standard deviations 10,20, 30nσ     . The original 

images are shown in figure 3.  

We used the Daubechies’ length eight wavelet 

transform. The number of scales was set to 3 for 

low-level noise ( 10nσ ) and 4 for high-level noise 

( 20 30nσ    ,  ) because, according to our 

experiments, any further decomposition beyond 

these levels does not improve the denoising 

performance significantly. 

The performance analysis is performed using the 

PSNR and MSSIM measures. The PSNR measure 

is given by: 
2255

10 ,
 

  
 

PSNR log
MSE

                                     (25) 

where, MSE is the minimum square error given by: 

   
1 1

2

0 0

1
, ,,

 

 

   
m n

i j

MSE I i j k i j
mn

                   (26) 

where, I  and k  denote the noise-free and the 

denoised images, respectively, and m  and n  are 

the number of columns and rows of the image.  

Let  | 1,2, ,x   ix i N  and  ˆ ˆ | 1,2, ,  ix x i N

be two non-negative image signals. SSIM is 

defined as follows:  

 
  

   
ˆ1 2

2 2 2 2

1 2

ˆ

ˆ ˆ

2 2
, ,x y

 


   

x

x

xx

x x x

xμ μ C σ C
SSIM

μ μ C σ σ C
       (27) 

where:  

1

1
,



 
N

x i

i

μ  x
N

                                                    (28) 

1

ˆ

1
,ˆ



 
N

i

i

xμ x 
N

                                                    (29) 

 
1/2

22

1

1
,

1 

 
  

 


N

x i x

i

σ x μ
N

                             (30) 

 
1/2

22

ˆ ˆ

1

1
ˆ ,

1 

 
  

 


N

x i x

i

σ x μ
N

                             (31) 

  ˆ ˆ

1

1
ˆ ,

1 

  



N

xx i x i x

i

σ x μ x μ
N

                        (32) 

 

and the constants 1C  and 2C  are included to avoid 

instability when 2

ˆ

2  xxμ μ  and 2

ˆ

2  xxσ σ   are very close 

to zero. Specifically: 

 
2

1 1 ,C k L                                                       (33) 

 
2

2 2 ,C k L                                                      (34) 
 

where, L is the dynamic range of the pixel values 

(255 for 8-bit grayscale images), and 
1k  and 

2k   are  

small constants. 
 



Saeedzarandi et al./ Journal of AI and Data Mining, Vol 8, No 2, 2020. 
 

294 
 

 

 

(a)                                           (b)                                             (c) 

 

                       

 

 

 

  

                              (d)                                          (e)                                                  (f)        

Figure 3. Test images used for denoising (a) Lena, (b) Barbara, (c) Boat, (d) Bridge, (e) Mandrill, (f) Goldhill.

 

In practice, mean SSIM (MSSIM) is used to 

measure the entire image quality: 

 
1

1 ˆ, ,X X


 
M

i i

i

MSSIM  SSIM
M

                         (35) 

where, X i
 and X̂ i

 are the image contents at jth  

local window and M  is the number of local 

windows of image. An MSSIM equal to 1 indicates 

that X  and X̂  are the same. It can be inferred from 

MSSIM = 0 that X  and X̂  are unrelated. 

In order to determine the proper window size, we 

evaluated the denoising method in the five window 

sizes of 3 3 , 5 5 , 7 7 , 9 9 , and 11 11 . White 

Gaussian noise with standard deviation 

10,20,30nσ    was added to the standard images of 

“Lena,” “Barbara,” and “Boat,” and the denoising 

model was employed to enhance the noisy images 

for various window sizes.  

The results for the student-t and Slash distributions 

by averaging over five independent runs are 

represented in table 1. The results in this table show 

that a small                                                window 

size produces a lower PSNR value. On               the 

other hand, increasing the window size without  

limitation does not improve the denoising 

performance.  

Also when the noise level increases, the PSNR 

value is improved by increasing the window size.  

We also compared our model with some related 

denoising algorithms such as Visushrink [10], 

Sureshrink [11], Bayesshrink [13], Hidden Markov 

tree [37], Sendur’s work [38], bivariate Cauchy 

[17], bivariate shrink [39], mixture of three Laplace 

PDFs (3-lap-mix) [31], and Michak’s work 

(LAWMAP) [21] and a mixture of Gaussian PDF 

[40] that are the best univariate and bivariate 

statistical wavelet denoising methods reported in 

the literature.  

Table 2 signifies the results obtained. Each PSNR 

value is averaged over five independent runs of the 

algorithms. The highest PSNR value is shown with 

boldface style.  

The results obtained show that the proposed 

methods outperform the competing univariate 

methods and even some bivariate denoising 

algorithms in the employed test images. 
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Table 1. Impact of window size on the denoising performance. 

 Noise 

standard 

deviation 

Student-t distribution Slash distribution 

PSNR 
n  

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 

Lena 10 34.36 34.59 34.54 34.50 34.44 34.25 34.60 34.58 34.55 34.47 

20 30.70 31.27 31.32 31.28 31.25 30.33 31.13 31.28 31.29 31.20 

30 28.42 29.26 29.42 29.39 29.37 27.76 29.00 29.28 29.31 29.29 

Boat 10 32.59 32.62 32.56 32.50 32.45 32.63 32.72 32.65 32.58 32.51 

20 28.98 29.30 29.33 29.25 29.23 28.83 29.24 29.29 29.27 29.21 

30 26.81 27.34 27.44 27.38 27.23 26.49 27.22 27.38 27.32 27.32 

Barbara 10 32.67 32.73 32.65 32.56 32.48 32.76 32.88 32.80 32.67 32.58 

20 28.64 28.84 28.99 28.81 28.74 28.55 28.92 28.95 28.89 28.85 

30 26.29 26.77 26.87 26.76 26.71 26.10 26.76 26.84 26.83 26.81 

 

Table 2. Comparison of performance for image denoising using different algorithms and orthogonal wavelet 

transform 

PSNR 
n  

Visu 

[10] 

Sure 

[11] 

Bayes 

[13] 

HMT 

[37] 

Sedurs 

[38] 

Bivariate-

Cauchy 

[17] 

Bivariate-

shrink 

[39] 

3mix-lap 

[31] 

Lawmap 

[21] 

GaussMix-

shrinkl 

[40] 

Student-t 

adaptive 

Slash 

adaptive 

Lena 10 28.76 33.42 33.38 33.84 33.94 34.30 34.36 33.63 34.28 34.43 34.59 34.60 

20 26.59 30.22 30.23 30.39 30.73 30.98 31.19 30.24 30.92 30.97 31.32 31.29 

30 25.60 28.47 28.58 28.35 28.91 28.94 29.41 28.75 29.05 28.89 29.42 29.31 

Boat 10 26.64 31.63 31.81 32.28 32.25 32.50 32.42 31.99 32.25 32.68 32.62 32.72 

20 24.59 28.55 28.48 28.84 28.93 29.06 29.18 28.63 28.97 29.15 29.33 29.29 

30 23.63 26.73 26.65 26.83 27.11 27.13 27.29 26.84 27.03 27.11 27.44 27.38 

Barbara 10 24.81 30.21 30.86 30.86 31.13 32.32 32.25 31.43 31.99 32.60 32.73 32.88 

20 22.81 25.91 27.13 27.80 27.25 28.40 28.36 27.30 27.94 28.60 28.99 28.95 

30 22.00 24.33 25.16 25.11 25.21 26.20 26.28 25.18 25.80 26.43 26.87 26.84 

 

  

Table 3. PSNR and MSSIM comparison of performance for image denoising in the orthogonal wavelet transform domain. 

PSNR/MSSIM 
n  

Bivariate-

shrink [39] 

Student-t 

adaptive 

Slash 

adaptive 

Bridge 10 29.51/0.96 29.75/0.96 29.97/0.96 

20 26.01/0.89 26.41/0.90  26.56/0.90 

30 24.32/0.81 24.76/0.83 24.73/0.83 

Mandrill 10   31.66/0.94 32.09/0.96 32.15/0.96 

20   27.59/0.89 28.15/0.90 28.13/0.90 

30   25.50/0.82 26.09/0.84 26.06/0.83 

Goldhill 10   32.27/0.94 32.48/0.94 32.60/0.94 

20   29.12/0.87 29.40/0.88 29.38/0.88 

30   27.59/0.81 27.71/0.82 27.60/0.82 

 

In table 3, we compared the PSNR and MSSIM 

measures of the proposed methods with the 

bivariate shrink  method on “Bridge,” “Mandrill,”  

and “Goldhill” test images. These simulation  

results confirm the superiority of the proposed 

models. 
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In figure 4, the MAP estimated coefficient as a 

function of the noisy coefficient is depicted (using 

the student-t distribution as the prior probability of 

wavelet coefficients). The left graph shows the 

influence of the degrees of freedom   for constant 

values of scale parameter   and noise standard 

deviation. As demonstrated by this plot, the 

proposed MAP estimator shrinks the small 

observed wavelet coefficients heavily and the large 

ones slightly. The amount of shrinkage decreases 

as   decreases. This can be understood from the 

fact that as   decreases, the tails will be heavier, 

and the higher the probability that smaller values 

are due to the true function d (original image) not 

due to noise. The graph on the right depicts the 

influence of the scale parameter   on the MAP 

estimator for constant values of degrees of freedom 

  and noise standard deviation. As we can see, the 

amount of shrinkage decreases as   increases. The 

reason could be as   increases SNR, (
2

2
( )

2



n

σ υ
SNR

υσ
) increases, so yielding less 

shrinkage.  

 

 

 
 (a)                                                                                                        (b) 

Figure 4. MAP estimator as a function of noisy coefficient when using the student-t distribution as the prior 

probability of wavelet coefficients a) influence of the degrees of freedom, b) influence of scale parameter  .

 

We have also employed the overcomplete 

representation, namely Dual-Tree-Complex-

Wavelet Transform (DTCWT) [42, 43] as the 

transform domain in which it is nearly shift-

invariant, so it is not affected by the pseudo-Gibbs 

phenomena; it also has a good directional 

selectivity property. we compared the denoising 

results with some state of the art denoising 

algorithms,  DTWF [44], AND [45], WF [46], 

DCTBI [47], GNW [48], NASW [49], LPG-PCA 

[50], GSM [51], EWD [52], MMSE [53], NSTSD 

[54], and R-NL [55]. The PSNR values of these 

methods and the student-t distribution in the 

DTCWT domain for two of the test images, 

‘Barbara’ and ‘Lena’, are depicted in table 4. The 

results obtained show the superiority of the 

proposed method. The plots depicted in figure 5 are 

the observed (red-solid) and estimated (blue-

dashed) densities  
 

for one scale of wavelet coefficients for the Lena, 

Boat, and Barbara images. These images were 

corrupted by the Gaussian noise ( 20
n

  ). The 

first line corresponds to the student-t model, and 

the second line corresponds to the Slash 

distribution, and the three columns are the HH , 

HL , and LH  orientations, respectively. As we can 

see, the estimations are in good agreement with 

those obtained from the noise-free images. 

 

5. Conclusion and future works 

In this paper, we have proposed a statistical model 

to characterize the wavelet coefficient in each sub-

band and developed a MAP estimator using this 

model for the digital image denoising problem. The 

student-t and Slash distributions were used as the 

prior distributions of noise-free coefficients, which 

can be expressed as the scale mixture of Gaussian 

distribution and can describe the heavy-tail 

behavior of the wavelet coefficient. Also by 
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estimating the parameters of distribution 

adaptively, we could model the correlation 

between the coefficient amplitudes. We 

implemented the denoising algorithm in the 

DTCWT domain and compared our denoising 

results with some state of the art denoising 

methods. The simulation results showed the 

superiority of the proposed methods. Better 

denoising results could be achieved by considering 

groups of wavelet coefficients together using the 

multivariate statistical models instead of 

processing each wavelet coefficient individually, 

which will be investigated in our future works. 

 

Table 4. PSNR comparison of performance for image denoising using different algorithms. 

 Barbara Lena 

ση 10 15 20 25 10 15 20 25 

DTWF[44] 31.38 29.01 27.35 26.22 34.08 32.01 30.18 29.52  

AND[45] 26.64 26.28 25.28 24.96 32.70 30.56 29.79 28.16 

WF [46] 32.06 30.03 28.36 27.03 34.40 32.59 31.30 30.27 

DCTBI [47] - 29.42 28.19 27.20 - 31.29 30.82 29.09 

GNW [48] 32.41 - 27.64 - 33.96 - 30.62 - 

NASW [49] 31.40 29.03 27.46 26.29 34.09 32.02 30.16 29.54 

LPG-PCA [50] 32.50 - 28.50 - 33.70 - 29.70 - 

GSM [51] 33.08 30.71 29.05 27.79 35.28 - 31.74 - 

EWD [52] 31.13 29.11 27.25 26.06 32.94 31.01 29.73 28.76 

MMSE [53] 32.34 - 27.33 - 34.00 - 30.17 - 

NSTSD [54] 33.16 - 28.96 - 35.12 - 31.93 - 

R-NL [55] - - 29.76 - - - 31.04 - 

Student-t-dtcwt 33.64 31.47 29.86 28.68 35.31 33.43 32.08 30.98 
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Boat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Barbara 

Figure 5. Estimated (blue-dashed) and observed (red-solid) densities (in log scale) of the wavelet coefficient for one scale of 

the wavelet transform. The first row corresponds to the student 𝒕 model and the second one corresponds to the slash 

distribution model. The three columns are HH , HL , and LH orientations. 
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6. Appendix I 

In the probability theory and statistics, kurtosis is a 

measure of the tailedness of the probability 

distribution of a random variable, and variance is 

the expectation of the squared deviation of 

a random variable from its mean, and are defined 

as: 

   
2

2 ,  var x E x μ M                                   (36) 

 
 

 

4

4

2 2
2

2

,

 
 

 
 
 

E x μ M
kurtosis x

ME x μ

                     (37) 

where, 
4M  and 

2M  are the 4th and 2nd central 

moments, respectively. 

The cumulants ( )nk  of a random variable x  are 

defined via the cumulant generating function 

( ( ))K t , which is the natural logarithm of the 

moment generation function: 

  .   
txK t logE e                                              (38) 

The 4th and 2nd cumulants are related to the central 

moments by the following equations [42]: 

2 2 ,M k                                                            (39) 
2

4 4 23 . M k k                                                   (40) 

Thus kurtosis and variance in terms of cumulants 

are: 

  2 2 , var x M k                                              (41) 

 
2

4 4 2 4

2 2 2

2 2 2

3
3.


   

M k k k
Kurtosis x

M k k
              (42) 
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 نشریه هوش مصنوعی و داده کاوی
 

 

 

نرمال و های مخلوط وزنی توزیع ر حوزه موجک با استفاده از توزیعآماری کاهش نویز تصاویرد روش

 تخمین پارامترها به صورت وفقی

 

 و سعید سریزدی *حسین نظام آبادی پور، منصوره صعیدزرندی

 .پردازش داده هوشمند، دانشکده برق، دانشگاه شهید باهنر کرمانآزمایشگاه 

 04/02/2020 پذیرش ؛05/01/2020 بازنگری؛ 08/12/2018 ارسال

 چکیده:

باشاادد در ایم ملا، ، ررش کاهش نویز بر اساااش ررش ت میم با اساالزاده از پردازش تصاااریر دیتیلال میحوزه حثی مهم در کاهش نویز تصاااریر، م 

لمال پیشیم ضرایب موجک ل پیشیم نویز ر اح  مدل احلماب MAPشودد کارایی ررش در حوزه موجک ارائ  می (MAP)ماکزیمم کردن احلمال پسیم 

ضرایب موجک در ه سلگی داردد در ایم ملا، ،  سلزاده ازب سلند توزیع ر زیر باند، با ا سنگیم ک  از خانواده م لوط رزنی توزیع نرمال ه دل مهای دن ا،  

سلزاده از شوندمی ضرایب موجک، پاراملرد همچنیم جهت ا سلگی بیم  صوراب شدههای توزیع ب   ش ی رت رفلی، در هر زیرباند، مدل  ازی، ساندد نلایج 

 کننددکارایی ررش پیشنهادی را تایید می

 دگیم، م لوط رزنی توزیع نرمالهای دن ا،  سن، توزیعMAPگر اهش نویز، ت دیل موجک، ت میمک :کلمات کلیدی

 


