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Abstract 

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. In the recent years, SPK has 

been one of the most usable kernel methods along with support vector machine classifier with high accuracy 

in object recognition. The MATLAB parallel computing toolbox is used to parallelize SPK. In this 

implementation, the MATLAB Message Passing Interface (MPI) functions and the features included in the 

toolbox help us obtain a good performance by the two schemes task-parallelization and data-parallelization 

models. The parallel SPK algorithm runs over a cluster of computers and achieves less run time. The 

observed speed-up depends on the number of CPUs and their cores. A speed-up value equal to 13 was 

obtained for a configuration with up to 5 Quad processors. 

 

Keywords: Object Recognition, Spatial Pyramid Match Kernel, Parallel Computing, Cluster of Computers, 

Support Vector Machine Classifier. 

1. Introduction 

An object recognition system considers the 

problem of recognizing the semantic category of 

an image. There are many methods that try to 

increase the recognition rate in this area. In the 

recent years, new kernel methods that have been 

introduced are considered as a good approach to 

improve the support vector machine (SVM) 

classifier [1] performance. Spatial Pyramid Match 

Kernel (SPK) [2] is one of these methods that is 

used to categorize objects in the Caltech101 

database.  

SPK provides a good recognition rate in this 

database. Although other methods with a higher 

accuracy have been introduced, SPK is more 

applicable, as it is used in many research works.  

Most object recognition methods suffer from a 

heavy computational load. Parallel processing can 

decrease the running time. Utilizing multi-core 

CPUs or a cluster of computers is a well-known 

parallel technique for running different parts of an 

object recognition algorithm simultaneously. 

Some parallel recognition methods use this 

technique.  

The MATLAB technical computing language and 

development environment has been utilized in a 

variety of fields such as image and signal 

processing, control systems, modeling, and 

computational biology [3]. Advances in computer 

processing power have provided an easy access to 

multi-processor computers through various 

methods such as multi-core processors, clusters 

built from commercial, off-the-shelf components, 

and a combination of the two. This has made 

demand of desktop applications similar to 

MATLAB to find mechanisms for exploiting such 

architectures. Since many implementations of 

image processing algorithms are using MATLAB, 

finding approaches to parallelize them can 

improve their performance.  

This paper presents an approach to parallel 

computing SPK using MATLAB Parallel 

Computing Toolbox (PCT) [4]. SPK has 4 steps: 

1. SIFT (Scale Invariant Feature Transform) [5] 

descriptor Extraction.  

2. Creating Dictionary by K-Means clustering. 

3. Creating Histograms Pyramid of SIFT 

descriptors. 

http://dx.doi.org/10.22044/jadm.2018.5742.1696
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4. Computing SPK. 

Finally, SVM classifier is trained by the pyramid 

as the feature vector, and SPK as the kernel. 

These steps impose a heavy computation, so 

parallel implementation can help improve 

performance for a better application. 

Dependency issues is one of the main problems in 

parallelization of most algorithms. 

Dependencies among tasks have a major impact 

on running simultaneously different sections of an 

algorithm. Thus, some solutions should be 

presented to handle this important challenge. 

There are different data dependencies between the 

SPK algorithm steps: K-means requires SIFT 

descriptors for clustering features; computing 

histograms requires the result of K-means 

clustering and the SIFT features. 

In this paper, a parallel paradigm of the SPK 

algorithm is presented. In order to accelerate these 

steps, the MATLAB Parallel Computing Toolbox 

and MATLAB MPI are utilized. 
 

2. Related works 

So far, SPK has not been implemented by a 

parallel technique but there exist many pattern 

recognition algorithms implemented by parallel 

techniques, and in this section, we will review 

some of them, particularly K-means, SIFT, and 

SVM, which are used in this paper.  

K-means is a known clustering algorithm in the 

pattern recognition that is used in our method as 

well. This algorithm has heavy computing steps; 

therefore, some parallel techniques have been 

employed to decrease its time complexity. Our 

parallel method is based upon  a method [6] in 

which a Java application is implemented to 

parallelize the K-means algorithm. They distribute 

a selection of center of clusters among cores. 

Baydoun et al. have presented an enhanced 

parallel implementation of K-Means clustering 

using Cilk Plus and OpenMP on the CPU and 

CUDA on the GPU. The results obtained are 

presented for different datasets and images of 

varying data sizes [7]. Using CUDA and GPU, 

handwriting recognition is also parallelized [8]. 

To increase the speed, some part of the 

recognition method is executed on GPU cores 

implemented by CUDA platform. 

In object recognition algorithms, feature 

extraction is usually a time-consuming step, so 

some recent research works have been carried out 

to parallelize this step. Warn, S et al. have 

implemented a parallel version of local key and 

descriptor extraction for SIFT with OpenMP [9] 

parallelization and GPU (Graphics Processing 

Unit) execution [10]. Another work in this area is 

parallelization of SIFT both on a Symmetric 

Multiprocessor (SMP) platform and a large-scale 

Chip Multiprocessor (CMP) simulator [11].  A 

parallel hardware architecture for real-time image 

feature detection based on the SIFT algorithm has 

been presented in [12]. It provides the results via a 

Field-Programmable Gate Array (FPGA). SVM is 

an algorithm used in SPK. This classifier has 

some parallel implementations. Distributing, 

processing, and optimizing the subsets of the 

training data across multiple participating nodes 

of the distributed SVM reduce the training time 

[13]. 

Tan et al. have proposed a two-level parallel 

computing framework to accelerate the SVM-

based classification by utilizing CUDA and 

OpenMP [14]. In another work, parallel 

algorithmic implementations of semi-parametric 

SVM and Gaussian processes are presented using 

OpenMP [15].  

The MATLAB PCT facilitates parallelization of 

algorithms such as SPK. Feng H. et al. have 

suggested the MATLAB PCT to accelerate the 

SIFT algorithm [16]. Their results show that the 

parallel versions of the former sequential 

algorithm with simple modifications achieve the 

speed-up up to 6.6 times. The parallel MATLAB 

algorithm of a SVM classifier is implemented as 

well [17]. This implementation is based upon the 

message passing interface standard, in which 

processes coordinate their work and communicate 

by passing messages among themselves as well as 

parallel array programming in MATLAB. Using 

MATLAB Distributed Computing Engine for the 

plan of parallel genetic algorithm (PGA), a higher 

speed and a better performance might be obtained 

[18]. 

 

3. Spatial pyramid match kernel 

In pattern recognition, defining new Kernels for 

SVM is an efficient approach. Grauman and 

Darrell [19] have proposed pyramid match kernel 

(PMK) using matched local features in feature 

space. The local features were extracted using 

Harris detector [20], and their surrounding area 

was described by SIFT descriptor. Since PMK 

discards all the spatial information, Lazebnik et al. 

have introduced an approach, called Spatial 

Pyramid Match Kernel, adopted from PMK. In the 

first step, they used a dense regular grid instead of 

interest points to describe the area via SIFT 

descriptor. This decision was based upon the Fei-

Fei and Perona’s evaluation [21], who have  

shown the dense features work to be better for 

scene classification.  
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In the second step, they performed K-means 

clustering on SIFT descriptor of patches to form a 

visual vocabulary. These patches, which had been 

computed over a grid with a given spacing, have 

randomly been selected from the training set. In 

the next step, they computed the pyramid of the 

histogram by textones of vocabulary. Let X and Y 

be two sets of vectors in a d-dimensional feature 

space. Consider a sequence of grids at resolutions 

0,…, L such that the grid at level l has 2
l
  cells 

along each dimension for a total of D=2
dl 

cells. 

For each grid in each level, the histograms of 

features are calculated. Then the concatenation of 

these histograms forms feature vectors for SVM. 

To calculate SPK, the matches among images are 

computed. Note that matches found at higher 

levels are more valuable, so higher weights are 

assigned to them compared with matches at lower 

levels. The number of matches at level l is given 

by the histogram intersection function according 

to (1). 

 
D

1 1 1 1
X Y X Y

i 1

I(H ,H ) min(H (i),H (i))



 

(1) 

 
1

XH  and 
1
YH denote the histograms X and Y at 

this resolution, so that 
1
XH (i) and 

1

YH (i) are the 

numbers of points from X and Y that fall into the 

cell of the grid. In the following, we will 

abbreviate
1 1

X YH (i), H (i)  to 
l

I . The number of 

matches found at level   also includes all matches 

found at the finer level l+1. The number of new 

matches found at level l is given by 
l l 1I I    for 
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L 1

1

2


 that is inversely proportional to the 

cell width at that level. The pyramid match kernel 

is defined as (2). 
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(2) 

 

The defined pyramid match kernel is the value of 

matches for one type of features. The paper 

quantizes all feature vectors into M discrete types 

using K-means clustering algorithm, and adopts 

the simplifying assumption that only features the 

same type that can be matched to one another. 

Then the definition of spatial pyramid match 

kernel using the sum of separate channel kernels 

based on (3) are performed. Each channel   gives 

us two sets of 2D vectors, mX  and mY , 

representing the coordinates related to features of 

type   found in the respective images [2].  

 

L
M

m m
m 1

l(X,Y) ( , )K X Yk


   (3) 

 

 
 

 
Figure 1. Example of constructing a three-level pyramid. Image has three feature types, indicated by circles, diamonds, and 

crosses. Each spatial histogram is weighted according to Eq. 2. 
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  is the number of feature types (clusters) that are 

obtained using K-means clustering to cluster all 

features. In another word, M is equal to K in K-

means clustering. Figure 1 shows a three-level 

pyramid. The Kernel function is calculated for 

every two image in the training set.  

 

4. MATLAB parallel computing toolbox 

Parallel Computing Toolbox (PCT) solves 

computational and data-intensive problems using 

multi-core processors, GPUs, and computer 

clusters [3]. The toolbox provides 12 workers 

(MATLAB computational engines) to execute 

applications locally on a multi-core desktop or 

more workers on clusters using MATLAB 

Distributed Computing Server. The algorithms 

can be parallelized in MATLAB without 

additional coding for specific hardware and 

network architectures. PCT allows us to assign 

each part of an algorithm to each worker as a job. 

This is done in the client MATLAB session. 

Workers run their jobs simultaneously, so the 

algorithm runtime is reduced. Here, some 

capabilities of PCT for parallel programming are 

mentioned:  

1. Parallel for-Loops (parfor): Many applications 

involve multiple segments of code, some of 

which are repetitive. Often for-loops might be 

employed to solve these cases. The ability to 

execute code in parallel, on one computer or on 

a cluster of computers, can significantly improve 

the performance in many cases. 

2. Distribution of data: If the code has an array 

that is too large for the computer memory, it 

cannot be easily handled in a single MATLAB 

session. The PCT software allows distributing 

that array among multiple MATLAB workers, 

so that each worker contains only a part of the 

array. Each worker operates only on its own part 

of the array, and workers automatically transfer 

data among themselves when necessary. The 

SPMD (Single Program Multiple Data) 

statement lets us run a part of code on multiple 

data simultaneously.  

3. Definition of jobs and tasks: When working 

interactively in a MATLAB session, work can be 

off-loaded to a MATLAB worker session to run as 

a job. The command to perform this job is 

asynchronous, which means that the client 

MATLAB session is not blocked, and the 

interactive session can be continued while the 

MATLAB worker is busy evaluating the code. 

This can be done through defining distributed 

parallel jobs. If the application involves large 

datasets on which simultaneous calculations are 

performed, a parallel job with distributed arrays 

can be used. If the application involves looped or 

repetitive calculations that can be performed 

independently, a distributed job might be 

appropriate. Each job can have multiple tasks, so 

that every task is run on a separate worker.  
 

 
Figure 2. Basic PCT. 

Management of the whole Parallelization, as 

shown in figure 2, is the duty of the MATLAB job 

manager or third-party scheduler. 

 

5. Parallel implementation of spatial pyramid 

match kernel 

The first aspect of the implementation is to run 

different independent parts of the algorithm 

simultaneously. Thus, the algorithm steps are 

distributed among workers. The second aspect 

includes parallelizing special steps, i.e. K-means 

and SPK computing, on the cluster. It means that 

some sub-parts have the possibility of 

parallelization in addition to distributing the main 

parts of algorithm on workers. 

In the sequential algorithm, SIFT descriptors 

extraction from the training set and K-means 

clustering run sequentially but these two steps are 

independent from each other. Forming vocabulary 

can be done using SIFT descriptors of some 

random images by the K-means algorithm, so it is 

independent from extracting SIFTs from all the 

images. Thus, two parallel jobs on separate job 

managers are defined. Job 1 selects some images 

randomly, and then runs K-means clustering on 

the features of these images to form the 

vocabulary. Job 2 is in charge of extracting SIFT 

descriptors for all images and running other steps 

of the algorithm including computing histograms 

as well as their pyramid and constructing the 

kernel matrix. The different parts of the first step 

(job 1) are dependent on each other. For example, 

the SIFT descriptors of some random images 

should be calculated, and then these features are 

clustered using K-means. Hence, they cannot run 

simultaneously. However, the sub-parts of each 

step can run in parallel. Extracting SIFT 
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descriptors can be distributed on computers. Also 

the K-means algorithm can be executed in 

parallel. 

Different parts of Job 2 are dependent on each 

other as well. For example, at first, SIFT 

descriptors should be extracted, then pyramid of 

histograms calculated. However, like the previous 

Job, these parts can be run in parallel.  

  

5.1. Definition of Job 1 

As mentioned earlier, this parallel job of PCT has 

just one task that is executed on several workers 

simultaneously. At the beginning, the job manager 

distributes random-selected images among 

workers, which run this job (capabilities 1 and 3 

of PCT, mentioned before). Each worker 

describes patches of its part of the images. After 

extracting SIFT descriptors, K-means clustering 

should be performed. K-means has two steps:  

1. Assignment step: Assign each data to the 

cluster with the closest mean. 

2. Update step: Calculate the new means to be the 

centroid of the data in the cluster.  

The first step is the time-consuming part because 

distances between all vectors and centroids must 

be calculated. Thus, this step is tried to be 

parallelized via distributing calculation of the 

distances. Therefore, each worker is responsible 

for assigning its part of the SIFT descriptors to the 

nearest cluster.  

The second step requires all the data that is 

distributed among workers. In the first iteration, 

centroids are selected randomly, so there are two 

solutions for determining them: 

1. Transferring all extracted SIFT descriptors 

from workers to a specified worker, then selecting 

centroids by that worker, and finally, broadcasting 

them to other workers.  

2. Selecting some random centroids by each 

worker from its part of the extracted SIFT 

descriptors, then job manager concatenates them 

by MPI concatenate function to create an array of 

centroids and broadcast them to all workers so 

that all workers have the same centers. 

There is a communication overhead in the first 

solution because intense data must be transferred, 

whereas transmitted data and centroids at the 

second solution are less. The second solution is 

used in the experiments. After selecting the first 

centroids, each worker assigns data to clusters. 

For the next iterations, each worker cannot update 

centroids alone. Some data should be transferred 

among workers to calculate new centroids. The 

following data is gathered from all workers using 

MPI functions by the job manager to update 

centroids: 

1. Sum of data distances for each cluster  

2. Number of data belonging to each centroid 

Job manager broadcasts this information to all 

workers. New centers are computed based on new 

posteriors using this information; therefore, 

workers update their centroids. These two steps 

repeat until the termination condition is met. At 

the end of the algorithm, the last centroids should 

be saved for later steps of SPMK; thus, a specified 

worker, for example, worker number one saves 

centers in a file. All of these steps are shown in 

figure 3Error! Reference source not found. 

Pseudo-code of Job 1 is also represented in figure 

4. The code represented in figure 4 is executed on 

all of the workers in parallel. The parts that are 

relevant to gathering or distributing information 

are automatically performed using job manager. 

These parts include: 

 
Figure 3. Steps of job 1. 

 Job Manager Workers 

Distribution of Data Receive Data 

Extract SIFT 

Select some 

Centers 

Concatenation 

Centers 

Receive Centers 

Assign Data 
 To Clusters 

1. Sum distances 

2. Collect number of  

    data in Clusters 

Update Centers 

 

If 

(Terminiation 

Condition) 

No 

 
If 

(Worker1) 

Save Centers 

End 

No 

Yes 

Yes 
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Local_part_image = Distribute (Random-images): 

job manager distributes random images on 

workers to extract SIFT descriptor. 

Plus, number of points in cluster:  Job manager 

gathers the number of images from each cluster 

and broadcasts them to all of the workers for 

updating centroids. 

Plus, Euclidean distance between SiftDescriptors 

and center: job manager gathers Euclidean 

distances between sift descriptors and centers then 

broadcasts them to all of the workers for updating 

centroids. 

The remainder of the code is executed in parallel 

on all of the workers. Also, these parallel parts are 

represented in the worker section of Figure 3. 
 

5.2. Definition of Job 2 

Job 2 performs the following steps: 

1. Extracting SIFT descriptors for training set 

2. Creating Histograms Pyramid of SIFT    

descriptors 

3. Computing Spatial Pyramid Match Kernel 

Job manager distributes images among workers, 

and every worker extracts SIFT descriptors of its 

part of the images. Also, workers compute 

histograms of these features and construct a 

pyramid of histograms. Until now, workers do not 

require to communicate with each other but they 

must transfer data between themselves for 

computing spatial pyramid match kernel. Kernel 

is a symmetric matrix, where element      

indicates the value of kernel function 

corresponding to images  . Each worker alone 

cannot compute the kernel value corresponding to 

its own images because they need histograms of 

other images to calculate matches between them. 

Here, two solutions are suggested for the workers 

required communication for transferring 

histograms of their own images: 

1. Using the MPI function to concatenate all 

histograms from workers, and then 

broadcasting them by the job manager. 

Each worker calculates the rows of its part 

of the kernel matrix (concatenation 

method). 

2. Computing half of the kernel matrix by 

transmitting half of the data (round 

method). The designed procedure is 

depicted in Figure 5. 

 
Function Paralleljob1(Random-images)//Run this function as parallel 

job on all of workers 

Begin 

Local_part_image=distribute(Random_images) 

for Each image of local_part_image do 

 Call Generate SiftDescriptor WITH image RETURNING 

SiftDescriptor 

end 

N-Clusters=200 

Iterations=100 

CenterLab=N-Clusters/NumLabs of Random selected SiftDescriptors 

Centers=Concatenate(CenterLab) //using gcat MPI function of 

MATLAB 

for Number of K-means Iterations do 

Assign each SiftDescriptor to nearest center 

for each center of N-Clusters do 

plus number of points in cluster //using gplus MPI 

function 

Plus Euclidean distance between SiftDescriptors and 

center //using gplus MPI function of MATLAB 

end 

Upfate Centers 

if Labindex=1 then 

Save Centers 

end 

end 

end 

  
Figure 4.  Pseudo-code of Job 1 that runs on workers simultaneously. Some functions not interfering with parallel 

implementation are considered as black box and are just called. 
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A loop was defined, whose number of iterations is 

half of the number of workers. At the first 

iteration, every worker sends its data to the next 

one, and at the same time receives data from the 

former worker. At the next iterations, the 

labindex-th worker (worker[labindex]) sends 

histograms to worker [labindex+2] and receives 

histograms from worker [labindex-2], and so on. 

 

 
Figure 5. Round method for communication between 8 

workers: each worker sends data to another one and 

receives data from others simultaneously in every 

iteration. 

 

 
 

Figure 6. Steps of Job 2 

At the end of the iterations, workers compute 

rows of the kernel matrix corresponding to their 

part of images and receive images according to 

(3). Thus, this method helps workers avoid 

waiting for a long time to communicate. Figure 6 

shows the configuration of this job. The pseudo-

code of parallel job 2 is illustrated in figure 7.  

The code represented in figure 6 is executed on all 

of the workers in parallel. The parts that are 

relevant to gathering or distributing information 

are automatically performed using the job 

manager. These parts include: 

Local part image=distribute(images): The job 

manager distributes random images on workers to 

extract SIFT descriptors. 
Gather LocalKernelMatrix from all workers to build 

KernelMatrix: job manager should collect 

information from all workers to build kernel 

matrix. 

KernelMatrix: job manager should collect 

information from all workers to build kernel 

matrix.  

The remainder of the code required to run on all 

the workers in parallel, as presented in the worker 

part of figure 6. 

At the end of the procedure, the MPI function 

gathers different parts of kernel matrix that are in 

workers’ memory, and then they are saved by one 

of the workers, for example, worker number one. 
 

5.3. Time complexity of algorithm 

To obtain the time complexity of the sequential 

algorithm, 4 parts might be considered: 

1. Computing SIFT descriptors: ( * )O n g , n: 

number of images, g: number of grids. 

2. K-means algorithm: ( )O mkl , m: number of 

random images used in clustering, k: number 

of clusters, l: number of iterations. 

3. Computing histograms and their pyramid:

( *2 )po n    p: number of patches. 

4. Computing Kernel Matrix: 2( )O n . 

Overall, the time complexity of the sequential 

algorithm is 2( )O n . 

In the parallel algorithm, all parts are based on 

distributing data, thus the time complexity of parts 

is as follows: 

1. ( * / )O n g N : Without any communication 

time, N: number of cores (workers). 

2. ( / )O mkl N : The time complexity for 

computing + ( )O k : The time complexity of 

communication for transferring centers of 

clusters. k is always much smaller than m, so 

the whole complexity of this part is

( / )O mkl N . 

3. ( *2 / N)pO n . 

4. 2( / )O n N : The time complexity for 

computing + (N/ 2*n/ N)O : The time 

 

 

Job 

Manager 
Workers 

Distribution 

of Data 
Receive Data 

Extract SIFT  

Compute Histograms 

Compute Pyramid of 

Histograms 

Send data to worker No. 
Mod (labindex+i-1,numlabs)+1 

Compute PMK   

 i<=(numlabs/2) no 

If 
(Worker 1) 

Save Kernel Matrix 

End 

yes 

i=i+1 

Receive data from worker No. 
Mod (labindex-(i+1),numlabs)+1 

Gather 
Kernel 

Matrix 

i=1 

no 

yes 
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complexity of communication for transferring 

histograms. 

5. The whole complexity of this part is
2( / )O n N . 

Overall, the time complexity of the parallel 

algorithm is 2( / )O n N . The interesting point is 

that the time complexity of communication in the 

problem with large datasets has a very smaller 

growth compared to the computation time. Thus 

the parallel algorithm can be effective and 

optimum.  

 

Experiments 

For our experimental evaluation, the Caltech101 

database was exploited [22]. Caltech is an object 

image database utilized for object recognition 

method assessment. Pictures of objects belong to 

101 categories. There are 40 to 800 images per 

category. Most categories have about 50 images. 

They have been collected in September 2003 by 

Fei-Fei Li et al. The size of each image is roughly 

300x200 pixels. The SVM classifier is trained on 

SIFT features from 200 random images. The 

kernel of SVM is spatial pyramid match kernel 

calculated for a pair of images in the parallel 

section. The trained model of SVM can be used to 

test unseen images in the test phase. Due to 

focuses on the train phase, the detail of test is not 

considered in this paper but for evaluation of the 

results compared to serial version of algorithm, 

100 images are randomly selected to test the 

model. 

There are four workers defined on each computer, 

one for every core, i.e. a total of 20 workers. 

Hence, worker in this paper means core. One of 

the computers is designated as the job manager.  

Some parameters that are used in the experiments 

are as follow: 

1. Number of histogram levels: 4 

2. Number of K-means clusters: 200 

3. Number of pixels of image grid: 8 

Job 1 and job 2 are evaluated on different 

numbers of images and workers for several times 

to compute how much speed-up is achieved 

compared to the serial algorithm. In parallel 

computing, speed-up refers to how faster a 

parallel algorithm is compared to the 

corresponding sequential algorithm. Speed-up is 

the ratio of the sequential algorithm execution 

time to parallel algorithm. Linear speed-up or 

ideal speed-up is obtained when speed-up is equal 

to the number of processors. 

Function Paralleljob2(images)//Run this function as parallel job on 

all of workers 

Begin 

Load centers of clusters 

Local_part_image=distribute(images) 

for Each image of Local_part_image do 

Call GenerateSiftDescriptor WITH image RETURNING 

SiftDescriptor 

Call BuildHistogarm WITH SiftDescriptor,Centers ReTURNING 

Histogarm 

Call BuildPyramid WITH Histogram RETURNING Pyramid 

end 

for i=1 to (NumLabs/2)-1 do 

LabTo =mod(labindex+i-1, numlabs)+1 

LabFrom = mod(labindex – (i+1), numlabs)+1 

Received_pyramid=labSendReceive(lab To, LabFrom,Pyrsmid) 

//a function from MATLAB PCT 

Call BuildKernel WITH Recienvedpyramid, Pyramid RETURNING 

LocalKerenMatrix 

end 

Gather LocalKernelMatrix from all workers To build KernelMatrix 

//using gather function of MATLAB PCT 

if Labindex=1 then 

Save KernelMatrix 

end 

end  

Figure 7. Pseudo-code of Job 2 that runs on workers simultaneously. Some functions that do not interfere with 

parallel implementation are considered as black box and are just called. 
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6.1. Evaluation of job 1 

Job 1 extracts SIFT descriptors for randomly 

selected images, and then executes K-means.  

Termination of K-means occurs when the 

clustering error is less than 0.1 or the number of 

iterations exceeds 100. Speed-up depends on the 

number of workers but it does not increase 

linearly. 12 workers give us the highest speed-up. 

Figure 8(a) shows changes in job runtime with 

different numbers of workers. The decrease in the 

runtime with increase in the number of workers is 

not true for all cases. 

 The reason for this inconsistency is that when the 

number of workers increases, CPUs spend more 

time to send, receive or wait for the data, so 

computation ratio decreases. Therefore, there is a 

trade-off between the communication cost and 

speed-up. Figure 8(b) illustrates the speed-up ratio 

of job 1 on different numbers of images. Notice 

that each image has roughly 1000 extracted 

features. Thus for 200 selected images, K-means 

clustering is executed on 200000 data points. As 

the number of data points goes up, the speed-up 

ratio of the parallel process increases. More data 

points cause computation to take more time than 

communication because the number of centers is 

constant. Figure 9(a) shows the ratio of 

computation time to total time. As the number of 

workers is increased, this ratio decreases. Also, 

the total amount of data that is transferred among 

workers is shown in this diagram. The relationship 

between increasing data transformation and 

number of workers is linear.   

 Figure 9(b) represents the communication time 

and the ratio of communication cost related to 

total time of running job 1. As it is shown, 

increasing the number of workers causes increase 

in the communication cost, for example, 20% of 

time is taken for communication when the number 

of workers is 12. Although this is a lot of time of 

running, analyzing two jobs totally shows a good 

speed-up. 
 

6.2. Evaluation of job 2 

Job 2 extracts SIFT descriptors of all images, and 

then computes pyramid of histogram and SPK 

using clusters obtained by job 1. Computers 

access map network drive to read the necessary 

data. For the training stage, 15 or 30 images are 

selected from each category. 

 

(a) (b) 

Figure 8. Time taken to run Job 1 on 200 images with different numbers of cores (workers) (a). Speed-up with different 

number of images (50, 100, 150, 200) on Job 1 (b). 

 

 

(a) (b) 

Figure 9. Transferred data in Mb and ratio of computation to total time in Job 1 (a). Communication time and ratio of 

communication to total time in Job 1 (b). 
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Different speed-ups result with varying numbers 

of workers. Evaluation is done in two methods of 

data transmission: 

1.1. Round method  

2.1. Concatenation method.  

Figure 10(a and b) show the obtained job 2 speed-

up and runtime. The number of images per 

category is 30. As the number of workers is 

increased, the runtime decreases; however, this 

time reduction (speed-up) is not linear because of 

the communication time but the acceptable speed-

up is achieved. The maximum speed-up (15) is 

observed using the round method with 20 

workers. An important point about speed-up 

enhancement is acceleration. Increasing workers 

enhances speed-up but the diagram deviates from 

a linear speed-up. Thus, a trade-off between cost 

and speed-up in parallelization is necessary. The 

best choice for the number of workers depends on 

the application of the method. In some situations, 

the algorithm runtime is the most important issue. 

Hence, obtaining a maximum speed-up using full 

resources is a rational decision. 

Figure 11(a) demonstrates the ratio of 

computation to total time and transformation data 

of job 2 in details for different numbers of 

workers. Although the total time is reduced for a 

higher number of workers, the communication 

time and data transformation between all workers 

increase and the computation time decreases. In 

this situation, a worker should send data to more 

workers. Figure 11(b) illustrates the ratio of 

communication time to the total time. It is about 

50% for 20 workers. It means that the 

communication cost strongly affects the speed-up 

improvement. At the end of this job, one of the 

workers trains SVM using SPK matrix obtained 

by job 2 and pyramid of histograms as feature 

vectors. All of these parallel steps can be repeated 

for testing a remarkable number of images; 

otherwise, with a few number of images, running 

the serial algorithm takes less time. Thus 

parallelization is not beneficial. About the 

efficiency of implementation, it must be 

emphasized that parallelization does not affect the 

accuracy of the method to recognize category of 

objects, thus parallel computing saves time and 

offers a better performance. 

 

6.3. Merging of two jobs 

In the previous section, the best performance of 

each job was discussed independently. Job 1 

achieves the best speed-up with 12 workers, and 

job-2 with 20 workers. Resources have to be 

shared between these two jobs to run 

simultaneously. Hence, it is important to divide 20 

workers in such a way that the best performance is 

obtained. It is obvious that job 2 needs data from 

job 1 for making a histogram; thus the best 

performance can be achieved when job 1 and the 

extracting SIFT in job 2 finish simultaneously. 

Job 1 and just extracting SIFT in job 2 can be 

performed in parallel. The best situation is 

achieved when these two parts end 

simultaneously, and then data from job 1 is 

employed by job 2 to continue the work. Studying 

the experiments, if 2 workers are used for job 1 

and 18 workers for job 2, job 2 does not have to 

be idle for job 1, and in this situation, 13 is the 

best speed-up. 

 

(a) (b) 
Figure 10. Time taken to run job 2 in two methods, round and concatenation (a). Speed-up of two methods, round and 

concatenation. 
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 7. Conclusion 

This paper has presented a parallel version of an 

object recognition method. This method applies a 

spatial pyramid match kernel to a support vector 

machine classifier to recognize image categories. 

Our implementation parallelizes different steps of 

calculating kernel on a cluster of computers. The 

MATLAB parallel computing toolbox was used to 

distribute jobs on computers. Parallel algorithm is 

thirteen times faster than the serial version for a 

configuration up to 5 Quad processors. The results 

obtained show that the accuracy of the method is 

not affected by parallelization. Thus the 

implementation is well-suited for applying in 

other research works that use this kernel. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

 شناسایی برای کامپیوترها از کلاستری از استفاده با مکانی هرمی تطبیقی هسته الگوریتم سازی موازی

 دیجیتال تصاویر در اشیا

 

  2راد موسوی الدین سیدجلال و 2عسکری میثم ،2کومله پور ابراهیم حسین ،1بیدگلی اصیلیان اعظم

 .ایران قم، پویش، عالی آموزش موسسه کامپیوتر، و برق مهندسی دانشکده - ایران کاشان، کاشان، دانشگاه کامپیوتر، مهندسی دانشکده 1

 .ایران کاشان، کاشان، دانشگاه کامپیوتر، مهندسی دانشکده 2

 01/42/5402 پذیرش؛ 05/42/5402بازنگری؛ 52/40/5402 ارسال

 چکیده:

های اخیرر  الگروریتم هسرته تطبیرق هرمری مکرانی یکری از دهد. در سالسازی موازی از الگوریتم هسته تطبیق هرمی مکانی را ارائه میاین مقاله پیاده

توابع واسط تبادل پیام متلر  سازی شود. در این پیادهبند ماشین بردار پشتیبان در شناسایی اشیا با دقت بالا محسوب میهای پرکاربرد برای طبقههسته

انرد. الگروریتم هسرته تطبیرق بندی تصاویر کمک شایان تروههی کرردهبا استفاده از دو مدل موازی سازی داده و موازی سازی کار به بهبود کارایی طبقه

شود. میزان تسریع بدسرت ریتم ترتیبی میهرمی مکانی موازی روی کلاستری از کامپیوترها اهرا شده و باعث کاهش زمان اهرای الگوریتم نسبت به الگو

 2برا اسرتفاده از  01سازی میزان تسریعی برابرر تواند متفاوت باشد. در این پیادههای آن میآمده الگوریتم موازی با توهه به تعداد پردازنده و تعداد هسته

 ای بدست آمده است.هسته 0کامپیوتر با پردازنده های 

 .بند ماشین بردار پشتیبانای از کامیپوترها  طبقه  هسته تطبیق هرمی مکانی  محاسبات موازی  خوشهشناسایی الگو :کلمات کلیدی

 


