Original/Review Paper
H. Sadr; Mir M. Pedram; M. Teshnehlab
Abstract
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted ...
Read More
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted a lot of attention and become mainstream in this field. Despite the remarkable success of deep learning models for sentiment analysis of text, they are in the early steps of development and their potential is yet to be fully explored. Convolutional neural network is one of the deep learning methods that has been surpassed for sentiment analysis but is confronted with some limitations. Firstly, convolutional neural network requires a large number of training data. Secondly, it assumes that all words in a sentence have an equal contribution to the polarity of a sentence. To fill these lacunas, a convolutional neural network equipped with the attention mechanism is proposed in this paper which not only takes advantage of the attention mechanism but also utilizes transfer learning to boost the performance of sentiment analysis. According to the empirical results, our proposed model achieved comparable or even better classification accuracy than the state-of-the-art methods.
Original/Review Paper
Seyedeh H. Erfani
Abstract
Facial expressions are part of human language and are often used to convey emotions. Since humans are very different in their emotional representation through various media, the recognition of facial expression becomes a challenging problem in machine learning methods. Emotion and sentiment analysis ...
Read More
Facial expressions are part of human language and are often used to convey emotions. Since humans are very different in their emotional representation through various media, the recognition of facial expression becomes a challenging problem in machine learning methods. Emotion and sentiment analysis also have become new trends in social media. Deep Convolutional Neural Network (DCNN) is one of the newest learning methods in recent years that model a human's brain. DCNN achieves better accuracy with big data such as images. In this paper an automatic facial expression recognition (FER) method using the deep convolutional neural network is proposed. In this work, a way is provided to overcome the overfitting problem in training the deep convolutional neural network for FER, and also an effective pre-processing phase is proposed that is improved the accuracy of facial expression recognition. Here the results for recognition of seven emotional states (neutral, happiness, sadness, surprise, anger, fear, disgust) have been presented by applying the proposed method on the two largely used public datasets (JAFFE and CK+). The results show that in the proposed method, the accuracy of the FER is better than traditional FER methods and is about 98.59% and 96.89% for JAFFE and CK+ datasets, respectively.
Original/Review Paper
A. Alijamaat; A. Reza NikravanShalmani; P. Bayat
Abstract
Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small ...
Read More
Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small sizes of lesions, their dispersion in the brain, similarity of lesions to some other diseases, and their overlap can lead to the misdiagnosis. Automatic image detection methods as auxiliary tools can increase the diagnosis accuracy. To this end, traditional image processing methods and deep learning approaches have been used. Deep Convolutional Neural Network is a common method of deep learning to detect lesions in images. In this network, the convolution layer extracts the specificities; and the pooling layer decreases the specificity map size. The present research uses the wavelet-transform-based pooling. In addition to decomposing the input image and reducing its size, the wavelet transform highlights sharp changes in the image and better describes local specificities. Therefore, using this transform can improve the diagnosis. The proposed method is based on six convolutional layers, two layers of wavelet pooling, and a completely connected layer that had a better amount of accuracy than the studied methods. The accuracy of 98.92%, precision of 99.20%, and specificity of 98.33% are obtained by testing the image data of 38 patients and 20 healthy individuals.
Original/Review Paper
Seyedeh S. Sadeghi; H. Khotanlou; M. Rasekh Mahand
Abstract
In the modern age, written sources are rapidly increasing. A growing number of these data are related to the texts containing the feelings and opinions of the users. Thus, reviewing and analyzing of emotional texts have received a particular attention in recent years. A System which is based on combination ...
Read More
In the modern age, written sources are rapidly increasing. A growing number of these data are related to the texts containing the feelings and opinions of the users. Thus, reviewing and analyzing of emotional texts have received a particular attention in recent years. A System which is based on combination of cognitive features and deep neural network, Gated Recurrent Unit has been proposed in this paper. Five basic emotions used in this approach are: anger, happiness, sadness, surprise and fear. A total of 23,000 Persian documents by the average length of 24 have been labeled for this research. Emotional constructions, emotional keywords, and emotional POS are the basic cognitive features used in this approach. On the other hand, after preprocessing the texts, words of normalized text have been embedded by Word2Vec technique. Then, a deep learning approach has been done based on this embedded data. Finally, classification algorithms such as Naïve Bayes, decision tree, and support vector machines were used to classify emotions based on concatenation of defined cognitive features, and deep learning features. 10-fold cross validation has been used to evaluate the performance of the proposed system. Experimental results show the proposed system achieved the accuracy of 97%. Result of proposed system shows the improvement of several percent’s in comparison by other results achieved GRU and cognitive features in isolation. At the end, studying other statistical features and improving these cognitive features in more details can affect the results.
Original/Review Paper
M. Asgari-Bidhendi; B. Janfada; O. R. Roshani Talab; B. Minaei-Bidgoli
Abstract
Named Entity Recognition (NER) is one of the essential prerequisites for many natural language processing tasks. All public corpora for Persian named entity recognition, such as ParsNERCorp and ArmanPersoNERCorpus, are based on the Bijankhan corpus, which is originated from the Hamshahri newspaper in ...
Read More
Named Entity Recognition (NER) is one of the essential prerequisites for many natural language processing tasks. All public corpora for Persian named entity recognition, such as ParsNERCorp and ArmanPersoNERCorpus, are based on the Bijankhan corpus, which is originated from the Hamshahri newspaper in 2004. Correspondingly, most of the published named entity recognition models in Persian are specially tuned for the news data and are not flexible enough to be applied in different text categories, such as social media texts. This study introduces ParsNER-Social, a corpus for training named entity recognition models in the Persian language built from social media sources. This corpus consists of 205,373 tokens and their NER tags, crawled from social media contents, including 10 Telegram channels in 10 different categories. Furthermore, three supervised methods are introduced and trained based on the ParsNER-Social corpus: Two conditional random field models as baseline models and one state-of-the-art deep learning model with six different configurations are evaluated on the proposed dataset. The experiments show that the Mono-Lingual Persian models based on Bidirectional Encoder Representations from Transformers (MLBERT) outperform the other approaches on the ParsNER-Social corpus. Among different Configurations of MLBERT models, the ParsBERT+BERT-TokenClass model obtained an F1-score of 89.65%.
Original/Review Paper
M. Saffarian; V. Babaiyan; K. Namakin; F. Taheri; T. Kazemi
Abstract
Today, Metabolic Syndrome in the age group of children and adolescents has become a global concern. In this paper, a data mining model is used to determine a continuous Metabolic Syndrome (cMetS) score using Linear Discriminate Analysis (cMetS-LDA). The decision tree model is used to specify the calculated ...
Read More
Today, Metabolic Syndrome in the age group of children and adolescents has become a global concern. In this paper, a data mining model is used to determine a continuous Metabolic Syndrome (cMetS) score using Linear Discriminate Analysis (cMetS-LDA). The decision tree model is used to specify the calculated optimal cut-off point cMetS-LDA. In order to evaluate the method, multilayer perceptron neural network (NN) and Support Vector Machine (SVM) models were used and statistical significance of the results was tested with Wilcoxon signed-rank test. According to the results of this test, the proposed CART is significantly better than the NN and SVM models. The ranking results in this study showed that the most important risk factors in making cMetS-LDA were WC, SBP, HDL and TG for males and WC, TG, HDL and SBP for females. Our research results show that high TG and central obesity have the greatest impact on MetS and FBS has no effect on the final prognosis. The results also indicate that in the preliminary stages of MetS, WC, HDL and SBP are the most important influencing factors that play an important role in forecasting.
Original/Review Paper
J. Hamidzadeh; M. Moradi
Abstract
Recommender systems extract unseen information for predicting the next preferences. Most of these systems use additional information such as demographic data and previous users' ratings to predict users' preferences but rarely have used sequential information. In streaming recommender systems, the emergence ...
Read More
Recommender systems extract unseen information for predicting the next preferences. Most of these systems use additional information such as demographic data and previous users' ratings to predict users' preferences but rarely have used sequential information. In streaming recommender systems, the emergence of new patterns or disappearance a pattern leads to inconsistencies. However, these changes are common issues due to the user's preferences variations on items. Recommender systems without considering inconsistencies will suffer poor performance. Thereby, the present paper is devoted to a new fuzzy rough set-based method for managing in a flexible and adaptable way. Evaluations have been conducted on twelve real-world data sets by the leave-one-out cross-validation method. The results of the experiments have been compared with the other five methods, which show the superiority of the proposed method in terms of accuracy, precision, recall.
Original/Review Paper
H. Momeni; N. Mabhoot
Abstract
Interest in cloud computing has grown considerably over recent years, primarily due to scalable virtualized resources. So, cloud computing has contributed to the advancement of real-time applications such as signal processing, environment surveillance and weather forecast where time and energy considerations ...
Read More
Interest in cloud computing has grown considerably over recent years, primarily due to scalable virtualized resources. So, cloud computing has contributed to the advancement of real-time applications such as signal processing, environment surveillance and weather forecast where time and energy considerations to perform the tasks are critical. In real-time applications, missing the deadlines for the tasks will cause catastrophic consequences; thus, real-time task scheduling in cloud computing environment is an important and essential issue. Furthermore, energy-saving in cloud data center, regarding the benefits such as reduction of system operating costs and environmental protection is an important concern that is considered during recent years and is reducible with appropriate task scheduling. In this paper, we present an energy-aware task scheduling approach, namely EaRTs for real-time applications. We employ the virtualization and consolidation technique subject to minimizing the energy consumptions, improve resource utilization and meeting the deadlines of tasks. In the consolidation technique, scale up and scale down of virtualized resources could improve the performance of task execution. The proposed approach comprises four algorithms, namely Energy-aware Task Scheduling in Cloud Computing(ETC), Vertical VM Scale Up(V2S), Horizontal VM Scale up(HVS) and Physical Machine Scale Down(PSD). We present the formal model of the proposed approach using Timed Automata to prove precisely the schedulability feature and correctness of EaRTs. We show that our proposed approach is more efficient in terms of deadline hit ratio, resource utilization and energy consumption compared to other energy-aware real-time tasks scheduling algorithms.
Original/Review Paper
M. Mohammadzadeh; H. Khosravi
Abstract
Today, video games have a special place among entertainment. In this article, we have developed an interactive video game for mobile devices. In this game, the user can control the game’s character by his face and hand gestures. Cascading classifiers along with Haar-like features and local binary ...
Read More
Today, video games have a special place among entertainment. In this article, we have developed an interactive video game for mobile devices. In this game, the user can control the game’s character by his face and hand gestures. Cascading classifiers along with Haar-like features and local binary patterns are used for hand gesture recognition and face detection. The game’s character moves according to the current hand and face state received from the frontal camera. Various ideas are used to achieve the appropriate accuracy and speed. Unity 3D and OpenCV for Unity are employed to design and implement the video game. The programming language is C#. This game is written in C# and developed for both Windows and Android operating systems. Experiments show an accuracy of 86.4% in the detection of five gestures. It also has an acceptable frame rate and can run at 11 fps and 8 fps in Windows and Android respectively.
Original/Review Paper
S. Mavaddati; S. Mavaddati
Abstract
Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and ...
Read More
Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and texture-based features are used to yield the desired results in the classification procedure. This paper proposes a classification algorithm to detect different rice types by extracting features from the bulk samples. The feature space in this algorithm includes the fractal-based features of the extracted coefficients from the wavelet packet transform analysis. This feature vector is combined with other texture-based features and used to learn a model related to each rice type using the Gaussian mixture model classifier. Also, a sparse structured principal component analysis algorithm is applied to reduce the dimension of the feature vector and lead to the precise classification rate with less computational time. The results of the proposed classifier are compared with the results obtained from the other presented classification procedures in this context. The simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the combinational features is able to detect precisely the type of rice grains with more than 99% accuracy. Also, the proposed algorithm can detect the rice quality for different percentages of combination with other rice grains with 99.75% average accuracy.
Original/Review Paper
F. Jafarinejad; R. Farzbood
Abstract
Image retrieval is a basic task in many content-based image systems. Achieving high precision, while maintaining computation time is very important in relevance feedback-based image retrieval systems. This paper establishes an analogy between this and the task of image classification. Therefore, in the ...
Read More
Image retrieval is a basic task in many content-based image systems. Achieving high precision, while maintaining computation time is very important in relevance feedback-based image retrieval systems. This paper establishes an analogy between this and the task of image classification. Therefore, in the image retrieval problem, we will obtain an optimized decision surface that separates dataset images into two categories of relevant/irrelevant images corresponding to the query image. This problem will be viewed and solved as an optimization problem using particle optimization algorithm. Although the particle swarm optimization (PSO) algorithm is widely used in the field of image retrieval, no one use it for directly feature weighting. Information extracted from user feedbacks will guide particles in order to find the optimal weights of various features of images (Color-, shape- or texture-based features). Fusion of these very non-homogenous features need a feature weighting algorithm that will take place by the help of PSO algorithm. Accordingly, an innovative fitness function is proposed to evaluate each particle’s position. Experimental results on Wang dataset and Corel-10k indicate that average precision of the proposed method is higher than other semi-automatic and automatic approaches. Moreover, the proposed method suggest a reduction in the computational complexity in comparison to other PSO-based image retrieval methods.
Original/Review Paper
M. R. Fallahzadeh; F. Farokhi; A. Harimi; R. Sabbaghi-Nadooshan
Abstract
Facial Expression Recognition (FER) is one of the basic ways of interacting with machines and has been getting more attention in recent years. In this paper, a novel FER system based on a deep convolutional neural network (DCNN) is presented. Motivated by the powerful ability of DCNN to learn features ...
Read More
Facial Expression Recognition (FER) is one of the basic ways of interacting with machines and has been getting more attention in recent years. In this paper, a novel FER system based on a deep convolutional neural network (DCNN) is presented. Motivated by the powerful ability of DCNN to learn features and image classification, the goal of this research is to design a compatible and discriminative input for pre-trained AlexNet-DCNN. The proposed method consists of 4 steps: first, extracting three channels of the image including the original gray-level image, in addition to horizontal and vertical gradients of the image similar to the red, green, and blue color channels of an RGB image as the DCNN input. Second, data augmentation including scale, rotation, width shift, height shift, zoom, horizontal flip, and vertical flip of the images are prepared in addition to the original images for training the DCNN. Then, the AlexNet-DCNN model is applied to learn high-level features corresponding to different emotion classes. Finally, transfer learning is implemented on the proposed model and the presented model is fine-tuned on target datasets. The average recognition accuracy of 92.41% and 93.66% were achieved for JAFEE and CK+ datasets, respectively. Experimental results on two benchmark emotional datasets show promising performance of the proposed model that can improve the performance of current FER systems.