[1] J. Lia, D. Zhanga, J. Zhanga, T. Lia, Y. Xiaa, Q. Yana, and L. Xuna, “Facial Expression Recognition with Faster R-CNN”, Procedia Computer Science, vol. 107, pp.135-140, 2017.
[2] J. Przybyło, “Automatic recognition of facial expressions in the image and analysis of their suitability for control”, doctoral dissertation, AGH University of Science and Technology, Kraków, 2008.
[3] M. Rezaei, and V. Derhami, “Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value”, Journal of AI and Data Mining, vol. 7, no. 1, pp. 17-25, 2019.
[4] L. Chen, M. Zhou, W. Su, M. Wu, J. She, and K. Hirota, “Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction”, Information Sciences, vol. 428, pp. 49-61, 2018.
[5] Q. Mao, Q. Rao, and Y. Yu, “Hierarchical bayesian theme models for multi-pose facial expression recognition”, IEEE Trans. Multimedia, vol. 16, no. 4, pp. 861–873, 2017.
[6] L. A. Teixeira, E. De Aguiar, A. De Souza, and T. Oliveira-Santos, “Facial Expression Recognition with Convolutional Neural Networks: Coping with Few Data and the Training Sample Order”, Pattern Recognition, vol. 61, 2016.
[7] L. Zhang, and D. Tjondronegoro, “Facial expression recognition using facial movement features”, IEEE Trans. Affect. Comput., vol. 2, no. 4, pp. 219–229, 2011.
[8] C. J. Lin, W. L. Chu, C. C. Wang, G. K. Chen, and I. T. Chen, “Diagnosis of ball-bearing faults using support vector machine based on the artificial fish-swarm algorithm”, Journal of Low Frequency Noise, Vibration and Active Control, pp. 1–4. 2019 doi: 10.1177/1461348419861822
[9] B. L. Jian, C. C. Wang, C. T. Hsieh, Y. P. Kuo, M. C. Houng and H. T. Yau, “Predicting spindle displacement caused by heat using the general regression neural network”, The International Journal of Advanced Manufacturing Technology, 2019 doi: 10.1007/s00170-019-04261-5
[10] C. Shi, and C-M. Pun, “3d multi-resolution wavelet convolutional neural networks for hyper-spectral image classification”, Inf. Sci., vol. 420, pp. 49–65, 2017.
[11] Y. Wang, X. Wang, and W. Liu, “Unsupervised local deep feature for image recognition”, Inf. Sci., vol. 351, pp.67–75, 2016.
[12] V. Mayya, R. M. Pai, and M. M. Pai, “Automatic Facial Expression Recognition Using DCNN”. Procedia Computer Science, vol. 93, pp. 453-461, 2016.
[13] B. K. Kim, J. Roh, S. Y. Dong and S. Y. Lee, “Hierarchical committee of deep convolutional neural networks for robust facial expression recognition”, Journal on Multimodal User Interfaces, vol. 10, no. 2, 2016.
[14] X. Wang, R. Guo, and C. Kambhamettu, “Deeply-learned feature for age estimation”, In: Applications of Computer Vision (WACV), IEEE Winter Conference on., pp. 534–541, 2015.
[15] G. Levi, and T. Hassncer, “Age and gender classification using convolutional neural networks”, In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2015 IEEE Conference on., pp. 34–42, 2015.
[16]M. K. A. E. Meguid, and M. D. Levine, “Fully automated recognition of spontaneous facial expressions in videos using random forest classifiers”, IEEE Transactions on Affective Computing, vol. 5, no. 2, pp. 141–154, 2014.
[17] C. Turan, and K. M. Lam, “Region-based feature fusion for facial expression recognition”, International Conference on Image Processing (ICIP), in: 2014 IEEE, pp. 5966–5970, 2014.
[18] P. Lucey, J. F. Chon, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset: A complete dataset for action unit and emotion-specified expression”, In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on. IEEE, pp. 94–101, 2010.
[19] L. Nwosu, H. Wang, L. Jiang, I. Unwala, X. Yang, and T. Zhang, “Deep Convolutional Neural Network for Facial Expression Recognition using Facial Parts”, IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, pp. 1318–1321, 2017.
[20] P. Burkert, F. Trier, M. Z. Afzal, A. Dengel, and M. Liwicki, “Dexpression: Deep convolutional neural network for expression recognition”, CoRR abs/1509.05371, 2015.
[21]P. Liu, S. Li, S. Shan, and X. Chen, “Facial expression recognition via a boosted deep belief network”, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1805–1812, 2014.
[22] D. K. Jain, P. Shamsolmoalib, and P. Sehdev, “Extended Deep Neural Network for Facial Emotion Recognition”, Extended Deep Neural Network for Facial Emotion Recognition, 2019.
[23] H. C. Santiago, T. Ren, and G. D. C. Cavalcanti, “Facial expression Recognition based on Motion Estimation”, International Joint Conference Neural Networks (IJCNN), 2016.
[24] D. Hamester, P. Barros and S. Wermter, “Face Expression Recognition with a 2-Channel Convolutional Neural Network”, International Joint Conference on Neural Networks (IJCNN), 2015.
[25] Z. Qawaqneh, A. Abu Mallouh, and B. D. Barkana, “Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model”, CoRR abs/1709.01664, 2017.
[26] P. Viola, and M. Jones, “Rapid object detection using a boosted cascade of simple features”. In Proc. of CVPR.2001.
[27] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, In Advances in neural information processing systems, pp. 1097–1105, 2012.
[28] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial expressions with gabor wavelets”, In: Proceedings of the 3rd. International Conference on Face and Gesture Recognition; FG ’98. Washington, DC, USA: IEEE Computer Society, 1998.