

Journal of AI and Data Mining

Vol 7, No 1, 2019, 97-108 DOI: 10.22044/JADM.2017.4152.1503

Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition

using a Cluster of Computers

A. AsilianBidgoli

1,2*
, H. Ebrahimpour-Komleh

1
, M. Askari

1
and SJ. Mousavirad

1

1. Department of Computer Engineering, University of Kashan, Kashan, Iran.

2. Faculty of Electronic & Computer Engineering, Pooyesh Higher Education Institute, Qom, Iran.

Received 25 April 2016; Revised 12 June 2017; Accepted 19 July 2017

*Corresponding author: asilian@gmail.com (A. AsilianBidgoli).

Abstract

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. In the recent years, SPK has

been one of the most usable kernel methods along with support vector machine classifier with high accuracy

in object recognition. The MATLAB parallel computing toolbox is used to parallelize SPK. In this

implementation, the MATLAB Message Passing Interface (MPI) functions and the features included in the

toolbox help us obtain a good performance by the two schemes task-parallelization and data-parallelization

models. The parallel SPK algorithm runs over a cluster of computers and achieves less run time. The

observed speed-up depends on the number of CPUs and their cores. A speed-up value equal to 13 was

obtained for a configuration with up to 5 Quad processors.

Keywords: Object Recognition, Spatial Pyramid Match Kernel, Parallel Computing, Cluster of Computers,

Support Vector Machine Classifier.

1. Introduction

An object recognition system considers the

problem of recognizing the semantic category of

an image. There are many methods that try to

increase the recognition rate in this area. In the

recent years, new kernel methods that have been

introduced are considered as a good approach to

improve the support vector machine (SVM)

classifier [1] performance. Spatial Pyramid Match

Kernel (SPK) [2] is one of these methods that is

used to categorize objects in the Caltech101

database.

SPK provides a good recognition rate in this

database. Although other methods with a higher

accuracy have been introduced, SPK is more

applicable, as it is used in many research works.

Most object recognition methods suffer from a

heavy computational load. Parallel processing can

decrease the running time. Utilizing multi-core

CPUs or a cluster of computers is a well-known

parallel technique for running different parts of an

object recognition algorithm simultaneously.

Some parallel recognition methods use this

technique.

The MATLAB technical computing language and

development environment has been utilized in a

variety of fields such as image and signal

processing, control systems, modeling, and

computational biology [3]. Advances in computer

processing power have provided an easy access to

multi-processor computers through various

methods such as multi-core processors, clusters

built from commercial, off-the-shelf components,

and a combination of the two. This has made

demand of desktop applications similar to

MATLAB to find mechanisms for exploiting such

architectures. Since many implementations of

image processing algorithms are using MATLAB,

finding approaches to parallelize them can

improve their performance.

This paper presents an approach to parallel

computing SPK using MATLAB Parallel

Computing Toolbox (PCT) [4]. SPK has 4 steps:

1. SIFT (Scale Invariant Feature Transform) [5]

descriptor Extraction.

2. Creating Dictionary by K-Means clustering.

3. Creating Histograms Pyramid of SIFT

descriptors.

http://dx.doi.org/10.22044/jadm.2018.5742.1696

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

98

4. Computing SPK.

Finally, SVM classifier is trained by the pyramid

as the feature vector, and SPK as the kernel.

These steps impose a heavy computation, so

parallel implementation can help improve

performance for a better application.

Dependency issues is one of the main problems in

parallelization of most algorithms.

Dependencies among tasks have a major impact

on running simultaneously different sections of an

algorithm. Thus, some solutions should be

presented to handle this important challenge.

There are different data dependencies between the

SPK algorithm steps: K-means requires SIFT

descriptors for clustering features; computing

histograms requires the result of K-means

clustering and the SIFT features.

In this paper, a parallel paradigm of the SPK

algorithm is presented. In order to accelerate these

steps, the MATLAB Parallel Computing Toolbox

and MATLAB MPI are utilized.

2. Related works

So far, SPK has not been implemented by a

parallel technique but there exist many pattern

recognition algorithms implemented by parallel

techniques, and in this section, we will review

some of them, particularly K-means, SIFT, and

SVM, which are used in this paper.

K-means is a known clustering algorithm in the

pattern recognition that is used in our method as

well. This algorithm has heavy computing steps;

therefore, some parallel techniques have been

employed to decrease its time complexity. Our

parallel method is based upon a method [6] in

which a Java application is implemented to

parallelize the K-means algorithm. They distribute

a selection of center of clusters among cores.

Baydoun et al. have presented an enhanced

parallel implementation of K-Means clustering

using Cilk Plus and OpenMP on the CPU and

CUDA on the GPU. The results obtained are

presented for different datasets and images of

varying data sizes [7]. Using CUDA and GPU,

handwriting recognition is also parallelized [8].

To increase the speed, some part of the

recognition method is executed on GPU cores

implemented by CUDA platform.

In object recognition algorithms, feature

extraction is usually a time-consuming step, so

some recent research works have been carried out

to parallelize this step. Warn, S et al. have

implemented a parallel version of local key and

descriptor extraction for SIFT with OpenMP [9]

parallelization and GPU (Graphics Processing

Unit) execution [10]. Another work in this area is

parallelization of SIFT both on a Symmetric

Multiprocessor (SMP) platform and a large-scale

Chip Multiprocessor (CMP) simulator [11]. A

parallel hardware architecture for real-time image

feature detection based on the SIFT algorithm has

been presented in [12]. It provides the results via a

Field-Programmable Gate Array (FPGA). SVM is

an algorithm used in SPK. This classifier has

some parallel implementations. Distributing,

processing, and optimizing the subsets of the

training data across multiple participating nodes

of the distributed SVM reduce the training time

[13].

Tan et al. have proposed a two-level parallel

computing framework to accelerate the SVM-

based classification by utilizing CUDA and

OpenMP [14]. In another work, parallel

algorithmic implementations of semi-parametric

SVM and Gaussian processes are presented using

OpenMP [15].

The MATLAB PCT facilitates parallelization of

algorithms such as SPK. Feng H. et al. have

suggested the MATLAB PCT to accelerate the

SIFT algorithm [16]. Their results show that the

parallel versions of the former sequential

algorithm with simple modifications achieve the

speed-up up to 6.6 times. The parallel MATLAB

algorithm of a SVM classifier is implemented as

well [17]. This implementation is based upon the

message passing interface standard, in which

processes coordinate their work and communicate

by passing messages among themselves as well as

parallel array programming in MATLAB. Using

MATLAB Distributed Computing Engine for the

plan of parallel genetic algorithm (PGA), a higher

speed and a better performance might be obtained

[18].

3. Spatial pyramid match kernel

In pattern recognition, defining new Kernels for

SVM is an efficient approach. Grauman and

Darrell [19] have proposed pyramid match kernel

(PMK) using matched local features in feature

space. The local features were extracted using

Harris detector [20], and their surrounding area

was described by SIFT descriptor. Since PMK

discards all the spatial information, Lazebnik et al.

have introduced an approach, called Spatial

Pyramid Match Kernel, adopted from PMK. In the

first step, they used a dense regular grid instead of

interest points to describe the area via SIFT

descriptor. This decision was based upon the Fei-

Fei and Perona’s evaluation [21], who have

shown the dense features work to be better for

scene classification.

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

99

In the second step, they performed K-means

clustering on SIFT descriptor of patches to form a

visual vocabulary. These patches, which had been

computed over a grid with a given spacing, have

randomly been selected from the training set. In

the next step, they computed the pyramid of the

histogram by textones of vocabulary. Let X and Y

be two sets of vectors in a d-dimensional feature

space. Consider a sequence of grids at resolutions

0,…, L such that the grid at level l has 2
l
 cells

along each dimension for a total of D=2
dl

cells.

For each grid in each level, the histograms of

features are calculated. Then the concatenation of

these histograms forms feature vectors for SVM.

To calculate SPK, the matches among images are

computed. Note that matches found at higher

levels are more valuable, so higher weights are

assigned to them compared with matches at lower

levels. The number of matches at level l is given

by the histogram intersection function according

to (1).

D

1 1 1 1
X Y X Y

i 1

I(H ,H) min(H (i),H (i))




(1)

1

XH and
1
YH denote the histograms X and Y at

this resolution, so that
1
XH (i) and

1

YH (i) are the

numbers of points from X and Y that fall into the

cell of the grid. In the following, we will

abbreviate
1 1

X YH (i), H (i) to
l

I . The number of

matches found at level also includes all matches

found at the finer level l+1. The number of new

matches found at level l is given by
l l 1I I  for

l=0,…, L-1. The weight associated with level is

set to
L 1

1

2


 that is inversely proportional to the

cell width at that level. The pyramid match kernel

is defined as (2).

L 1

l L l l 1

l 0

L
0 l

L
l 1

1
k (X,Y) I (I I)

L 1

1 1
I I

2 L 1 l








  



 





(2)

The defined pyramid match kernel is the value of

matches for one type of features. The paper

quantizes all feature vectors into M discrete types

using K-means clustering algorithm, and adopts

the simplifying assumption that only features the

same type that can be matched to one another.

Then the definition of spatial pyramid match

kernel using the sum of separate channel kernels

based on (3) are performed. Each channel gives

us two sets of 2D vectors, mX and mY ,

representing the coordinates related to features of

type found in the respective images [2].

L
M

m m
m 1

l(X,Y) (,)K X Yk


  (3)

Figure 1. Example of constructing a three-level pyramid. Image has three feature types, indicated by circles, diamonds, and

crosses. Each spatial histogram is weighted according to Eq. 2.

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

100

 is the number of feature types (clusters) that are

obtained using K-means clustering to cluster all

features. In another word, M is equal to K in K-

means clustering. Figure 1 shows a three-level

pyramid. The Kernel function is calculated for

every two image in the training set.

4. MATLAB parallel computing toolbox

Parallel Computing Toolbox (PCT) solves

computational and data-intensive problems using

multi-core processors, GPUs, and computer

clusters [3]. The toolbox provides 12 workers

(MATLAB computational engines) to execute

applications locally on a multi-core desktop or

more workers on clusters using MATLAB

Distributed Computing Server. The algorithms

can be parallelized in MATLAB without

additional coding for specific hardware and

network architectures. PCT allows us to assign

each part of an algorithm to each worker as a job.

This is done in the client MATLAB session.

Workers run their jobs simultaneously, so the

algorithm runtime is reduced. Here, some

capabilities of PCT for parallel programming are

mentioned:

1. Parallel for-Loops (parfor): Many applications

involve multiple segments of code, some of

which are repetitive. Often for-loops might be

employed to solve these cases. The ability to

execute code in parallel, on one computer or on

a cluster of computers, can significantly improve

the performance in many cases.

2. Distribution of data: If the code has an array

that is too large for the computer memory, it

cannot be easily handled in a single MATLAB

session. The PCT software allows distributing

that array among multiple MATLAB workers,

so that each worker contains only a part of the

array. Each worker operates only on its own part

of the array, and workers automatically transfer

data among themselves when necessary. The

SPMD (Single Program Multiple Data)

statement lets us run a part of code on multiple

data simultaneously.

3. Definition of jobs and tasks: When working

interactively in a MATLAB session, work can be

off-loaded to a MATLAB worker session to run as

a job. The command to perform this job is

asynchronous, which means that the client

MATLAB session is not blocked, and the

interactive session can be continued while the

MATLAB worker is busy evaluating the code.

This can be done through defining distributed

parallel jobs. If the application involves large

datasets on which simultaneous calculations are

performed, a parallel job with distributed arrays

can be used. If the application involves looped or

repetitive calculations that can be performed

independently, a distributed job might be

appropriate. Each job can have multiple tasks, so

that every task is run on a separate worker.

Figure 2. Basic PCT.

Management of the whole Parallelization, as

shown in figure 2, is the duty of the MATLAB job

manager or third-party scheduler.

5. Parallel implementation of spatial pyramid

match kernel

The first aspect of the implementation is to run

different independent parts of the algorithm

simultaneously. Thus, the algorithm steps are

distributed among workers. The second aspect

includes parallelizing special steps, i.e. K-means

and SPK computing, on the cluster. It means that

some sub-parts have the possibility of

parallelization in addition to distributing the main

parts of algorithm on workers.

In the sequential algorithm, SIFT descriptors

extraction from the training set and K-means

clustering run sequentially but these two steps are

independent from each other. Forming vocabulary

can be done using SIFT descriptors of some

random images by the K-means algorithm, so it is

independent from extracting SIFTs from all the

images. Thus, two parallel jobs on separate job

managers are defined. Job 1 selects some images

randomly, and then runs K-means clustering on

the features of these images to form the

vocabulary. Job 2 is in charge of extracting SIFT

descriptors for all images and running other steps

of the algorithm including computing histograms

as well as their pyramid and constructing the

kernel matrix. The different parts of the first step

(job 1) are dependent on each other. For example,

the SIFT descriptors of some random images

should be calculated, and then these features are

clustered using K-means. Hence, they cannot run

simultaneously. However, the sub-parts of each

step can run in parallel. Extracting SIFT

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

101

descriptors can be distributed on computers. Also

the K-means algorithm can be executed in

parallel.

Different parts of Job 2 are dependent on each

other as well. For example, at first, SIFT

descriptors should be extracted, then pyramid of

histograms calculated. However, like the previous

Job, these parts can be run in parallel.

5.1. Definition of Job 1

As mentioned earlier, this parallel job of PCT has

just one task that is executed on several workers

simultaneously. At the beginning, the job manager

distributes random-selected images among

workers, which run this job (capabilities 1 and 3

of PCT, mentioned before). Each worker

describes patches of its part of the images. After

extracting SIFT descriptors, K-means clustering

should be performed. K-means has two steps:

1. Assignment step: Assign each data to the

cluster with the closest mean.

2. Update step: Calculate the new means to be the

centroid of the data in the cluster.

The first step is the time-consuming part because

distances between all vectors and centroids must

be calculated. Thus, this step is tried to be

parallelized via distributing calculation of the

distances. Therefore, each worker is responsible

for assigning its part of the SIFT descriptors to the

nearest cluster.

The second step requires all the data that is

distributed among workers. In the first iteration,

centroids are selected randomly, so there are two

solutions for determining them:

1. Transferring all extracted SIFT descriptors

from workers to a specified worker, then selecting

centroids by that worker, and finally, broadcasting

them to other workers.

2. Selecting some random centroids by each

worker from its part of the extracted SIFT

descriptors, then job manager concatenates them

by MPI concatenate function to create an array of

centroids and broadcast them to all workers so

that all workers have the same centers.

There is a communication overhead in the first

solution because intense data must be transferred,

whereas transmitted data and centroids at the

second solution are less. The second solution is

used in the experiments. After selecting the first

centroids, each worker assigns data to clusters.

For the next iterations, each worker cannot update

centroids alone. Some data should be transferred

among workers to calculate new centroids. The

following data is gathered from all workers using

MPI functions by the job manager to update

centroids:

1. Sum of data distances for each cluster

2. Number of data belonging to each centroid

Job manager broadcasts this information to all

workers. New centers are computed based on new

posteriors using this information; therefore,

workers update their centroids. These two steps

repeat until the termination condition is met. At

the end of the algorithm, the last centroids should

be saved for later steps of SPMK; thus, a specified

worker, for example, worker number one saves

centers in a file. All of these steps are shown in

figure 3Error! Reference source not found.

Pseudo-code of Job 1 is also represented in figure

4. The code represented in figure 4 is executed on

all of the workers in parallel. The parts that are

relevant to gathering or distributing information

are automatically performed using job manager.

These parts include:

Figure 3. Steps of job 1.

 Job Manager Workers

Distribution of Data Receive Data

Extract SIFT

Select some

Centers

Concatenation

Centers

Receive Centers

Assign Data
 To Clusters

1. Sum distances

2. Collect number of

 data in Clusters

Update Centers

If

(Terminiation

Condition)

No

If

(Worker1)

Save Centers

End

No

Yes

Yes

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

102

Local_part_image = Distribute (Random-images):

job manager distributes random images on

workers to extract SIFT descriptor.

Plus, number of points in cluster: Job manager

gathers the number of images from each cluster

and broadcasts them to all of the workers for

updating centroids.

Plus, Euclidean distance between SiftDescriptors

and center: job manager gathers Euclidean

distances between sift descriptors and centers then

broadcasts them to all of the workers for updating

centroids.

The remainder of the code is executed in parallel

on all of the workers. Also, these parallel parts are

represented in the worker section of Figure 3.

5.2. Definition of Job 2

Job 2 performs the following steps:

1. Extracting SIFT descriptors for training set

2. Creating Histograms Pyramid of SIFT

descriptors

3. Computing Spatial Pyramid Match Kernel

Job manager distributes images among workers,

and every worker extracts SIFT descriptors of its

part of the images. Also, workers compute

histograms of these features and construct a

pyramid of histograms. Until now, workers do not

require to communicate with each other but they

must transfer data between themselves for

computing spatial pyramid match kernel. Kernel

is a symmetric matrix, where element

indicates the value of kernel function

corresponding to images . Each worker alone

cannot compute the kernel value corresponding to

its own images because they need histograms of

other images to calculate matches between them.

Here, two solutions are suggested for the workers

required communication for transferring

histograms of their own images:

1. Using the MPI function to concatenate all

histograms from workers, and then

broadcasting them by the job manager.

Each worker calculates the rows of its part

of the kernel matrix (concatenation

method).

2. Computing half of the kernel matrix by

transmitting half of the data (round

method). The designed procedure is

depicted in Figure 5.

Function Paralleljob1(Random-images)//Run this function as parallel

job on all of workers

Begin

Local_part_image=distribute(Random_images)

for Each image of local_part_image do

 Call Generate SiftDescriptor WITH image RETURNING

SiftDescriptor

end

N-Clusters=200

Iterations=100

CenterLab=N-Clusters/NumLabs of Random selected SiftDescriptors

Centers=Concatenate(CenterLab) //using gcat MPI function of

MATLAB

for Number of K-means Iterations do

Assign each SiftDescriptor to nearest center

for each center of N-Clusters do

plus number of points in cluster //using gplus MPI

function

Plus Euclidean distance between SiftDescriptors and

center //using gplus MPI function of MATLAB

end

Upfate Centers

if Labindex=1 then

Save Centers

end

end

end

Figure 4. Pseudo-code of Job 1 that runs on workers simultaneously. Some functions not interfering with parallel

implementation are considered as black box and are just called.

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

103

A loop was defined, whose number of iterations is

half of the number of workers. At the first

iteration, every worker sends its data to the next

one, and at the same time receives data from the

former worker. At the next iterations, the

labindex-th worker (worker[labindex]) sends

histograms to worker [labindex+2] and receives

histograms from worker [labindex-2], and so on.

Figure 5. Round method for communication between 8

workers: each worker sends data to another one and

receives data from others simultaneously in every

iteration.

Figure 6. Steps of Job 2

At the end of the iterations, workers compute

rows of the kernel matrix corresponding to their

part of images and receive images according to

(3). Thus, this method helps workers avoid

waiting for a long time to communicate. Figure 6

shows the configuration of this job. The pseudo-

code of parallel job 2 is illustrated in figure 7.

The code represented in figure 6 is executed on all

of the workers in parallel. The parts that are

relevant to gathering or distributing information

are automatically performed using the job

manager. These parts include:

Local part image=distribute(images): The job

manager distributes random images on workers to

extract SIFT descriptors.
Gather LocalKernelMatrix from all workers to build

KernelMatrix: job manager should collect

information from all workers to build kernel

matrix.

KernelMatrix: job manager should collect

information from all workers to build kernel

matrix.

The remainder of the code required to run on all

the workers in parallel, as presented in the worker

part of figure 6.

At the end of the procedure, the MPI function

gathers different parts of kernel matrix that are in

workers’ memory, and then they are saved by one

of the workers, for example, worker number one.

5.3. Time complexity of algorithm

To obtain the time complexity of the sequential

algorithm, 4 parts might be considered:

1. Computing SIFT descriptors: (*)O n g , n:

number of images, g: number of grids.

2. K-means algorithm: ()O mkl , m: number of

random images used in clustering, k: number

of clusters, l: number of iterations.

3. Computing histograms and their pyramid:

(*2)po n p: number of patches.

4. Computing Kernel Matrix: 2()O n .

Overall, the time complexity of the sequential

algorithm is 2()O n .

In the parallel algorithm, all parts are based on

distributing data, thus the time complexity of parts

is as follows:

1. (* /)O n g N : Without any communication

time, N: number of cores (workers).

2. (/)O mkl N : The time complexity for

computing + ()O k : The time complexity of

communication for transferring centers of

clusters. k is always much smaller than m, so

the whole complexity of this part is

(/)O mkl N .

3. (*2 / N)pO n .

4. 2(/)O n N : The time complexity for

computing + (N/ 2*n/ N)O : The time

Job

Manager
Workers

Distribution

of Data
Receive Data

Extract SIFT

Compute Histograms

Compute Pyramid of

Histograms

Send data to worker No.
Mod (labindex+i-1,numlabs)+1

Compute PMK

 i<=(numlabs/2) no

If
(Worker 1)

Save Kernel Matrix

End

yes

i=i+1

Receive data from worker No.
Mod (labindex-(i+1),numlabs)+1

Gather
Kernel

Matrix

i=1

no

yes

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

104

complexity of communication for transferring

histograms.

5. The whole complexity of this part is
2(/)O n N .

Overall, the time complexity of the parallel

algorithm is 2(/)O n N . The interesting point is

that the time complexity of communication in the

problem with large datasets has a very smaller

growth compared to the computation time. Thus

the parallel algorithm can be effective and

optimum.

Experiments

For our experimental evaluation, the Caltech101

database was exploited [22]. Caltech is an object

image database utilized for object recognition

method assessment. Pictures of objects belong to

101 categories. There are 40 to 800 images per

category. Most categories have about 50 images.

They have been collected in September 2003 by

Fei-Fei Li et al. The size of each image is roughly

300x200 pixels. The SVM classifier is trained on

SIFT features from 200 random images. The

kernel of SVM is spatial pyramid match kernel

calculated for a pair of images in the parallel

section. The trained model of SVM can be used to

test unseen images in the test phase. Due to

focuses on the train phase, the detail of test is not

considered in this paper but for evaluation of the

results compared to serial version of algorithm,

100 images are randomly selected to test the

model.

There are four workers defined on each computer,

one for every core, i.e. a total of 20 workers.

Hence, worker in this paper means core. One of

the computers is designated as the job manager.

Some parameters that are used in the experiments

are as follow:

1. Number of histogram levels: 4

2. Number of K-means clusters: 200

3. Number of pixels of image grid: 8

Job 1 and job 2 are evaluated on different

numbers of images and workers for several times

to compute how much speed-up is achieved

compared to the serial algorithm. In parallel

computing, speed-up refers to how faster a

parallel algorithm is compared to the

corresponding sequential algorithm. Speed-up is

the ratio of the sequential algorithm execution

time to parallel algorithm. Linear speed-up or

ideal speed-up is obtained when speed-up is equal

to the number of processors.

Function Paralleljob2(images)//Run this function as parallel job on

all of workers

Begin

Load centers of clusters

Local_part_image=distribute(images)

for Each image of Local_part_image do

Call GenerateSiftDescriptor WITH image RETURNING

SiftDescriptor

Call BuildHistogarm WITH SiftDescriptor,Centers ReTURNING

Histogarm

Call BuildPyramid WITH Histogram RETURNING Pyramid

end

for i=1 to (NumLabs/2)-1 do

LabTo =mod(labindex+i-1, numlabs)+1

LabFrom = mod(labindex – (i+1), numlabs)+1

Received_pyramid=labSendReceive(lab To, LabFrom,Pyrsmid)

//a function from MATLAB PCT

Call BuildKernel WITH Recienvedpyramid, Pyramid RETURNING

LocalKerenMatrix

end

Gather LocalKernelMatrix from all workers To build KernelMatrix

//using gather function of MATLAB PCT

if Labindex=1 then

Save KernelMatrix

end

end

Figure 7. Pseudo-code of Job 2 that runs on workers simultaneously. Some functions that do not interfere with

parallel implementation are considered as black box and are just called.

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

105

6.1. Evaluation of job 1

Job 1 extracts SIFT descriptors for randomly

selected images, and then executes K-means.

Termination of K-means occurs when the

clustering error is less than 0.1 or the number of

iterations exceeds 100. Speed-up depends on the

number of workers but it does not increase

linearly. 12 workers give us the highest speed-up.

Figure 8(a) shows changes in job runtime with

different numbers of workers. The decrease in the

runtime with increase in the number of workers is

not true for all cases.

 The reason for this inconsistency is that when the

number of workers increases, CPUs spend more

time to send, receive or wait for the data, so

computation ratio decreases. Therefore, there is a

trade-off between the communication cost and

speed-up. Figure 8(b) illustrates the speed-up ratio

of job 1 on different numbers of images. Notice

that each image has roughly 1000 extracted

features. Thus for 200 selected images, K-means

clustering is executed on 200000 data points. As

the number of data points goes up, the speed-up

ratio of the parallel process increases. More data

points cause computation to take more time than

communication because the number of centers is

constant. Figure 9(a) shows the ratio of

computation time to total time. As the number of

workers is increased, this ratio decreases. Also,

the total amount of data that is transferred among

workers is shown in this diagram. The relationship

between increasing data transformation and

number of workers is linear.

 Figure 9(b) represents the communication time

and the ratio of communication cost related to

total time of running job 1. As it is shown,

increasing the number of workers causes increase

in the communication cost, for example, 20% of

time is taken for communication when the number

of workers is 12. Although this is a lot of time of

running, analyzing two jobs totally shows a good

speed-up.

6.2. Evaluation of job 2

Job 2 extracts SIFT descriptors of all images, and

then computes pyramid of histogram and SPK

using clusters obtained by job 1. Computers

access map network drive to read the necessary

data. For the training stage, 15 or 30 images are

selected from each category.

(a) (b)

Figure 8. Time taken to run Job 1 on 200 images with different numbers of cores (workers) (a). Speed-up with different

number of images (50, 100, 150, 200) on Job 1 (b).

(a) (b)

Figure 9. Transferred data in Mb and ratio of computation to total time in Job 1 (a). Communication time and ratio of

communication to total time in Job 1 (b).

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

106

Different speed-ups result with varying numbers

of workers. Evaluation is done in two methods of

data transmission:

1.1. Round method

2.1. Concatenation method.

Figure 10(a and b) show the obtained job 2 speed-

up and runtime. The number of images per

category is 30. As the number of workers is

increased, the runtime decreases; however, this

time reduction (speed-up) is not linear because of

the communication time but the acceptable speed-

up is achieved. The maximum speed-up (15) is

observed using the round method with 20

workers. An important point about speed-up

enhancement is acceleration. Increasing workers

enhances speed-up but the diagram deviates from

a linear speed-up. Thus, a trade-off between cost

and speed-up in parallelization is necessary. The

best choice for the number of workers depends on

the application of the method. In some situations,

the algorithm runtime is the most important issue.

Hence, obtaining a maximum speed-up using full

resources is a rational decision.

Figure 11(a) demonstrates the ratio of

computation to total time and transformation data

of job 2 in details for different numbers of

workers. Although the total time is reduced for a

higher number of workers, the communication

time and data transformation between all workers

increase and the computation time decreases. In

this situation, a worker should send data to more

workers. Figure 11(b) illustrates the ratio of

communication time to the total time. It is about

50% for 20 workers. It means that the

communication cost strongly affects the speed-up

improvement. At the end of this job, one of the

workers trains SVM using SPK matrix obtained

by job 2 and pyramid of histograms as feature

vectors. All of these parallel steps can be repeated

for testing a remarkable number of images;

otherwise, with a few number of images, running

the serial algorithm takes less time. Thus

parallelization is not beneficial. About the

efficiency of implementation, it must be

emphasized that parallelization does not affect the

accuracy of the method to recognize category of

objects, thus parallel computing saves time and

offers a better performance.

6.3. Merging of two jobs

In the previous section, the best performance of

each job was discussed independently. Job 1

achieves the best speed-up with 12 workers, and

job-2 with 20 workers. Resources have to be

shared between these two jobs to run

simultaneously. Hence, it is important to divide 20

workers in such a way that the best performance is

obtained. It is obvious that job 2 needs data from

job 1 for making a histogram; thus the best

performance can be achieved when job 1 and the

extracting SIFT in job 2 finish simultaneously.

Job 1 and just extracting SIFT in job 2 can be

performed in parallel. The best situation is

achieved when these two parts end

simultaneously, and then data from job 1 is

employed by job 2 to continue the work. Studying

the experiments, if 2 workers are used for job 1

and 18 workers for job 2, job 2 does not have to

be idle for job 1, and in this situation, 13 is the

best speed-up.

(a) (b)
Figure 10. Time taken to run job 2 in two methods, round and concatenation (a). Speed-up of two methods, round and

concatenation.

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

107

 7. Conclusion

This paper has presented a parallel version of an

object recognition method. This method applies a

spatial pyramid match kernel to a support vector

machine classifier to recognize image categories.

Our implementation parallelizes different steps of

calculating kernel on a cluster of computers. The

MATLAB parallel computing toolbox was used to

distribute jobs on computers. Parallel algorithm is

thirteen times faster than the serial version for a

configuration up to 5 Quad processors. The results

obtained show that the accuracy of the method is

not affected by parallelization. Thus the

implementation is well-suited for applying in

other research works that use this kernel.

8. References
[1] Vapnik, V. N. & Kotz, S. (1982). Estimation of

dependences based on empirical data. Springer-Verlag

New York.

[2] Lazebnik , S., Schmid C. & Ponce, J. (2006).

Beyond bags of features: Spatial pyramid matching for

recognizing natural scene categories, IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition, New York, USA, 2006.

[3] Sharma, G. & Martin, J. MATLAB®: a language

for parallel computing, (2009). International Journal of

Parallel Programming, vol. 37, pp. 3-36.

[4] Halkidi, M., Batistakis, Y. & Vazirgiannis, M.

(2001). On clustering validation techniques, Journal of

intelligent information systems, vol. 17, pp. 107-145.

[5] Lowe, D. G. (2004). Distinctive image features

from scale-invariant keypoints, International journal of

computer vision, vol. 60, pp. 91-110.

[6] Ramesh, V., Ramar, K. & S. Babu, (2013). Parallel

K-Means Algorithm on Agricultural Databases.

International Journal of Computer Science Issues

(IJCSI), vol. 10, pp. 46-56.

[7] Baydoun, M., Dawi, M. & Ghaziri , H. (2016).

Enhanced parallel implementation of the K-Means

clustering algorithm. 3rd International Conference on

Advances in Computational Tools for Engineering

Applications (ACTEA), Lebanon, 2016.

[8] Askari, M., Asadi, M., Asilian Bidgoli, A. &

Ebrahimpour, H. (2016). Isolated Persian/Arabic

handwriting characters: Derivative projection profile

features, implemented on GPUs. Journal of AI and

Data Mining, vol. 4, pp. 9-17.

[9] Dagum, L. & Menon, R. (1998). OpenMP: an

industry standard API for shared-memory

programming, Computational Science & Engineering,

vol. 5, pp. 46-55.

[10] Warn, S., Emeneker, W., Cothren, J. & Apon A.

W. (2009). Accelerating SIFT on parallel architectures,

IEEE International Conference on Cluster Computing

and workshops, Louisiana, USA, 2009.

[11] Feng, H., Li, E., Chen, Y. & Zhang, Y. (2008).

Parallelization and characterization of SIFT on multi-

core systems, IEEE International Symposium on

Workload Characterization, Seattle, USA, 2008.

[12] Peng, J., Liu, Y., Lyu, C., Li, Y., Zhou, W., &

Fan, K. (2016). FPGA-based parallel hardware

architecture for SIFT algorithm, IEEE International

Conference on Real-time Computing and Robotics

(RCAR), Angkor Wat, Cambodia , 2016.

[13] Caruana, G., Li, M. & Qi, M. (2011). A

MapReduce based parallel SVM for large scale spam

filtering, Eighth International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD), Shanghai,

China, 2011.

[14] Tan, K., Zhang, J., Du Q. & Wang, X. (2015).

GPU parallel implementation of support vector

machines for hyperspectral image classification, IEEE

Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 8, pp. 4647-

4656.

(a) (b)

Figure 11. Transferred data in Mb and ratio of computation to total time in Job 2 (a). Communication time and ratio of

communication to total time in Job 2 (b).

http://www.ieee-ras.org/component/rseventspro/location/300-angkor-wat-cambodia

AsilianBidgoli et al./ Journal of AI and Data Mining, Vol 7, No 1, 2019.

108

[15] Díaz-Morales, R. & Navia-Vázquez, Á. (2016).

Efficient parallel implementation of kernel methods,

Neurocomputing, vol. 191, pp. 175-186.

[16] Cao, H. & Chen, J. (2012). Multicore Computing

for SIFT Algorithm in MATLAB® Parallel

Environment, 18th International Conference on Parallel

and Distributed Systems, Shenzhen, China, 2012.

[17] Guilfoos, B., Gardiner, J., Chaves, J. C. Nehrbass,

J., Ahalt, S. & Krishnamurthy, A. (2006). Applications

in Parallel MATLAB, HPCMP Users Group

Conference, DC, USA, 2006.

[18] Guifen, C., Baocheng, W. & Helong, Y. (2007) .

The implementation of parallel genetic algorithm based

on MATLAB, Advanced Parallel Processing

Technologies, stockholm, Sweden, 2007.

[19] Grauman, K. & Darrell, T. (2005). The pyramid

match kernel: Discriminative classification with sets of

image features, Tenth IEEE International Conference

on Computer Vision, Beijing, China, 2005.

[20] Harrism, C. & Stephens, M. (1988). A combined

corner and edge detector, Alvey vision conference,

Manchester , England, 1988.

[21] Fei-Fei, L. & Perona, P. (2005). A bayesian

hierarchical model for learning natural scene

categories, IEEE Computer Society Conference on

Computer Vision and Pattern Recognitio, DC, USA,

2005.

[22] Fei-Fei, L., Fergus, R. & Perona, P. (2007).

Learning generative visual models from few training

examples: An incremental bayesian approach tested on

101 object categories, Computer Vision and Image

Understanding, vol. 106, pp. 59-70.

 نشریه هوش مصنوعی و داده کاوی

 شناسایی برای کامپیوترها از کلاستری از استفاده با مکانی هرمی تطبیقی هسته الگوریتم سازی موازی

 دیجیتال تصاویر در اشیا

 2راد موسوی الدین سیدجلال و 2عسکری میثم ،2کومله پور ابراهیم حسین ،1بیدگلی اصیلیان اعظم

 .ایران قم، پویش، عالی آموزش موسسه کامپیوتر، و برق مهندسی دانشکده - ایران کاشان، کاشان، دانشگاه کامپیوتر، مهندسی دانشکده 1

 .ایران کاشان، کاشان، دانشگاه کامپیوتر، مهندسی دانشکده 2

 01/42/5402 پذیرش؛ 05/42/5402بازنگری؛ 52/40/5402 ارسال

 چکیده:

های اخیرر الگروریتم هسرته تطبیرق هرمری مکرانی یکری از دهد. در سالسازی موازی از الگوریتم هسته تطبیق هرمی مکانی را ارائه میاین مقاله پیاده

توابع واسط تبادل پیام متلر سازی شود. در این پیادهبند ماشین بردار پشتیبان در شناسایی اشیا با دقت بالا محسوب میهای پرکاربرد برای طبقههسته

انرد. الگروریتم هسرته تطبیرق بندی تصاویر کمک شایان تروههی کرردهبا استفاده از دو مدل موازی سازی داده و موازی سازی کار به بهبود کارایی طبقه

شود. میزان تسریع بدسرت ریتم ترتیبی میهرمی مکانی موازی روی کلاستری از کامپیوترها اهرا شده و باعث کاهش زمان اهرای الگوریتم نسبت به الگو

 2برا اسرتفاده از 01سازی میزان تسریعی برابرر تواند متفاوت باشد. در این پیادههای آن میآمده الگوریتم موازی با توهه به تعداد پردازنده و تعداد هسته

 ای بدست آمده است.هسته 0کامپیوتر با پردازنده های

 .بند ماشین بردار پشتیبانای از کامیپوترها طبقه هسته تطبیق هرمی مکانی محاسبات موازی خوشهشناسایی الگو :کلمات کلیدی

