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 Paddy fields in the north of Iran are highly fragmented, leading to 

challenges in accurately mapping them using remote sensing 

techniques. Cloudy weather often degrades image quality or renders 

images unusable, further complicating monitoring efforts. This paper 

presents a novel paddy rice mapping method based on phenology, 

addressing these challenges. The method utilizes time series data from 

Sentinel-1 and 2 satellites to derive a rice phenology curve. This curve 

is constructed using the cross ratio (CR) index from Sentinel-1, and 

the normalized difference vegetation index (NDVI) and land surface 

water index (LSWI) from Sentinel-2. Unlike existing methods, which 

often rely on analyzing single-point indices at specific times, this 

approach examines the entire time series behavior of each pixel. This 

robust strategy significantly mitigates the impact of cloud cover on 

classification accuracy. The time series behavior of each pixel is then 

correlated with this rice phenology curve. The maximum correlation, 

typically achieved around the 50-day period in the middle of the 

cultivation season, helps identify potential rice fields.  A Support 

Vector Machine (SVM) classifier with a Radial Basis Function (RBF) 

kernel is then employed, utilizing the maximum correlation values 

from all three indices to classify pixels as rice paddy or other land 

cover types. The implementation results validate the accuracy of this 

method, achieving an overall accuracy of 99%. All processes were 

carried out on the Google Earth Engine (GEE) platform. 
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1. Introduction 

Rice is a staple food for over half of the world’s 

population [1] and Asia accounts for more than 

90% of rice production [2]. Furthermore, the 

International Food Policy Research Institute 

estimates an annual growth in rice demand of 1.8%. 

This escalating demand underscores the critical 

need for accurate and timely rice crop mapping.  

Rice crop mapping is essential for maintaining 

food security and is closely linked to 

environmental concerns, including greenhouse gas 

(CH4) emissions [3] [4], climate change, disease 

transmission [5] and soil quality improvements and 

freshwater use on the regional, national and global 

scales. Consequently, obtaining accurate and 

timely data on crop distribution and its changes is 

crucial for ensuring food security and 

environmental sustainability. 

Beyond food security, precise crop mapping plays 

a key role in agricultural policy-making, resource 

management, and disaster response. It helps 

governments and organizations optimize irrigation, 

predict yield variations, and implement targeted 

interventions for droughts, floods, and pest 

outbreaks. Additionally, integrating remote 

sensing-based crop mapping with machine learning 

and geospatial analysis improves predictive 

models, enabling early warnings of potential crop 

failures and promoting market stability. Traditional 

human statistics and remote-sensing monitoring 

are the two most important methods for 
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determining the rice-planting area. Manual data 

collection requires field surveys, a process that is 

time-consuming and expensive. Furthermore, the 

data update process is slow, significantly hindering 

its practical use. Traditional survey methods are 

limited in that they represent rice-planting areas 

only as tabular data, lacking explicit spatial 

distribution information. This limitation makes it 

difficult to visualize or analyze the geographical 

patterns of rice cultivation. In contrast, remote 

sensing techniques overcome these challenges by 

providing an effective and reliable means to map 

rice paddies, offering detailed spatial distribution 

insights across regional and global scales. In 

addition to being cost-effective, this method has 

higher efficiency and can be used in a broader 

scope.  

Rice mapping methods can be broadly categorized 

into two approaches: phenology-based methods 

and spectral learning methods. In methods based on 

spectral learning, band values or indices extracted 

from them are directly used for classification with 

machine learning methods. However, the ability 

of these algorithms to learn from unprocessed data 

of bands and indices is limited. To increase 

learning ability and classification accuracy, deep 

learning methods were proposed in this field. 

Classical convolutional networks algorithm was 

used in [6] and [7], Long short-term memory 

(LSTM) algorithm in [8] and ConvLSTM 

algorithm in [9] and [10]. The primary challenge 

with deep learning techniques is their reliance on 

extensive training data, which is not available in 

many areas. 

Phenology-based methods derive rice phenology 

parameters—such as start of season (SOS), end of 

season (EOS), length of season (LOS), and peak of 

season (POS)—from time series indices. 

Classification is done using different methods such 

as threshold  [11], statistical and machine learning 

such as SVM [12], Random Forest (RF) [13], 

Decision Tree (DT) [14], etc. Due to rice’s distinct 

phenology, these methods often achieve superior 

classification results. However, they rely on index 

values at specific times, making them vulnerable to 

errors if these values fluctuate abnormally. Such 

fluctuations can result from factors like cloud-

induced low image quality [15], weed interference 

under certain weather conditions [16], and human 

activities such as successive plantings, which can 

shift parameters such as SOS and EOS. This study 

proposes a phenology-based approach that 

mitigates these challenges. 

Remote sensing datasets, encompassing both 

optical and synthetic aperture radar (SAR) data, are 

extensively employed in rice crop mapping [20]. A 

review by [21] detailed the evolution of these 

techniques from the 2010s to 2020, classifying 

methods into three categories: (I) Optical remote 

sensing-based methods, (II) microwave remote 

sensing-based methods, and (III) integrated 

methods combining both optical and microwave 

data. 

Optical remote sensing data, derived from 

vegetation photosynthetic parameters such as the 

leaf area index, provide valuable insights into the 

growth status of crops. Many scholars have 

demonstrated their superiority in identifying paddy 

rice [17]. Numerous researchers have engaged in 

the processes of interpolation, cloud removal, and 

smoothing when dealing with optical remote 

sensing data. While these procedures effectively 

mitigate the impact of cloud noise to a certain 

degree, it is important to note that they cannot 

entirely eliminate local noise fundamentally. In 

other words, despite efforts to address cloud 

removal, complete elimination of local noise 

remains a persistent challenge. To tackle this 

limitation, many studies have used time series data 

for crop mapping [22].  

In subtropical and tropical regions, flooding and 

transplanting occur during the cloudy and rainy 

seasons, significantly reducing the availability of 

time series data. As a result, SAR data are 

increasingly used in areas with frequent cloud 

cover and rainfall. Due to the characteristics of 

active imaging and its long wavelength, it can 

capture images regardless of the time or weather 

conditions. But their number of bands is limited 

and they have less usable information than optical 

data. Given the complementary information of 

optical and SAR data, integrating both datasets 

emerge as the most efficient method for rice crop 

mapping in cloud-prone regions. 

In regions where agricultural lands are fragmented 

and cropping patterns are complex, the number of 

pixels located at the boundaries between different 

land types increases. These mixed pixels, 

containing two crop types, make it challenging to 

generate an accurate crop map. 

In the previous study[18], two time series indices 

—NDVI and LSWI—were selected from Sentinel-

2 satellite data. The NDVI time series index rises 

as the plant biomass increases during the initial 

stages of rice growth, resembling a Gaussian 

function curve.  However, during the later stages, 

the index value decreases due to changes in the 

color of the rice plants. 

The LSWI index, which detects water, exhibits its 

highest value during preparation and transplanting, 

always decreasing during the cultivation period. In 

that study, after a series of pre-processing, the time 
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series curves of LSWI and NDVI indices were 

extracted during the rice cultivation period and 

considered as rice phenology. To classify each 

pixel in the satellite images, the similarity between 

the pixel time series behavior and the rice 

phenology curve was evaluated using the 

correlation operator, with the maximum correlation 

value and its corresponding time of occurrence 

serving as classification features. 

In the present study, to increase the classification 

accuracy, after examining the various indices of 

Sentinel-1 images, CR index was extracted and 

used along with LSWI and NDVI indices. Due to 

multiple plantings and successive cultivation of 

different crops in the study area, rice cultivation 

may be delayed or accelerated. In addition, the 

transition from the sea coast to the foothills 

influences rice cultivation timing, resulting in later 

planting and longer cultivation periods in cooler 

regions.  Therefore, to reduce the effects of these 

variations, the steps for obtaining the maximum 

correlation were modified.  The time and duration 

of the period were adjusted to encompass the 

maximum range of rice planting changes in the 

region. This modification allows for the assessment 

of a pixel’s phenological behavior across the entire 

cultivation period, eliminating the reliance on 

specific time points for classification. 

Consequently, the classification result is less 

affected by delays or accelerations in rice 

cultivation.  Google Earth Engine (GEE) offers 

powerful online and parallel computing 

capabilities for processing remote sensing data. All 

processes described in this paper were conducted 

using GEE platform. The aims of this study are: (1) 

To accurately extract the rice phenology curve for 

three indices NDVI, LSWI and CR such that they 

are suitable for matching; (2) To extract prominent 

features for classification based on the correlation 

between time series indices and the extracted 

phenology curve; (3) To demonstrate the 

sufficiency of a simple and fast classifier for rice 

mapping even with a small number of training data; 

(4) To improve the rice crop mapping by using the 

combined correlation operator. 

 

2. Study Area and Datasets 

2.1. Study Area 

Mazandaran Province, located in northern Iran 

between the Alborz Mountain range and the 

Caspian Sea (Figure 1), presents a unique 

environment for rice cultivation.  Characterized by 

a mild and humid climate, the region exhibits 

several distinctive features: primarily rice 

cultivation on flooded soils, small paddy fields 

typically under half a hectare, and dispersed 

settlements within the agricultural landscape. 

Moreover, the close proximity of rice paddies to 

other crop types complicates rice mapping. In fact, 

frequent cloud cover in the region presents a 

significant challenge for remote sensing 

applications, as satellite imagery can be frequently 

unavailable. Additionally, various rice cultivars are 

cultivated in the region, with some paddy fields 

incorporating multi-crop systems, leading to 

variations in planting and harvesting times.   

Early and late rice are the two main groups 

cultivated in the area.  While their growing periods 

are roughly equal, the late rice variety exhibits 

higher yields and extends its cultivation cycle 

slightly longer. In this region, rice cultivation 

typically lasts 80 to 110 days, with the first 60 to 

90 days involving flooding.  The spatial 

distribution of horticultural crops within the region 

creates a complex and fragmented mosaic of land 

use.  Alongside rice, this includes a range of crops 

such as citrus, deciduous trees, wheat, and various 

vegetables. In recent times, as a result of suitable 

weather conditions, the cultivation of rice twice a 

year in this region has grown substantially. 

 
(a) (b) 

Figure1. (a) The location of the studied area in the 

north of Iran (b) Field survey locations. 
 

2.2. Datasets 

This study utilizes optical data from Sentinel-2 and 

microwave data from Sentinel-1. The main features 

of these datasets are summarized in Table 1. 

 
Table 1. Features of Sentinel 1 and 2 data available 

in GEE. 
Satellite/Property Sentinel-1 Sentinel-2 

Format IW_GRD Level-1C 

Polarization/Band VH 13 Spectral bands 

Spatial Resolution (m) 10 10-20 

Temporal Resolution (d) 6 5 

Time span 1 February 2023 to 1 December 2023 

 

2.2.1 Sentinel-1 

Sentinel-1 satellites employ C-band synthetic 

aperture radar (SAR) technology, enabling data 
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acquisition under all weather conditions and at any 

time of day.  With their equatorial orbit, Sentinel-

1A and 1B revisit the study area every six days. The 

satellites operate in four data acquisition modes: 

Interferometric Wide Swath (IW), Strip Map (SM), 

Extra Wide Swath (EW), and Wave (WV), with IW 

being the primary operational mode. Within IW 

mode, imagery is captured in two polarization 

configurations: VV (vertical transmit and vertical 

receive) and VH (vertical transmit and horizontal 

receive). Notably, VH polarization is more 

sensitive to flood signals than VV polarization 

[11]. This study utilizes Sentinel-1A Ground-

Range-Detected (GRD) VH and VV images. 

Figure 2 shows the spatial distribution of 

observation counts from the Sentinel-1 and 

Sentinel-2 datasets over a ten-day period. 

 

 
a) 

 
(b) 

Figure 2. The number of valid satellite images during 

the rice planting season in Mazandaran province: a) 

based on Sentinel-1 images and b) based on Sentinel-2 

images. 
 

2.2.2. Sentinel-2 

The Sentinel-2 mission is equipped with high-

resolution, wide-swath multispectral imaging 

(MSI) capabilities. It has several objectives, 

including the analysis of vegetation, land use, 

water bodies, soil, and environmental conditions, 

as well as observations of inland water systems and 

coastal areas. The Sentinel-2A/B MSI Level-1C 

product provides top-of-atmosphere (TOA) 

reflectance data [19]. This dataset, which is used in 

the current study and available in GEE, includes 13 

spectral bands covering visible, near-infrared, and 

shortwave infrared regions. The twin satellites 

revisit all continental land surfaces every five days, 

ensuring high temporal coverage. 

 

2.2.3. Field Data and Dataset Labelling 

Mazandaran Province, located in northern Iran, 

covers an area defined by the coordinates 52.36°N 

to 65.52°E and 71.36°N to 95.52°E (Figure 1). 

Ground truth data were collected from March to 

August over the years 2021 to 2023, encompassing 

1166 rice samples and 5529 non-rice samples (e.g., 

forests, water bodies, urban areas). Approximately 

half—583 rice and 2764 non-rice— samples were 

utilized for training, while the remaining samples 

were reserved for testing. Sample data were 

gathered using two primary methods: manual 

collection through field visits and mobile GPS 

devices, and online collection via the GEE 

platform. Table 2 provides a summary of the field 

data. The agricultural lands in the region primarily 

consist of paddy fields and citrus orchards, while 

other types of agricultural areas are classified under 

the "farm" category. For training, approximately 30 

percent of these agricultural areas were selected 

randomly, while the remaining 70 percent were 

reserved for testing. 
 

Table 2. Number of ground truth data for different 

fields. 
 Rice Tree Farm Urban Water 

Polygon 56 40 18 25 20 

Pixel 1166 621 148 2572 2188 
  

3. Methodology 
The approach employed in this study involves four 

main steps: (i) pre-processing of time-series images 

of Sentinel-1 and Sentinel-2 satellites; (ii) selecting 

appropriate indices and extracting time series 

indices; (iii) extract rice phenology curve from 

Sentinel-1 and Sentinel-2 images based on selected 

time series indices; (iv) crop mapping using rice 

phenology curve and correlation analysis. 

 

3.1. Selection the appropriate indices for 

Sentinel-2 and Sentinel-1 

Results of the classification will be more accurate 

when the classification features have better 

separability and stability. In other words, a suitable 

index to classify rice compared to other crops 

should possess the following features: It should 

exhibit a distinct pattern from other agricultural 

lands (or urban areas, trees and water) during the 

rice growing season. The more unique the selected 

index is for the paddy field, the easier and more 

accurate the rice mapping will be. It should be 

based on phenology and conditions of rice 

cultivation so that they have the same behavior for 

all paddy fields. It should also be less affected by 

environmental factors. 

 

 



A Phenology Based Paddy Rice Mapping by Correlation Analysis on Sentinel-1/2 Imagery in Fragmented Lands Using GEE Platform 

 

279 

 

3.1.1. Selection the time series indices for 

Sentinel-2 

After evaluating various indices extracted from 

Sentinel-2 satellite images, two indices NDVI [20] 

and LSWI [21] were selected, which calculated as 

follows: 
NIR RED

NDVI
NIR RED





 

(1) 

NIR SWIR
LSWI

NIR SWIR





 

(2) 

 where NIR, RED and SWIR are surface 

reflectance values in red, near infrared and 

shortwave infrared bands, respectively. 
NDVI indicates the level of greenness. During the 

initial phases of rice growth, NDVI increases as the 

plant biomass expands. However, in the later 

stages, when the biomass stabilizes and the rice 

changes color, the index begins to decline. 

Essentially, the time-series pattern of the NDVI for 

rice follows a Gaussian curve. Since rice is 

cultivated in flooded conditions, and the LSWI is 

an index for detecting water presence, the LSWI 

will reach its highest value during the preparation 

and planting phases. As the plant biomass increases 

and rice grows, the observed water content from a 

satellite perspective diminishes, leading to a 

decline in this index. During the final growth 

stages, when the fields are dried for harvest, the 

LSWI value further decreases. To rephrase, during 

the various stages of rice growth, the LSWI 

demonstrates a consistently decreasing trend. 

Figure 3 illustrates the time-series curves of NDVI 

and LSWI for paddy fields after de-averaging. 

While NDVI is closely linked to rice phenology, 

LSWI is more influenced by the growing 

conditions of rice. Consequently, these indices are 

expected to exhibit similar behavior across all 

paddy fields within the study area. 
 

 

 

Figure 3. Changes of LSWI and NDVI indices during the growth stages of rice. 
 

The time series profiles of LSWI and NDVI for 

paddy field after de-averaging are illustrated in 

Figure 4. NDVI index is related to rice phenology 

and LSWI is more dependent on rice growing 

conditions. Therefore, these indices are expected to 

behave almost the same for all paddy fields in this 

region.
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Figure 4. illustrate the time series profiles of 

NDVI and LSWI for paddy field. 

3.1.2. Selection the time series indices for 

Sentinel-1 

As we know, by increasing the number of 

independent and meaningful indices, the 

classification is done more accurately. For this 

purpose, Sentinel-1 satellite images were also used 

in the proposed method. In this way, the use of two 

satellites, in addition to increasing the number of 

independent indices, has the advantage that if the 

data of one satellite is not available at a certain 

time, the data of another can be used. Also, weather 

conditions have less effect on Sentinel-1 data. VV 

and VH bands of SAR images are available in the 

studied area. For this purpose, various indices were 

examined based on these two bands in order to 

choose the appropriate index. Table 1 shows the 

relationships of the indicators. 
 

Table 3. Spectral indices used in the study and their 

formula. 
References Formula Band Name 

 [22] 4VH
RVI

VV VH



 

RVI (radar 

vegetation index) 

[26] 4 1

4
( )

RVI S

VV VH
sqrt

VV VH VV VH



 


 

RVI4S1(the Radar 

Vegetation Index 

for Sentinel-1) 

[3] 
( ( (

2

) 3) / 1

)

VH VH
DPSVIc

VV VV

VH

VV

  



 

DPSVIc (Dual 

Polarization SAR 
Vegetation Index) 

[27] VH
CR

VV
  

CR (the cross-

ratio) 

 

The values of these indices are plotted as a time 

series after pre-processing in Figure 5. As 

illustrated in Figure 5, these indices have similar 

behavior and only their amplitude is different from 

each other. Therefore, these indices are not 

independent of each other and only one of them can 

be used. Among these indices, the CR index was 

selected because in the proposed method, the 

magnitude of the indices is not important and only 

their time series behavior is important and on the 

other hand, this index has less computational 

processing. Figure 5 shows the time series graph of 

various index. In this figure, the NDVI index from 

Sentinel-2 is also plotted to check the simultaneity 

of the indices. As can be seen, this index has a 

different behavior for paddy fields than other fields 

during the rice cultivation period. Therefore, it can 

be used as an index for classification.  

 
Figure 5. Curves of different time series indices from 

Sentinel-1 data. 
3.2. Pre-processing and Extraction of Time 

Series Indices 

Pre-processing of satellite images involves several 

key steps:   

1- Eliminating cloudy pixels: Some pixels have 

low quality due to cloud cover and are unusable. 

They are removed from the input data to avoid 

incorrect results. 

2-Ten-day quantization: the maximum visiting 

period of Sentinel-2 satellite is 5 days, and this is 6 

days for Sentinel-1. To ensure consistency in the 

data and facilitate subsequent processing, the data 

from both satellites were quantized into ten-day 

periods. If the quantization period is too short, the 

quality of the data in each period and its accuracy 

will decrease. On the other hand, by choosing a 

long quantization period, the temporal information 

of the data is reduced. Therefore, the appropriate 

period (10 days) was selected. For further 

processing, we need to have exactly one value for 

each pixel in each 10-day interval. For this 

purpose, the time series images were averaged and 

as a result, one image was obtained for each ten-

day period. For example, Figure 6 shows the count 

of valid Sentinel-2 scenes in the study area in the 

ten-day interval between 4/20/2023 and 8/24/2023. 

The number of images in each interval varies from 

zero to three depending on weather conditions and 

geographical location. 

3- Interpolation of missing data: Interpolation was 

used to solve the problem of the lack of value of 

some pixels after quantization due to the removal 

of cloudy pixels. The interpolation method is 

explained in Table 4. In this table, the value of the 

pixel at time t is represented by ( )I t .  

4- Extracting time series indices.  
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Table 4. Interpolation procedure for cloudy pixels. 
Interpolated pixel value at 

time t 

Presence of 

pixel value 

at time t-1 

Presence of 

pixel value 

at time t+1 

( 1) ( 1) / 2( ) I t I tI t       
Yes Yes 

( ) ( 1)I t I t   Yes No 

( ) ( 1)I t I t   No Yes 

( ) 0I t   No No 

 
Figure 6. The count of valid Sentinel-2 scenes in the study 

area in the ten-day interval. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Time-series of NDVI: (a) After removing 

clouding pixels (b) After quantization and (c) After 

interpolation. 

The results of each preprocessing step performed 

on a pixel of Sentinel-2 satellite images are 

presented in Figure 7. In Figure (7-a), the NDVI 

index is obtained from unprocessed images. As it 

is clear from this figure, the distance between the 

points is irregular and interrupted, which indicates 

that the number of scenes is not equal in different 

time intervals and the unavailability of the desired 

pixel data at some times. In Figure (7-b), NDVI is 

obtained from quantized images. In this figure, the 

distance between the points is equal, but there is 

still no data in some points. In Figure (7-c), NDVI 

is obtained from the interpolated images. In this 

figure, there is exactly one image for each 10-day 

period, And the indices extracted from these 

images can be used to continue the process. 

 

3.3. Derivation of rice paddy phenology curves 

from Sentinel-1 and Sentinel-2 images 

Since the proposed method relies on comparing 

each pixel's time series behavior with the rice 

phenology curve, accurately extracting this curve 

is essential for precise rice mapping. The process 

of extracting the rice paddy phenology curves for 

Sentinel-1 and Sentinel-2, using the selected time 

series indices, is explained as follows. 

 

3.3.1. Derivation of rice paddy phenology curve 

from Sentinel-2 images 

To extract the rice phenology curve, pre-processing 

steps as detailed in section (3.2) were implemented 

to the Sentinel-2 satellite images. NDVI and LSWI 

indices were then calculated for three consecutive 

years throughout the rice growing season and the 

average value across these three years was 

computed. Polynomial curve fitting functions were 

applied to the time series indices, with the 

polynomial degrees for fitting the NDVI and LSWI 

indices set to 6 and 3, respectively. The rice 

phenology curve for each index was derived using 

these polynomial functions. To prepare the 

phenology curves for use in the convolution 

operator, their average value was adjusted to zero 

(de-averaging) (Figure. 3). 

 

3.3.2. Derivation of rice paddy phenology curve 

from Sentinel-1 

First, the preprocessing of subsection (3.2) was 

performed on the Sentinel-1 images to have exactly 

one complete image every 10 days. Then, the CR 

index was extracted for three consecutive years 

during the rice cultivation period, and the 3-year 

average was calculated exactly in the same time 

period as the NDVI and LSWI curves. Finally, 

their average was set to zero. (Figure 8). 
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Figure 8. The CR index extracted as rice 

phenology curve from Sentinel-1. 

 
4. Crop mapping using rice paddy phenology 

curve and correlation measurement 

To map the rice crop, the similarity between each 

pixel's time series behavior and the rice phenology 

curve was analyzed. For this purpose, the 

maximum similarity between each pixel's behavior 

and the rice phenology curve was calculated for a 

specific period during the middle of the cultivation 

season and was used as a classifier feature for rice 

crop mapping. In the study area, in certain farms, 

rice is planted earlier due to consecutive rice 

cultivation, while in others, rice planting is delayed 

because of the successive cultivation with different 

crops. For this reason, the measurement interval of 

the maximum similarity value was considered 

large enough (50-days) to include all these fields. 

In this way, accelerating or delaying the cultivation 

and harvesting of rice has minimal impact on the 

results of the proposed method. The method 

consists of the following steps: (i) preprocessing 

satellite images and extracting time series indices; 

(ii) assessing the behavioral similarity of each 

pixel's time series indices with the improved rice 

phenology curves; and (iii) classification. 

 

4.1. Obtaining behavioral similarity of time 

series indices of each pixel with improved rice 

phenology curves 

The correlation operator was utilized to measure 

the similarity between the time series behavior of 

each pixel and the proposed rice phenology. Its 

implementation is as follows. 

1- Subsection (3.2) pre-processing was done on 

Sentinel-1and Sentinel-2 images. 

2- NDVI, LSWI and CR time series indices were 

extracted for each pixel. 

3- For each time t, a window with the time interval 

[t-win_len/2 t+win_len/2] was created, where 

win_len is the length of the rice phenology curve. 

4- To minimize the effect of low frequency 

changes in time series indices on the correlation 

results, the average value of each index in the 

window was calculated and then this average value 

was subtracted from the index values inside the 

window. 

5- In each window, the dot product was performed 

between the rice phenology curves and the time 

series data of each index. The sum of the 

multiplication results was calculated and 

considered as the correlation value of the middle 

point of the window (t). By sweeping t in terms of 

time and calculating the correlation value for all 

times, the similarity of the phenological behavior 

of each pixel with rice phenology was obtained as 

a curve of time. 

6- The maximum correlation value was calculated 

for each pixel over a period of 50-days. This period 

was almost in the middle of the rice cultivation 

period. The maximum correlation value that is 

limited in a certain time interval is used as the 

classification features in the next step. 
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where  ( )x tCor is the correlation value of index X at 

time t, W is the length of rice phenology curve (

XPh ), and ( )X t is the value of index at time t.  
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Figure 9. Correlation and feature extraction 

methods for classification on NDVI time series index. 
 

In equation (1), steps 3 to 5 are expressed 

mathematically. Also, the correlation steps on the 

NDVI time series data of one pixel for two 

different times are drawn in Figure 9. This pixel is 

situated in the rice paddy field. 
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Figure 10. NDVI correlation results between the 

proposed rice phenology curve and the time series 

index of various fields over one year. 
 

 
Figure 11. LSWI correlation results between the 

proposed rice phenology curve and the time series 

index of various fields over one year. 
 

 
Figure 12. CR correlation results between the 

proposed rice phenology curve and the time series 

index of various fields over one year. 
 

In Figures 10-12, the outputs of step 5 are shown. 

As evident from the figures, the maximum 

correlation value for paddy fields is significantly 

higher than that of other fields. In addition, for all 

three indices, this value happened simultaneously. 

Considering that the maximum value for paddy 

fields is significantly different from other crops, a 

good separation is expected from the classification. 

The combined correlation of the indices is 

expressed in Eq. (2). And the result is shown in 

Figure 13. 
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In this equation, NX , LX  and CX  are NDVI, LSWI 

and CR time series respectively. NPh , LPh   and 

CPh  are the proposed rice phenology curves for 

NDVI, LSWI and CR. 

Since the triple combined maximum correlation 

value is different from the sum of the 3 individual 

maximum correlation values, it is likely that using 

it alone as a classification feature (Figure 14) will 

give a different result than using the three 

individual correlations simultaneously. It will be 

tested in the next section. 

 
Figure 13. correlation results between the 

proposed rice phenology curve and the time series 

index of various fields over one year. 
 

To determine the time frame for determining the 

maximum correlation, the maximum correlation 

value was drawn according to the time of 

occurrence of the maximum value (Figure 14). 

This figure is plotted for the NDVI index over a 

year (output of step 5) and each point represents the 

maximum correlation value of a random pixel from 

the field data. NDVI is stronger than the other two 

indices. It is clearly seen that the maximum value 

of correlation occurs for all pixels of paddy fields 

in a 50-day frame. The timing of this 50-day period 

is consistent with empirical knowledge about rice. 

For rice crop mapping, the maximum value of 

correlation was calculated in this time frame, 

which is slightly different from the maximum value 

in the whole year. 
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50 Days

 
Figure 14. Maximum correlation value of random 

pixels from field data during one year. 
 

4.2. Classification 

In the previous section, correlation was calculated 

to evaluate the behavioral similarity of each pixel 

with paddy fields. Subsequently, the maximum 

correlation value for each index was identified 

within a specific time period. The maximum value 

of correlations was utilized as input features of the 

classifier. The classification was performed using 

an SVM-RBF classifier.  

The flowchart of paddy field mapping is shown in 

Figure 15. 

 

5. Results  

In the previous section, the pre-processing 

performed on Sentinel- 1and Sentinel-2 images to 

produce 10-day quantized images was described. 

Subsequently, the time series indices of NDVI, 

LSWI and CR were obtained. To extract 

classification features, the similarity of each time 

series index with rice phenology curve was 

calculated. Correlation operator was used to 

measure similarity. The maximum correlation 

value in a period of 50-days in the middle of the 

rice cultivation period was used as the classifier 

feature. Figures 16-18 show the maximum 

correlation value of each index for different lands. 

In these figures, each point represents a randomly 

selected pixel from the test data set. These figures 

show that the NDVI index has a better separation 

compared to the LSWI and CR indices. Since the 

LSWI and CR indices are separable to some extent, 

it is obvious that the combined use of the indices 

will have better results. Figure 19 illustrates the 

result of the combined correlation of three indices. 

As it is clear from the figure, the maximum 

similarity of paddy fields to the phenology curve of 

rice is much higher than other fields and it happens 

in a certain period of time. Therefore, these features 

are completely separable with a simple 

classification. 

 

 
Figure 15. Methodological workflow of paddy field mapping. 

Figures 16 to 19 show that for most fields, the 

maximum value occurs in the middle of the rice 

cultivation period, and the number of fields in 

which cultivation is done earlier or later is less.  
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Figure 16. Maximum correlation value related to 

NDVI index for different lands. 

 

 
Figure 17. Maximum correlation value related to 

LSWI index for different lands. 

 

 
Figure 18. Maximum correlation value related to 

CR index for different lands. 
 

 

 
Figure 19. The maximum value of the combined 

correlation of three indices NDVI, LSWI and CR for 

different lands. 

 

The classification results using SVM-RBF 

classifier are presented in Table 5. The values of 

rice crop mapping are given based on the 

maximum correlation value of each index, the 

combined correlation value, and the simultaneous 

use of the correlation values of three indices as 

classification input features.  
 

Table 5. Overall accuracy evaluation results based 

on different features in 2023. 
Test Train Feature Vector 

0.994 0.990 NDVI 

0.923 0.907 LSWI 

0.864 0.885 CR 

0.993 0.994 Combined Correlation 

0.999 0.997 NDVI, LSWI, CR 

 

Table 5 shows that the classification based on the 

simultaneous use of the separate correlation of 

three indicators is slightly better than the 

classification based on the combined correlation of 

the three indicators. The remarkable thing about 

this method is that the classification was done only 

based on the maximum similarity. Additionally, 

the timing of the occurrence of this maximum 

similarity was not important and on the other hand, 

the maximum amount has been obtained in a wider 

time period than the rice cultivation period. 

Consequently, delays or accelerations in rice 

cultivation or harvesting have minimal impact on 

the classification results. 

Figure 20 shows the mapping of paddy fields using 

the NDVI index. Figure (20-a) shows a part of the 

studied area. The result of the correlation between 

the NDVI index and the NDVI phenology curve of 

rice is shown in Figure (20-b). This image is based 

on the maximum correlation value over a year. It is 

in gray scale. In other words, the brightness of a 

pixel indicates how closely its time series behavior 

aligns with rice phenology. Therefore, the bright 

pixels belong to the paddy fields. Figure (20-d) 

shows the classification based on the image (20-b), 

that is, the classification based on the maximum 

correlation value in a year. This image clearly 

shows the effective classification. But in the center 

of this landscape is a shallow farm lake that is 

partially dried up and overgrown with weeds 

(marked with a yellow box). It seems that the 

phenology of these weeds for NDVI is almost the 

same as that of rice, identified in image (20-b) and 

incorrectly identified as paddy in image (20-d). In 

figure (20-c), the time to extract the maximum 

correlation value is limited to a period of 50-days 

in the middle of the rice cultivation season. By 

comparing figure (20-c) with figure (20-b), we find 

that by limiting the maximum correlation 

extraction time, the difference between paddy 

fields and other fields increases. Also, this value is 

greatly reduced (pixels become darker) for weeds 
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inside the shallow farm lake (yellow box). Also, 

this value is greatly reduced (pixels darken) for the 

weeds inside the shallow farm lake (yellow box) 

because the phenological changes of these weeds 

and paddy fields do not occur simultaneously and 

occur in different seasons of the year. In figure (20-

e) the classification based on the values of figure 

(20-c) is shown. As expected, the classification in 

this case was much more accurate than in Figure 

(20-d), and the fields inside the yellow box (weeds) 

were correctly classified as non-paddy fields. 

 
(a) 

  
(b) (c) 

  
 (d) (e) 

Figure 20: mapping of paddy fields using the NDVI index: (a) the part of the studied area; Illustration of (b) 

the maximum correlation value over a year, and (c) the maximum correlation value limited to a period of 50-days; 

Crop mapping results based on (d) image b, and (e) image c, with rice marked in red. 

The maximum value of the combined correlation 

of three indices NDVI, LSWI and CR with rice 

phenology curves is shown in Figure (21-b). This 

image, like figure (20-b), is obtained from the 

maximum correlation value over a year. By 

comparing Figures (21-b) and (20-b), we find that 

the use of combined correlation provides better 

separation between paddy fields and other fields 

(higher color difference). More importantly, in this 

image, the pixels corresponding to weeds in the 

shallow farm lake are paler than in Fig. (20-b). The 

reason is that although for the NDVI index, the 

phenology of these weeds is similar to that of the 

paddy field, it is different for the LSWI and CR 

indices. As a result, the combined use of three 

indices has reduced the similarity of pixels related 

to weeds and paddy fields. Figure (20-c) is based 

on the maximum correlation (similarity) in the 

limited period of 50-days. Figures (21-d) and (21-
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e) of paddy field mapping are based on the values 

of figures (21-b) and (21-c) respectively. 

 

 
(a) 

  
(b) (c) 

  
(d) (e) 

Figure 21: mapping of paddy fields using combined correlation of three indices NDVI, LSWI and CR: (a) the part 

of the studied area; Illustration of (b) the maximum correlation value over a year, and (c) the maximum correlation 

value limited to a period of 50 days; Crop mapping results based on (d) image b, and (e) image c, with rice marked in 

red. 

For a better visual representation of the 

classification accuracy, a portion of the study area 

with fragmented and relatively small fields is 

presented in Figure (22-a). Figure (22-b) is a 

manual mapping of the paddy field with visual 

inspection. In Figure (22-c), the mapping of paddy 

fields was done based on the simultaneous use of 

the separate correlation of three indices as 

classification features. As it is clear from the 

figure, the fields are small. According to the ratio 

of the dimensions of the land to the dimensions of 

the pixels of Sentinel-1 and Sentinel-2 images, a 

large percentage of the pixels of the satellite 

images are located on the border of two types of 

land and are a combination of them. This makes it 

difficult to distinguish between lands. However, in 

the proposed method, good mapping was achieved.  
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(a) 

 
(b) 

 
(c) 

Figure 22. Visualization of paddy field mapping based 

on the simultaneous use of separate correlations of 

three indices: (a) a visualized portion of the study area; 

(b) ground truth data with rice highlighted in red; (c) 

crop mapping results with rice highlighted in red. 
 

In addition, the edges of image (22-c) are not as 

smooth as image (22-b), because image (22-b) is 

created from high-resolution images, but images of 

classified regions (red color) are derived from the 

images of Sentinel-1 and Sentinel-2 satellites, 

which have a lower resolution. 

If satellite images with higher resolution are used 

instead of Sentinel-1 and Sentinel-2 images, the 

edge of the classified images will be smoother and 

the interference of the fields in one pixel will be 

reduced and better classification will be done. 

 

6. Discussion 

Numerous studies have been conducted on crop 

mapping using phenology. Most of these studies 

fall into two main groups: A) Approaches based on 

thresholds, and B) Approaches based on Machine 

learning. In the following, we will examine each 

method and their problems. 

Thresholding-based methods: In this method, 

phenology parameters such as Start of Season 

(SOS), End of Season (EOS), or Growing Season 

Length (GSL) are derived by applying thresholds 

to indices like NDVI, LSWI from Sentinel-2, or 

band values such as HV and VV from Sentinel-1. 

Crop mapping is then performed based on these 

parameters. For example, [22] first extracted the 

NDVI, REP, and NDRI parameters during the 

middle of the growing season from Sentinel-2 

imagery. The ΔNDVI parameter was calculated as 

the difference between the NDVI values at the 

midpoint and the end of the growing season. Then 

by thresholding these parameters, crop mapping 

was done. In another study by [23], five parameters 

of Flooding Frequency (FF), Cropping Intensity 

(CI), Cropping Diversity (CD) and coefficient of 

variation (CV) were extracted from the VH band 

values and EVI and LSWI indices. The relationship 

between LSWI and EVI was used to obtain FF, and 

when LSWI was greater than EVI, it was 

considered as the start of flood time. To obtain the 

CI parameter, the number of local maximum 

occurrences of the EVI index in one year was 

counted. To obtain the CD parameter, each time the 

EVI reached a local maximum, the difference 

between the maximum and minimum EVI values 

was calculated. Also, the difference ratio of these 

values was used to obtain crop diversity (CD). The 

CV parameter is the value of the covariance in the 

EVI index. crop classification was done by 

thresholding these parameters. 

In general, threshold-based methods are extremely 

dependent on the index values at specific times. If 

the value of these indices changes due to reasons 

such as low quality of images due to cloudiness or 

other factors, the extracted phenology parameters 

will not be accurate [16]. It is possible that due to 

weather conditions, the index value for weeds is 

within the range of the crop index, which causes 
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errors in the final result. Also, in areas where due 

to successive cultivation, it is possible to plant rice 

earlier or later in some lands. Therefore, in these 

lands, the occurrence time of phenology 

parameters such as SOS and EOS are shifted, 

which has a negative result on mapping using these 

methods. Another limitation of this method is the 

presence of waterside pixels. If the boundary of 

water bodies is moved between before and after 

harvesting due to factors such as temperature and 

rainfall, the index values of the water edge pixels 

will change, which is called the water edge effect  

[24]. 

Machine learning based techniques: Different 

machine learning algorithms are used for product 

mapping [25], [26] and [27]. Many studies 

demonstrate that the presence of redundant and 

dependent features, in addition to increasing the 

computational cost in various machine learning 

techniques, reduces accuracy. Consequently, it is 

proposed to select a set of independent and 

impactful features to enhance the performance of 

the classifier. The features used in machine 

learning are usually divided into two general 

categories: 1) Features that are based on the value 

of indices such as NDVI, LSWI, etc. or the value 

of bands such as VH and VV at certain times; 2) 

Features based on phenology parameters such as 

EOS, SOS, etc. For example, in [28], the EVI2 

index [29] was extracted from Sentinel-2 images. 

The ratio of EVI2 changes was calculated for 

different times and then by thresholding the ratio of 

changes in EVI2, SOS and EOS values for 

threshold values of 10, 50 and 90% were obtained. 

Finally, with the help of the RF classifier, the lands 

were divided into two categories: crop land and 

non-crop land. As mentioned earlier, many factors 

affect these Features. Feature inaccuracy 

negatively affects the output of machine learning-

based classification. 

In the studied area, due to the multi-cultivation of 

the land, the rice planting and harvesting time may 

change a little. Also, in this region, by moving 

away from the sea and moving towards the 

foothills, due to the decrease in temperature, rice 

planting takes place later and the rice cultivation 

period increases. Another characteristic of this 

region is the smallness of the agricultural land and 

the diversity of its cultivation, and it is possible to 

cultivate and harvest different crops at the same 

time and due to the cloudiness of the area, satellite 

images may not be available at different times. 

According to the conditions of the region, most of 

the methods mentioned above are not very 

effective in the region. Therefore, in the proposed 

method, an attempt was made to present a method 

that is less affected by environmental and 

atmospheric changes or human activities. In the 

proposed method, the value of indices at a specific 

time is not used for classification. Instead, the time 

series behavior of each pixel indices was examined 

in the entire cultivation period, and the similarity 

of the time series behavior of each pixel indices and 

rice phenology curves were used for classification. 

In this way, unwanted changes in the value of an 

index at some times or the unavailability of an 

index at different times do not have much effect on 

rice mapping. In other words, this method is 

resistant to environmental changes. In this method, 

the time period for determining the maximum 

correlation (similarity of the phenology of each 

pixel with rice) is 50 days. On the other hand, in 

the studied area, due to the weather conditions, the 

time range of rice transplanting is limited and it is 

not possible to change it to more than 50 days. In 

other words, acceleration or delay in planting rice 

does not have much effect on the classification 

result of the proposed method. The use of three 

independent indices, NDVI, LSWI and CR, as well 

as the use of correlation in the entire cultivation 

period, have created features with high separation 

and resistance.   

 

7. Conclusion  

The lands in the study area, are fragmented, small 

and interspersed with other uses/covers. There are 

many cloudy days and so field data is limited. In 

this paper, a phenology-based method is presented 

to address these challenges. First, a series of pre-

processing are done on the images of the Sentinel-

1 and Sentinel-2 satellites. Pixels with 

inappropriate data are removed, 10-day 

quantization is performed, and pixels with missing 

values are interpolated based on the time series 

data.   

CR index from Sentinel-1 and two independent 

indices NDVI and LSWI are calculated from 

Sentinel-2 data. The indices are chosen in such a 

way that the time series behavior of each index for 

paddy field is different from the other fields and at 

the same time is constant for all paddy fields. To 

classify each pixel, the time series behavior of each 

index of that pixel is compared with the phenology 

curve of the paddy field. Correlation operator is 

used to get their similarity. The highest value of 

correlation occurs when the rice phenology curve 

matches the time series behavior of the pixel. It is 

clear that the maximum correlation time for a pixel 

of paddy field is in the middle of the cultivation 

period. A 50-day interval in the middle of the 

cultivation period is chosen to determine the 

maximum correlation of each pixel so that all the 
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fields in which rice transplanting is done earlier or 

later are included in this interval. On the other 

hand, the shortness of this interval means that for 

other products, the time of maximum correlation is 

more likely to be outside this range (Of course, the 

maximum correlation value for paddy fields is 

always higher than other lands). In this way, the 

difference between paddy fields and other lands 

increases. The maximum correlation value of three 

indices CR, NDVI and LSWI is used as 

classification feature. Considering that the 

correlation result has a good separation capability 

and the three indices are independent of each other, 

the classification is easy and can be done by 

different machine learning algorithms. In this 

study, classification is performed using SVM-

RBF. This method demonstrates high robustness 

against environmental factors, and the 

experimental results validate its performance, 

achieving an overall accuracy of 99%. All 

processing is conducted on the GEE cloud 

platform. 

However, if consecutive satellite images are 

unavailable during the rice growing season due to 

cloudy conditions, the interpolation accuracy will 

decrease, ultimately affecting the reliability of crop 

mapping results. Furthermore, as the ratio of land 

dimensions to pixel dimensions decreases, the 

proportion of border pixels between two land types 

relative to the number of interior pixels increases. 

Border pixels may contain mixed crop types, but in 

crop mapping, they are assigned to a single 

category, reducing mapping accuracy. To mitigate 

this, higher-resolution satellite images can be used 

to improve accuracy, or object-based processing 

can be applied to high-quality RGB images to 

detect boundaries between different land types. 

Subsequently, based on the classification results of 

the proposed method, the crop type of each land 

plot within the identified boundaries can be 

determined.  

To increase the accuracy of mapping, object-based 

processing can be performed on high-quality 

images to detect the boundary between different 

lands. Then, based on the classification results of 

the proposed method, the type of each piece of land 

enclosed between the borders can be determined. 
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 .1404سال  ،دوره سیزدهم، شماره سوم ،کاویمجله هوش مصنوعی و داده                                                                    و همکاران                        ازوجی

 

 نیدر زم 2 و 1-سنتینلریتصاو یبر رو یهمبستگ لیو تحل هیبا تجز یفنولوژ بر پایهبرنج  ینقشه بردار

  GEEتکه شده با استفاده از بستر  تکه یها

 

 2عبادت قنبری پرمهر و *1، مهدی ازوجی1فاطمه نمازی

 .رانیبابل، بابل، ا یروانینوش یدانشگاه صنعت وتر،یبرق و کامپ یدانشکده مهندس 1

 .رانیبابل، بابل، ا یروانینوش یعمران، دانشگاه صنعت یدانشکده مهندس ،بردارینقشهگروه  2

 06/03/2025 پذیرش؛ 30/01/2025 بازنگری؛ 08/12/2024 ارسال

 چکیده:

رو روبه یمتعدد یهاسنجش از دور را با چالش یهامحصول با روش یبردارنقشه ران،یدر شمال ا گریآن با محصولات د یو همجوار زارهایشال یپراکندگ

را  شیپا ندیآو فر کندیاسررتفاده م رقابلیها را غآن ای دهدیرا کاهش م یاماهواره ریتصرراو تیفیمنطقه، ک یابر یآب و هوا طیشرررا ن،ی. همچنکندیم

 یهایروش، منحن نیا در .دهدیبرنج ارائه م یفنولوژ هیبر پا زاریشال یبردارموجود در نقشه یهارفع چالش یبرا یمقاله، روش نی. در اسازدیدشوارتر م

( از CRبر اساس شاخص نسبت متقاطع ) هایمنحن نی. اشودیاستخراج م  2-نلیو  سنت 1-لیسنت  یهاماهواره یزمان یسر یهابرنج از داده یفنولوژ

شاخص 1-لیسنت شاخص به NDVI یهاو  شش گهنجار) سطح آب زم LSWI( و یاهیشده تفاوت پو شاخص  سنتنی) ست.  جادیا  2-لی( از  شده ا

 یهاشاخص یزمان یرفتار سر یبه بررس یشنهادیتمرکز دارند، روش پ یمشخص یهاها در زمانشاخص لیموجود، که بر تحل یهاروش شتریبرخلاف ب

 .دهدیم هشکا یریگطور چشممحصول را به برداریدقت نقشه یبر رو یپوشش ابر یمنف ریتأث کرد،یرو نی. اپردازدیدر طول دوره کشت م کسلیهر پ

شده و در  یفنولوژ یهایبا منحن کسلیهر پ یزمان یسر یهاشاخص یمحصول، ابتدا همبستگ بردارینقشه یبرا سبه  روزه در  50یبازه کیبرنج محا

 یابیارز.  است شده گرفته کاربه بندیدر طبقه ییهایژگیدست آمده و به عنوان وهر سه شاخص به یهمبستگ نهیشیب ریدوره کشت برنج، مقاداواسط 

برابر با  رانیروش در منطقه مورد مطالعه در شررمال ا نیا یکه دقت کل ایگونهکرده، به دییآن  را تأ یدقت بالا ،یشررنهادیروش پ ییکارا یفیو ک یکم

 است.اجرا شده   Google Earth Engine (GEE)بر بستر   ندهایو فرآ هایسازادهپی همه. است آمده دست به درصد ۹۹.7

 .GEE زمین های کشاورزی تکه تکه، همبستگی، ،2 و 1-تخمین سطح زیر کشت برنج، فنولوژی برنج، سنتینل :کلمات کلیدی

 


