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 Lung cancer is a highly serious illness, and detecting cancer cells 

early significantly enhances patients' chances of recovery. Doctors 

regularly examine a large number of CT scan images, which can lead 

to fatigue and errors. Therefore, there is a need to create a tool that 

can automatically detect and classify lung nodules in their early 

stages. Computer-aided diagnosis systems, often employing image 

processing and machine learning techniques, assist radiologists in 

identifying, and categorizing these nodules. Previous studies have 

often used complex models or pre-trained networks that demand 

significant computational power and a long time to execute. Our goal 

is to achieve accurate diagnosis without the need for extensive 

computational resources. We introduce a simple convolutional neural 

network with only two convolution layers, capable of accurately 

classifying nodules without requiring advanced computing 

capabilities. We conducted training and validation on two datasets, 

LIDC-IDRI and LUNA16, achieving impressive accuracies of 99.7% 

and 97.52%, respectively. These results demonstrate the superior 

accuracy of our proposed model compared to state-of-the-art research 

papers. 
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1. Introduction 

Lung cancer, one of the most prevalent forms of 

cancer, has garnered significant attention from 

medical professionals and researchers alike. 

Currently, it stands as the leading cause of cancer-

related deaths worldwide. Lung cancer often 

manifests in its early stages as lung nodules, and 

chest CT scans serve as the primary method for its 

detection. One of the key challenges contributing 

to the high mortality rate of lung cancer is the 

absence of noticeable symptoms during its initial 

stages. By the time clinical symptoms become 

evident, the disease has often progressed to 

advanced stages, potentially spreading to other 

parts of the body, significantly reducing the 

chances of successful treatment and cure [1]. 

Despite the daunting 5-year survival rate of less 

than 5% for locally advanced lung cancer, early 

detection when the tumor is small and 

asymptomatic can substantially increase the 5-year 

survival rate to over 60%. This encouraging 

statistic has led to numerous lung cancer screening 

trials [2]. The widespread adoption of CT screening 

techniques has significantly escalated the workload 

for radiologists. The manual analysis of extensive 

CT scans has become an exceptionally laborious 

and time-consuming task [3]. The application of 

artificial intelligence (AI) techniques holds 

significant importance in designing classifier 

systems that can extract features from images and 

distinguish between those displaying signs of 

disease [4]. Computer-aided detection systems 

accelerate the detection speed [5]. Furthermore, 
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utilizing these techniques can prevent screening 

errors, alleviate the diverse workload on clinicians, 

extend patients' survival time, and enhance their 

overall quality of life [6]. The human body consists 

of trillions of cells that undergo growth and 

division to generate new cells following the body's 

needs, a process known as cell division. Typically, 

cells naturally die off, and are replaced with new 

ones as they age or become damaged. However, 

when this natural process is disrupted, damaged 

cells can begin to proliferate, leading to the 

development of tumors. These tumors can be 

categorized as either malignant or benign [7]. Lung 

cancer can be classified into two primary types: 

small-cell lung cancer (SCLC) and non-small-cell 

lung cancer (NSCLC) [8]. 

There are several basic problems in the diagnosis 

and classification of lung cancer: 

One of the primary concerns faced by medical 

professionals is the early detection of lung cancer 

in patients. This is crucial because the majority of 

cases are diagnosed at advanced stages, making 

treatment considerably more challenging [8]. The 

process of screening through CT scans presents 

significant obstacles for radiologists, as millions of 

individuals are anticipated to undergo these scans 

annually, resulting in a substantial volume of 

imaging data [9]. Identifying nodules in CT scans 

does not automatically indicate the presence of 

lung cancer, given the intricate relationship 

between nodule characteristics and the disease 

itself [2]. Consequently, their categorization is a 

formidable task due to the diverse nature of lung 

nodules and their visual resemblance to adjacent 

tissues. 

This paper introduces a novel model utilizing deep 

learning algorithms aimed at enhancing the 

accuracy of the classification of cancerous cells. 

The key innovations highlighted in this paper are: 

1. Improving classification accuracy 

compared to previous papers 

2. Using a model with two convolution layers 

instead of complex models or pre-trained 

networks 

3. Reduction of training time and no need for 

advanced hardware for training due to 

using a model with two convolution layers 

The rest of the paper is organized as what follows. 

Section 2 contains the Literature Review, Section 3 

contains the Materials and Methodology, Section 4 

contains the Results, and Section 5 contains the 

Conclusions.   

 

2. Literature Review 

Al-Shabi et al. [10] established a 2D convolutional 

neural network model called "Gated Dilated" to 

classify lung nodules as either malignant or benign 

using CT images. The Gated Dilated 2D CNN 

employed a unique approach, utilizing multiple 

dilated convolutions instead of the traditional max-

pooling layers. This allowed it to capture features 

at various scales effectively. The model included a 

context-aware sub-network that directed features 

towards specific expanded convolutions. In their 

research paper, the authors conducted a thorough 

performance comparison of the Gated Dilated 2D 

CNN against several other CNN-based models. 

These models included a conventional CNN with 

the same layer count and channel configurations, 

the Gated Dilated 2D CNN without dilation, the 

Gated Dilated 2D CNN without gating, a multi-

crop CNN, and ResNet50 and DenseNet161, both 

trained using two different transfer learning 

methods; they utilized (LIDC-IDRI) dataset in their 

paper. 

The performance of the Gated Dilated 2D CNN 

model was impressive, achieving an overall 

accuracy of 93%, a sensitivity of 92%, and an area 

under the receiver operating characteristic curve 

(AUC) of 95% on the test data. Notably, it slightly 

outperformed all the other CNN-based models 

employed in the study. The results also indicated a 

substantial improvement in accuracy when 

detecting medium-sized nodules with diameters 

ranging from 5 to 12 mm. 

Shen et al. [11] developed an interpretable 

hierarchical semantic 3D Convolutional Neural 

Network (CNN) for evaluating the malignancy of 

lung nodules in CT scans. They used raw cube data 

centered around the nodules from the LIDC-IDRI 

dataset on the TCIA platform. This specific 

convolutional neural network (CNN) has two 

distinct output levels. The initial stage generates 

crucial diagnostic semantic characteristics, while 

the subsequent stage computes the ultimate 

prediction score, indicating the malignancy of the 

identified nodule. These intermediate outputs 

provide insights into how the model interprets the 

raw data and improves the accuracy of the final 

malignancy prediction by using jump connections 

within the model architecture. The drawback of this 

paper lies in its limited reliability, as it achieved an 

accuracy of only 84%, which is relatively low. In 

contrast, our proposed model demonstrated a 

significantly higher accuracy of 99.7% on the 

LIDC-IDRI dataset, making it a more dependable 

and robust solution. 

Ali et al. [12] developed a transferable texture 2D 

Convolutional Neural Network (CNN) to enhance 

the classification of lung nodule status through 

single CT images. They used the LIDC-IDRI 

dataset on the TCIA platform in their paper. 
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One noteworthy aspect of their model was the 

integration of an energy layer within its 

architecture. This energy layer served the purpose 

of extracting texture features from the 

convolutional layer. The inclusion of this energy 

layer brought about several advantages including 

the reduction of model parameters. As a result, it 

led to a decrease in computational complexity and 

memory requirements for the model. 

The transferable texture in 2D CNN delivered its 

most impressive performance when evaluated on 

the LIDC-IDRI dataset. It achieved remarkable 

results with an overall accuracy (ACC) of 97%, a 

sensitivity (SE) of 96%, and an area under the 

receiver operating characteristic curve (AUC) of 

99% on the test data. These outcomes prove the 

model's proficiency in accurately categorizing lung 

nodule status, especially when applied to the 

LIDC-IDRI dataset. 

Lin et al. [13] introduced a 2D convolutional neural 

network (CNN) combined with Taguchi parametric 

optimization for the automated classification of 

lung nodules as either malignant or benign using 

CT images. 

This paper employed the Taguchi method, a 

statistical technique using orthogonal arrays to 

optimize process parameters. A total of 36 

experiments were conducted, considering 8 control 

factors at different levels. The goal was to identify 

the best combination of parameters and improve 

the model's performance. 

Liu et al. [14] introduced a three-dimensional 

(CNN)-based multi-model ensemble learning 

approach for identifying malignant and benign lung 

nodules in CT scans. 

They introduced a 3D (CNN)-based multi-model 

ensemble learning approach for the identification 

of malignant and benign lung nodules in CT scans. 

They conducted their study using data from the 

LIDC-IDRI dataset available on the TCIA 

platform. 

Their approach involved the creation of multiple 

independent neural networks, each designed to 

simulate different expert behaviors. These 

networks were then combined using ensemble 

learning techniques to consolidate their results. 

Ensemble learning using a multi-model approach 

with 3D CNNs featured three distinct architectural 

variations. These were based on VGGNet, ResNet, 

and Inception Net. Within each of these 

architectural categories, there were three 

substructures, each designed to accept different 

input sizes. In this paper, the authors achieved an 

Area Under the Curve (AUC) of 94%, whereas our 

proposed model attained a remarkable AUC of 

99%. Notably, the Convolutional Neural Network 

(CNN) employed in our study exhibits lower 

complexity compared to the CNN utilized in their 

research. 

Kareem et al. [15] proposed a CAD-based system 

for the classification of lung cancer into either 

benign (non-cancerous) or malignant (cancerous) 

using the IQ-OTH/NCCD dataset. Here, images 

were first pre-processed by applying three image-

processing techniques of image enhancement, 

segmentation, and feature extraction using Gabor 

and GLCM filters, which were then classified using 

an SVM classifier. Their proposed method 

obtained 89.88% accuracy using a polynomial 

kernel. Machine learning-based methods perform 

effectively with fewer datasets; however, they 

necessitate manual feature extraction and selection 

processes, leading to heightened computational 

time and complexity. These challenges have been 

addressed through the utilization of various deep 

learning (DL) models, particularly Convolutional 

Neural Networks (CNNs), which have proven 

instrumental in image classification, detection, and 

segmentation tasks, overcoming the 

aforementioned limitations. 

Zhao et al. [16] developed a multi-scale, multi-task 

3D convolutional neural network methodology for 

classifying lung nodules as malignant or benign 

based on CT scans. In this paper, the LIDC-IDRI 

dataset is used. They conducted multi-scale volume 

extraction, generating two different-scale volumes 

from the data. To enhance training, they introduced 

a novel loss function as part of their model training. 

The result shows that the accuracy for this model 

was 94 percent. 

Training 3D Convolutional Neural Networks 

(CNNs) demands substantial computational 

resources. One potential solution to this challenge 

is the utilization of models like 2D CNNs, which 

can mitigate the computational demands while still 

delivering effective results. 

Halder et al. [17] A framework for classifying lung 

nodule status from CT images was developed. This 

framework utilized adaptive morphology-based 

operations along with the Gabor filter. It was 

coined the "two-path morphological 2D CNN." 

They selected a dataset consisting of 2,600 lung 

nodule slices, evenly divided between 1,300 benign 

and 1,300 malignant cases. These slices were 

obtained from the LIDC-IDRI dataset available on 

the TCIA platform. Morphology-based operations: 

Various morphology-based operations were 

applied to filter and process the lung nodules. 

Gabor filter: The Gabor filter was employed to 

capture texture variations present in the lung 

nodules. 

Two-path morphological 2D CNN: The core of 
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their framework consisted of a two-path 2D 

Convolutional Neural Network (CNN), where both 

paths utilized the VGGNet architecture. 

Jena et al. [18] introduced a neural network 

approach with multiple-layer latent variables for 

the classification of lung nodules as malignant or 

benign using CT images. In their methodology, the 

researchers selected images from the LIDC-IDRI 

dataset, available on the TCIA platform, for their 

experiments. To enhance image quality, they 

applied Gaussian and Wiener filters for noise 

reduction. They employed a region-growing 

segmentation technique to identify the region of 

interest (ROI), merging adjacent pixels to create 

larger regions. From these segmented lung nodules, 

they manually extracted essential features like area, 

perimeter, entropy, and intensity. To manage 

feature dimensionality, a deep Gaussian mixture 

model was utilized. Finally, they conducted nodule 

classification using a region-based 2D 

convolutional neural network (CNN). They got 88 

percent accuracy in their paper. However, they 

acknowledged the need for improvements in the 

feature extraction step. The drawback of this paper 

is their achieved sensitivity of 70%. In our study, 

we observed a sensitivity of 99% in the LIDC-IDRI 

dataset, indicating a substantial improvement over 

their results. 

Yu et al. [19] introduced a framework for the 

segmentation and classification of lung nodules in 

CT scans. Their approach comprised two main 

components: for segmentation lung module they 

used 3D Res U-Net and 3D ResNet50 utilized for 

classification. Their comprehensive methodology 

consisted of several key steps. Firstly, they 

meticulously prepared the data by standardizing 

CT scans to the Hounsfield Unit (HU) scale and 

ensuring consistent voxel spacing in various 

planes. Subsequently, they enhanced data quality 

through processes such as binarization and the 

removal of unwanted regions like bed frames and 

air. To refine the lung mask, morphological 

techniques were applied to fill gaps in the lung 

parenchyma. They then employed a specialized 3D 

Res U-Net model for the automated segmentation 

of lung nodules, using the refined lung mask as a 

basis. Following this segmentation, specific 

regions of interest (ROIs) measuring 48 × 48 × 16 

voxels were extracted based on the predicted lung 

nodule mask. Finally, they achieved 87% accuracy 

in their method. In this paper, the authors reported 

an Area Under the Curve (AUC) of 91%, whereas 

our proposed model achieved a significantly higher 

AUC of 99% on the LIDC-IDRI dataset. Notably, 

the Convolutional Neural Network (CNN) utilized 

in our study is less complex than the one employed 

in their research. 

Liao et al. [20] introduced a unique two-module 3D 

deep U-net-like network architecture for lung 

nodule analysis. The first module's purpose was to 

detect and identify suspicious nodules within a 

patient's scans. Subsequently, the second module 

focused on selecting the top 5 nodules based on 

their detection confidence levels. It then calculated 

the probabilities, indicating the likelihood of these 

nodules being cancerous. The results showed a 

classification accuracy of 81.42%, indicating the 

model's proficiency in making correct predictions, 

and an AUC of 0.87, reflecting its capability in 

distinguishing between different classes in this 

context. One drawback of this paper is its relatively 

low accuracy of 81.42%, rendering the results less 

reliable. In contrast, our proposed model 

demonstrated a significantly higher accuracy of 

97.52% on the LUNA16 dataset, establishing its 

superior reliability and performance. 

A group of triple neural networks was developed 

by Utkin et al. [21] to address the inclusion of 

unusual cancer cases in their research. These 

networks were based on a collection of five 

histograms that were collected from segmented 

nodule areas, and described different facets of the 

morphology, inner structure, and exterior structure 

of lung nodules. The model's overall classification 

ability was demonstrated by the approach's 

impressive classification findings, which included 

an accuracy rate of 91.8%. Additionally, the model 

showed a high sensitivity of 90.8%, underscoring 

its ability to accurately identify true positives, and 

a precision of 92.6%, indicating its proficiency in 

doing so in this particular environment. 

A classification framework for differentiating 

between benign and malignant lung nodules was 

presented by Zhang et al. [22]. To recalibrate 

features and improve feature reuse, their method 

combined a squeeze-and-excitation network with 

aggregated residual transformations, known as SE-

ResNeXt modules. The results of their 

investigation demonstrated outstanding 

performance, with the model attaining an 

exceptional Area Under the Curve (AUC) score of 

0.9563 and a high accuracy rate of 91.67%, 

highlighting its usefulness in this classification 

assignment. 

Yuan et al. [23] introduced a 3D convolutional 

network designed for the classification of nodules 

versus non-nodules. This network extracted spatial 

information through three distinct paths, each with 

varying field sizes, and then combined these 

pathways later in the model. Their model 

necessitated approximately 48 hours of training 

time and utilized 10,855 MB of memory. In 
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contrast, our model requires less training time and 

consumes fewer system resources due to its lower 

complexity. 

Zhang et al. [24] introduced a DenseNet 

architecture that incorporated 3D filters and 

pooling kernels, complemented by data 

augmentation techniques, to classify malignancy 

versus benign status. Their findings revealed 

noteworthy results, with the model achieving an 

accuracy rate of 92.4%. Additionally, the model 

demonstrated a high specificity of 96.0%, 

indicating its ability to accurately identify true 

negative cases, and a sensitivity of 87.0%, 

illustrating its capacity to effectively detect true 

positives in this classification task. 

Mastouri et al. [25] introduced a classification 

approach for distinguishing between nodules and 

non-nodules. Their method utilized bilinear CNN 

(BCNN) structures in conjunction with a linear 

Support Vector Machine (SVM) for the 

classification task. They leveraged pre-trained 

VGG16 and VGG19 structures, which were fine-

tuned on their dataset, to extract relevant features, 

forming the basis for the bilinear architectures. The 

results of their study were notable, with the model 

achieving an accuracy of 91.99%, indicating its 

overall classification performance. Additionally, 

the model exhibited a specificity of 92.27%, 

emphasizing its ability to accurately identify true 

negatives, and a sensitivity of 91.85%, highlighting 

its capacity to effectively detect true positives in 

the nodules vs. non-nodules classification task. 

In conclusion, none of the previously state-of-the-

art methods discussed in this literature review have 

demonstrated significant effectiveness in detecting 

cancerous lung masses, primarily due to minor 

practical differences among them. In our approach, 

we employed a low-complexity convolutional 

architecture. This design enables the network to 

discern intricate details within the images, 

distinguishing between those containing cancerous 

lung masses and non-cancerous counterparts. Our 

primary goal is to create a robust feature extractor 

from images, aiming to enhance accuracy for the 

classification of adult lung cancerous masses. 

 

3. Materials and Methodology  

This paper presents a comprehensive research 

framework encompassing five essential steps for 

the task at hand, as shown in Figure 1. Firstly, it 

begins with the acquisition and preparation of input 

images. These images are then subjected to 

rigorous data pre-processing techniques in the 

second step to enhance their quality and 

consistency. Moving on to the third step, a CNN 

model is carefully designed and configured to 

extract meaningful features from the pre-processed 

data. Subsequently, the fourth step involves 

training the CNN model using a suitable dataset, 

allowing it to learn and adapt to the specific task. 

Finally, in the fifth step, the trained model is 

deployed for classification purposes, enabling it to 

accurately categorize and make predictions based 

on the input data. Together, these five steps form a 

structured framework for addressing the problem at 

hand efficiently and effectively. 
 

Input Images

Data Pre-Processing

CNN Model

Model Training

Classification

 
Figure 1. Research framework. 

 

3.1. First phase: input images 

We used two LIDC-IDRI and LUNA16 datasets in 

this paper. 

CT scans remain the most effective modality for 

tumor identification due to their widespread 

availability, affordability, and superior resolution. 

Below we review the most important datasets that 

can be used for nodule classification in the lungs 

[26]. 

 

3.1.1. LIDC-IDRI dataset  

The Lung Image Dataset Consortium and Image 

Dataset Resource Initiative (LIDC-IDRI) stand as 

the foremost and most extensively utilized resource 

in its field. It comprises thoracic CT scans, totaling 

1018 scans derived from 1010 patients. These 

scans are formatted in Digital Imaging and 

Communications in Medicine (DICOM). 

Furthermore, an annotation file accompanies the 

dataset, containing information about lung nodules. 

It's worth noting that this dataset has undergone 

meticulous annotation by four radiologists. Within 

this dataset, each CT scan slice varies in thickness, 

ranging from 1.25 to 2.5 mm, and pixel size falls 

between 0.48 and 0.72 mm. In the initial annotation 

phase, each radiologist independently marked the 

CT scan images, classifying lesions as nodules with 
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a diameter of 3 mm or larger, nodules with a 

diameter of less than 3 mm or non-nodules with a 

diameter of 3 mm or larger. In a subsequent phase, 

each radiologist cross-referenced their annotations 

with those of their colleagues to arrive at a 

consensus on the findings. For each dataset entry, 

segmentation masks are provided for all the 

nodules present in the dataset [26]. 

 

3.1.2. LUNA16 dataset 

The LUNA16 dataset comprises 888 CT scans, 

each with a slice thickness of less than 2.5 mm. 

These CT scan images are stored in the MHD 

format. It's crucial to note that this dataset is a 

subset of the larger LIDC-IDRI dataset and 

includes an annotation file detailing 1186 nodules. 

Importantly, these nodules have been meticulously 

annotated by a minimum of three radiologists. 

Nodules that received annotations from only one or 

two radiologists were excluded from the dataset 

[26]. 

 

3.2. Second phase: data pre-processing 

In this section, from the LUNA16 dataset, we 

extracted 444 images of benign nodules and 444 

images of malignant nodules, and the data are 

balanced. Figure 2 shows an example of a lung 

nodule image in this dataset. 
 

 
Figure 2. An example of a lung nodule image in the 

LUNA16 dataset. 

To increase the number of data for the training 

proposed method, we rotated each nodule image in 

3 directions, and reversed the original image. The 

result is shown in Figure 3. 
 

 
Figure 3. Augmenting data by rotating and inverting 

images in the LUNA16 dataset. 

 

After this step, the number of data increased to 

4440 data. Figure 4 shows that there are 2220 

images of benign nodules and 2220 images of 

malignant nodules, so the data is balanced. 

Because lung nodules are very small and cannot be 

easily identified on thick CT scans, we excluded 

scans with a slice thickness greater than 2.5 mm in 

the LIDC-IDRI dataset. Finally, 900 labeled CT 

scans were obtained after balancing the data, 

including 450 benign CT scans and 450 malignant 

CT scans. We cut the CT scan images of the LIDC-

IDRI dataset and separated the nodule part. 

Therefore, each image of the LIDC-IDRI dataset 

was divided into 100 parts by an automatic tool, 

and then we manually separated the lung nodule 

part from the other parts of the lung. The size of 

each of the divided images is 50x50. We can see 

the image sample in the LIDC-IDRI dataset in 

Figure 5 and the CT scan segmentation result in 

Figure 6. To increase the number of data by using 

an automatic tool written in Python, we rotated 

each nodule image in 3 directions, and reversed the 

original image. The result is shown in Figure 7. 
 

 
Figure 4. The number of data in both classes in the 

LUNA16 dataset. 

 

 
Figure 5. CT scan example of the LIDC-IDRI dataset. 

 

 
Figure 6. The result of dividing the CT scan into 100 

parts. 

 

 
Figure 7. Data augmentation by rotating and inverting 

images in the LIDC-IDRI dataset. 
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After doing this step, the number of data increased 

to 4500 data. Figure 8 shows that there are 2250 

images of benign nodules and 2250 images of 

malignant nodules, so the data is balanced. 
 

 
Figure 8. The number of data in both classes in the LIDC-

IDRI dataset. 

 

Further, in both datasets, we divided the data into 

training and validation data, and considered 70% of 

the data for training and 30% for validation. 

 

3.3. Third phase: proposed model 

This paper used a two-dimensional convolutional 

neural network with two layers. The structure of 

this neural network is shown in Figure 9. 

Input Image (50, 50, 1)

Conv2D –    – 3x3 – ReLU

MaxPooling2D

Conv2D –    – 3x3 – ReLU

MaxPooling2D

Flatten

Dense –    – ReLU

Dense –    – ReLU

Dropout –    

Dense –   – SoftMax

Malignant Benign

 
Figure 9. Structure of the proposed convolutional neural 

network. 

 

This paper focuses on classifying lung cancer into 

two categories: Benign and Malignant, based on 

CT-scan slices of lung nodules. We proposed a 

two-layer convolutional model. The choice of a 

two-layer CNN was driven by the need for a 

balance between model complexity, available data, 

computational resources, and empirical validation 

results. This architecture demonstrated robust 

performance in classifying lung nodules 

accurately, making it a suitable choice for our 

specific research.  The model parameters are shown 

in Table 1. 
 

Table 1. Model training parameters. 

Parameter                             Value  

Classes                                    Benign - Malignant 

batch_size                               32 

Epochs                                    10 

Optimizer                               adam 

Loss                                        sparse_categorical_crossentropy 

Metrics                                   Accuracy 

 

The input layer processes a grayscale 50 x 50 pixels 

image using a 3 x 3 convolution matrix with 16 

filters, applying ReLU activation. The second layer 

employs bi-dimensional max-pooling, halving the 

input's rows and columns while preserving 

maximum values within 2 x 2 squares. The network 

then flattens the bi-dimensional data into a single 

row, consolidating pixel information. The flattened 

data is passed to a dense layer with 64 neurons, 

using ReLU activation, followed by another dense 

layer with 32 neurons and ReLU activation. A 

Dropout layer with a 0.2 dropout rate is added for 

regularization. Finally, the output layer consists of 

a dense layer with 2 neurons, employing SoftMax 

activation for classification. 

Rationale behind the two-layer CNN: 

The complexity of the data: Considering the 

complexity of lung nodule data, a more complex 

network might not necessarily lead to better results, 

especially with limited data. A simpler architecture 

reduces the risk of overfitting, ensuring that the 

model generalizes well to unseen data. 

Data size and complexity: Our datasets, LIDC-

IDRI and LUNA16, while comprehensive, are of 

moderate size. A more intricate network might 

require a vast amount of data to train effectively. 

By opting for a two-layer CNN, we strike a balance 

between model complexity and dataset size, 

ensuring efficient use of available information. 

Empirical Validation: Through iterative 

experimentation, we observed that our two-layer 

CNN achieved satisfactory accuracy and 

convergence within a reasonable training time. 
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Extensive validation using both LIDC-IDRI and 

LUNA16 datasets confirmed the effectiveness of 

our model. 

3.4. Fourth phase: training model 

In this step, the pre-processed data was transferred 

to the deep learning architecture of convolutional 

neural networks to find the patterns in the CT scan 

images. Using the dropout layer helped reduce the 

overfitting problem. Therefore, we specified a 

value of 0.2 for the dropout layer. 

 

3.4.1. Hardware used 

The training and validation processes were carried 

out on a computer device with a Core i5-7400 CPU 

at 3.00 GHz main memory with a capacity of 8 GB 

and an NVIDIA GeForce GT-710 graphics card. 

We used Python version 3.7.5, TensorFlow version 

2.11.0, and Keras version 2.11.1 to implement a 

convolutional neural network. 

 

3.5. Fifth phase: classification 

After training and validation processes, we can use 

this model to classify nodules. We give the image 

of the nodules to the model for classification. 

 

4. Results 
In this section, we present the implementation 

results and conduct a comparative analysis of the 

proposed method against various approaches, 

including the optimal solution, using Python. 

 

4.1. Epochs 

We used 50 training epochs; after 10 epochs, the 

accuracy of the model did not increase, so we set 

the number of training epochs to 10 and achieved 

good accuracy. 
 

Table 2. Increasing the model accuracy and decreasing 

the model loss in each training epoch in the LIDC-IDRI 

dataset. 

Epochs           Loss         Accuracy     Val_loss   Val_accuracy  

Epoch 1/10       0.2786          0.8790          0.0251          0.9963 

Epoch 2/10       0.0533          0.9813          0.0170          0.9956 

Epoch 3/10       0.0262          0.9898          0.0586          0.9815 

Epoch 4/10       0.0165          0.9949          0.0158          0.9963 

Epoch 5/10       0.0137          0.9959          0.0121          0.9978 

Epoch 6/10       0.0164          0.9940          0.0127          0.9970 

Epoch 7/10       0.0055          0.9990          0.0170          0.9948 

Epoch 8/10       0.0061          0.9984          0.0182          0.9963 

Epoch 9/10       0.0035          0.9990          0.0125          0.9970 

Epoch 10/10     0.0053          0.9984          0.0165          0.9970 

 

Curves of increasing model accuracy and 

decreasing model loss according to Table 2 in the 

LIDC-IDRI dataset is shown in Figures 10 and 11. 

 

 
Figure 10. The curve of increasing the model accuracy in 

each training epoch in the LIDC-IDRI dataset. 

 

 
Figure 11. The curve of decreasing the model loss in each 

training epoch in the LIDC-IDRI dataset. 

 

Table 3. Increasing the model accuracy and decreasing 

the model loss in each training epoch in the LUNA16 

dataset. 

Epochs           Loss         Accuracy     Val_loss   Val_accuracy  

Epoch 1/10       0.3137          0.8739          0.1424          0.9414 

Epoch 2/10       0.1108          0.9607          0.1241          0.9557 

Epoch 3/10       0.0774          0.9730          0.1179          0.9602 

Epoch 4/10       0.0711          0.9743          0.0992          0.9632 

Epoch 5/10       0.0638          0.9765          0.1037          0.9587 

Epoch 6/10       0.0557          0.9797          0.0910          0.9655 

Epoch 7/10       0.0535          0.9781          0.0905          0.9647 

Epoch 8/10       0.0451          0.9855          0.1172          0.9595 

Epoch 9/10       0.0413          0.9868          0.0925          0.9707 

Epoch 10/10     0.0361          0.9878          0.0864          0.9752 

 

Curves of increasing model accuracy and 

decreasing model loss according to Table 3, the 

LUNA16 dataset is shown in Figures 12 and 13. 
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Figure 12. The curve of increasing the model accuracy in 

each training epoch in the LUNA16 dataset. 

 
Figure 13. The curve of decreasing the model loss in each 

training epoch in the LUNA16 dataset. 

 

4.2. Performance metrics 

The proposed model's performance was assessed 

using a range of metrics including accuracy, recall, 

precision, F1-score, and the ROC curve. A 

confusion matrix was employed for each dataset to 

facilitate these evaluations. 

Accuracy, defined by Equation (1), represents the 

proportion of correctly predicted examples out of 

the total number of examples [27]. 
Tp Tn

Accuracy
Tp Tn Fp Fn




  
 (1) 

Recall or sensitivity, defined by Equation (2), 

indicates the true positive rate and is calculated as 

Tp divided by (   )Tp Fn  [27]. 

Re ( )
Tp

call Sensitivity
Tp Fn




 (2) 

Specificity, outlined in Equation (3), represents the 

true negative rate and is calculated as Tn divided 

by ( )Tn Fp  [27]. 

Tn
Specificity

Tn Fp



 (3) 

As expressed in Equation (4), precision is the 

positive predictive value, denoting the number of 

samples correctly predicted as positive out of the 

total samples predicted as positive [27]. 

Pr
Tp

ecision
Tp Fp




 (4) 

The F1-score is given by Equation (5). It helps 

assess the model's balance between precision and 

recall, considering both false positives and false 

negatives [27, 28]. 
Pr Re 2

1 2
Pr Re 2

ecision call TP
F

ecision call TP Fp Fn


  

  

 
(5) 

Furthermore, the ROC curve is utilized to visually 

demonstrate the performance of each model as 

shown in Equation (6). In the ROC curve, the 

vertical axis represents the True Positive Rate 

(TPR), while the horizontal axis represents the 

False Positive Rate (FPR). The Area Under Curve 

(AUC) is a metric that quantifies the performance 

of the ROC curve. It is defined as the area under 

the curve formed by connecting points on the ROC 

curve, denoted as       1 2 2 2,  ,  ,  ,...,  ,  m mx y x y x y .A 

higher AUC value indicates better model 

performance in distinguishing between classes 

[28]. 

1

1 11

1
( ).( )

2

m

i i i ii
AUC x x y y



 
    (6) 

 

4.2.1. Evaluation of model performance on the 

LIDC-IDRI dataset 
 

 

Figure 14. Confusion matrix of the proposed model in the 

LIDC-IDRI dataset. 

 

According to Figure 14, 690 samples belonged to 

the benign class, and were accurately identified as 

such, while 656 samples were from the malignant 

class and were correctly identified as members of 

that class. 1 sample was a member of the benign 

class but was wrongly diagnosed as a member of 

the malignant class. 3 samples were members of 

the malignant class but were wrongly diagnosed as 

members of the benign class. In this classification, 

we had two classes, and the classification results 

for the LIDC-IDRI dataset are detailed in Table 4. 
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The ROC curve of the LIDC-IDRI dataset is shown 

in Figure 15. 
 

Table 4. Model evaluation result on the LIDC-IDRI 

dataset. 

Performance metrics            Result  

Accuracy                                0.9970 

Recall                                     0.9954 

Specificity                              0.9985 

Precision                                0.9984 

F1-score                                 0.9969 

 

 

Figure 15. Receiver Operating Characteristic (ROC) 

Curve on the LIDC-IDRI dataset. 

According to Figure 15, the black line represents 

the random guess. A random guess would give a 

point along a black diagonal line. Points above the 

diagonal line represent good classification results 

(better than random) and points below the diagonal 

line represent bad classification results (worse than 

random). The orange line shows that our model 

does classification well. Table 5 shows the 

comparison between the proposed method and 

state-of-the-art papers that have employed the same 

dataset for classification purposes.  
 

Table 5. Performance comparison of state-of-the-art 

models on the LIDC-IDRI dataset. 

Paper                                  Method                                ACC (%) 

Al-Shabi et al. [10]   Gated dilated 2D CNN                        93 

Shen et al. [11]        Hierarchical semantic 3D CNN          84 

Ali et al. [12]           Transferable texture 2D CNN            97  

Lin et al. [13]           Taguchi optimized 2D CNN              99 

Liu et al. [14]           Multi-model 3D CNN                        90 

Kareem et al. [15]    Support Vector Machine (SVM)        89 

Zhao et al. [16]        Multi-scale multi-task 3D CNN         94 

Halder et al. [17]     Two-path morphological 2D CNN    96 

Jena et al. [18]         Region-based 2D CNN                     88 

Yu et al. [19]           3D ResNet50                                    87 

Proposed model                                                                  99.7 

As mentioned in Table 5, proposed method 

compared to other models, achieved better 

accuracy. 

 

4.2.2. Evaluation of model performance on 

LUNA16 dataset 

 

Figure 16. Confusion matrix of proposed model in the 

LUNA16 dataset. 

 

According to Figure 16, 672 samples belonged to 

the benign class, and were accurately identified as 

such, while 627 samples were from the malignant 

class and were correctly identified as members of 

that class. 21 samples were members of the benign 

class but were wrongly diagnosed as members of 

the malignant class. 12 samples were members of 

the malignant class but were wrongly diagnosed as 

members of the benign class. 

In this classification, we had two classes, and the 

classification results for the LUNA16 dataset are 

detailed in Table 6. 
 

Table 6. Model evaluation result on the LUNA16 dataset. 

Performance metrics            Result  

Accuracy                                0.9752 

Recall                                     0.9812 

Specificity                              0.9696 

Precision                                0.9675 

F1-score                                 0.9743 

 

The ROC curve of the LUNA16 dataset is shown 

in Figure 17. 

According to Figure 17, the black line represents 

the random guess. A random guess would give a 

point along a black diagonal line. Points above the 

diagonal line represent good classification results 

(better than random) and points below the diagonal 

line represent bad classification results (worse than 

random). The orange line shows that our model 

does classification well. Table 7 shows the 

comparison between the proposed method and 

state-of-the-art papers that have employed the same 

dataset for classification purposes. As mentioned in 
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Table 7, proposed method compared to other 

models, achieved better accuracy.  
 

 
Figure 17. Receiver Operating Characteristic (ROC) 

Curve on the LUNA16 dataset. 

 

Table 7. Performance comparison of state-of-the-art 

models on the LUNA16 dataset. 
ACC                                           Method Paper 

0.8142 
 

A two modules 3D deep 

U-net-like network 

Liao et al.  [20] 

0.918 
 

An ensemble of triple 

neural networks 

Utkin et al. [21] 

0.9167 

 

Squeeze-and-excitation 
network along with 

aggregated residual 
transformations          

(SE-ResNeXt) modules 

Zhang et al. [22] 

0.956 
 

A 3D convolutional 
network 

Yuan et al. [23] 

0.924 

 

DenseNet architecture 

comprising 3D filters and 
pooling kernels 

Zhang et al. [24] 

0.9199 

 

Bilinear CNN (BCNN) 

structures combined with 
a linear SVM 

Mastouri et al. [25] 

0.9752   Proposed model 

 

 

As shown in Tables 8 and 9, a more complex 

network might not necessarily lead to better results, 

but we were able to obtain better accuracy with a 

simpler model. In addition, the training time of our 

model is much less than the complex models and it 

uses less computing resources. Therefore, the 

proposed model has higher reliability. 
 

Table 8. Comparison of our proposed model with other 

models in LIDC-IDRI dataset. 
Models                     Accuracy                       Training time (ms) 

ResNet-50                     98.6                                          12 

LeNet-5                         97.8                                          11 

VGG-11                        98.1                                           9 

Proposed model           99.7                                          8 

 

 

Table 9. Comparison of our proposed model with other 

models in LUNA16 dataset. 
Models                     Accuracy                       Training time (ms) 

ResNet-50                     93.8                                          11 

LeNet-5                        90.4                                          10 

VGG-11                        92.67                                         9 

Proposed model          97.52                                         7 

 

5. Conclusion 

Lung cancer is a serious disease that requires the 

attention of doctors and researchers to find 

solutions for early and accurate diagnosis of this 

disease to save patients' lives because early 

diagnosis of this disease helps to cure it and 

prevents the death of the patient. A CT scan is very 

important in diagnosing this disease in its early 

stages, but manual analysis of CT scans is a very 

tedious and time-consuming task, which puts a 

heavy burden on radiologists and doctors. 

Therefore, the use of computer-aided diagnosis 

systems is essential for automatically classifying 

CT scan images. In the recent years, complex 

architectures have been used to design, train, and 

develop artificial intelligence applications. The 

problem is that they require powerful hardware and 

take a lot of time to run. In this paper, we proposed 

a light and accurate algorithm that can classify 

nodules with high accuracy without the need for 

advanced hardware. We separately trained the 

proposed model on two LIDC-IDRI and LUNA16 

datasets, achieving 99.7% and 97.52% accuracy, 

respectively. The classification results show that 

our proposed model achieved higher accuracy than 

similar papers and can help doctors perform the 

classification more efficiently and accurately than 

in manual mode. 
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 .1402دوره یازدهم، شماره چهارم، سال ،کاویمجله هوش مصنوعی و داده                                 و همکاران                                                        زاده یکرم

 

از با استفاده  هیر یسرطان یهاتوده یبنددقت طبقه شیافزا یکانولوشن برا یاستفاده از شبکه عصب

 اسکنیتیس ریتصاو

 

 3عیبد زیکامب و 2، محمد ابراهیم شیری احمد آبادی،*1ساسان کرمی زاده، 1محمد مهدی نخعی

 ، تهران، ایران.ارشاد دماوند یموسسه آموزش عال 1

 .رانیتهران، ا، ریرکبیام یدانشگاه صنعت 2

 .رانیتهران، ا، اطلاعات و ارتباطات یپژوهشکده فناور 3

 10/11/2023 پذیرش؛ 15/10/2023 بازنگری؛ 07/10/2023 ارسال

 چکیده:

س یماریب کی هیسرطان ر شخ یجد اریب ست و ت سلول صیا دهد. یم شیرا افزا مارانیب یشانس بهبود یبه طور قابل توجه یسرطان یهازودهنگام 

صاو یادیپزشکان به طور مرتب تعداد ز سکن را بررسیتیس ریاز ت شتباهو  یخستگایجاد تواند منجر به یکنند که میم یا  جادیبه ا ازین ن،یشود. بنابرا ا

سا هیرا در مراحل اول هیر یهاوجود دارد که بتواند به طور خودکار ندول یارابز س یبندو طبقه ییشنا شخ یهاستمیکند.  که اغلب  انهیبه کمک را صیت

 یلعات قبل. مطاکنندیها کمک مگره نیا یبندو طبقه ییدر شناسا هاستیولوژیبه راد کنند،یاستفاده م نیماش یریادگیو  ریپردازش تصو یهاکیاز تکن

ستفاده دهیدآموزش شیاز پ یهاشبکه ای دهیچیپ یهااغلب از مدل  یابیاجرا دارند. هدف ما دست یبرا یو زمان طولان قوی افزارسختبه  ازیکه ن ردندک ا

شخ سبات سیستمبه  ازیبدون ن قیدق صیبه ت ست. ما  قدرتمند یمحا ساده را  یشبکه عصب کیا که  میکنیم یمعرف یچشیپ هیتنها دو لا باکانولوشنال 

و  LIDC-IDRIدو مجموعه داده  یرا بر رو یسنجآموزش و اعتبارفرایندهای است. ما  قدرتمند افزارسختبه  ازیها بدون نگره قیدق یبندقادر به طبقه

LUNA16 با مقالات  سهیما را در مقا یشنهادیدقت برتر مدل پ ،جینتا نی. امیدرسی درصد 97.52 و درصد 99.7 یهابه دقت بیکه به ترت میانجام داد

 .دهدینشان م خوب گذشته

 ه.چرخانده شد، LIDC-IDRI ،LUNA16، قیعم یریادگی، هیسرطان ر :کلمات کلیدی

 


