[1] A. Pan, N. Keum, O. I. Okereke, Q. Sun, M. Kivimaki, R. R. Rubin, and F. B. Hu, “Bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies,” Diabetes care, vol. 35, no. 5, pp. 1171-1180, 2012.
[2] D. Lent-Schochet, M. McLaughlin, N. Ramakrishnan, and I. Jialal, “Exploratory metabolomics of metabolic syndrome: A status report,” World journal of diabetes, vol. 10, no. 1, pp. 23, 2019.
[3] W. Borena, M. Edlinger, T. Bjørge, C. Häggström, B. Lindkvist, G. Nagel, A. Engeland, T. Stocks, S. Strohmaier, and J. Manjer, “A prospective study on metabolic risk factors and gallbladder cancer in the metabolic syndrome and cancer (Me-Can) collaborative study,” PloS one, vol. 9, no. 2, pp. e89368, 2014.
[4] A. Maleki, M. Montazeri, N. Rashidi, M. Montazeri, and E. Yousefi-Abdolmaleki, “Metabolic syndrome and its components associated with chronic kidney disease,” Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, vol. 20, no. 5, pp. 465, 2015.
[5] M. Jari, M. Qorbani, M. E. Motlagh, R. Heshmat, G. Ardalan, and R. Kelishadi, “Association of overweight and obesity with mental distress in Iranian adolescents: the CASPIAN-III study,” International journal of preventive medicine, vol. 5, no. 3, pp. 256, 2014.
[6] M. K. Birarra, and D. A. Gelayee, “Metabolic syndrome among type 2 diabetic patients in Ethiopia: a cross-sectional study,” BMC cardiovascular disorders, vol. 18, no. 1, pp. 1-12, 2018.
[7] M. Zardast, K. Namakin, T. Chahkandi , F. Taheri , T. Kazemi , and B. Bijari, “Prevalence of metabolic syndrome in elementary school children in East of Iran,” J Cardiovasc Thorac Res, vol. 7, no. 4, pp. 158-163, 2015.
[8] M.-K. Lee, K. Han, M. K. Kim, E. S. Koh, E. S. Kim, G. E. Nam, and H.-S. Kwon, “Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study,” Scientific reports, vol. 10, no. 1, pp. 1-8, 2020.
[9] P. Golabi, M. Otgonsuren, L. de Avila, M. Sayiner, N. Rafiq, and Z. M. Younossi, “Components of metabolic syndrome increase the risk of mortality in nonalcoholic fatty liver disease (NAFLD),” Medicine, vol. 97, no. 13, 2018.
[10] A. N. Rodrigues, G. R. Abreu, R. S. Resende, W. L. Goncalves, and S. A. Gouvea, “Cardiovascular risk factor investigation: a pediatric issue,” International journal of general medicine, vol. 6, pp. 57, 2013.
[11] P. Shi, J. M. Goodson, M. L. Hartman, H. Hasturk, T. Yaskell, and J. Vargas, “Continuous Metabolic Syndrome Scores for Children Using Salivary Biomarkers,” PLoS ONE, vol. 10, no. 9, pp. e0138979, 2015.
[12] D. Pandit , S. Chiplonkar, A. Khadilkar, A. Kinare, and V. Khadilkar “Efficacy of a continuous metabolic syndrome score in Indian children for detecting subclinical atherosclerotic risk,” Int J Obes (Lond), vol. 35, no. 10, pp. 1318-1324, 2011.
[13] H.-S. Ejtahed, M. Qorbani, M. E. Motlagh, P. Angoorani, S. Hasani-Ranjbar, H. Ziaodini, M. Taheri, Z. Ahadi, S. Beshtar, and T. Aminaee, “Association of anthropometric indices with continuous metabolic syndrome in children and adolescents: the CASPIAN-V study,” Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, vol. 23, no. 5, pp. 597-604, 2018.
[14] S. P. Sawant, and A. S. Amin, “Use of continuous metabolic syndrome score in overweight and obese children,” The Indian Journal of Pediatrics, vol. 86, no. 10, pp. 909-914, 2019.
[15] S. Rose, F. F. Dieny, and A. Tsani, “The Correlation between Waist-to-Height Ratio (WHtR) and Second to Fourth Digit Ratio (2D: 4D) with an Increase in Metabolic Syndrome Scores in Obese Adolescent Girls,” Electronic Journal of General Medicine, vol. 17, no. 3, 2020.
[16] G. Shafiee, R. Kelishadi, R. Heshmat, M. Qorbani, M. E. Motlagh, T. Aminaee, G. Ardalan, M. Taslimi, P. Poursafa, and B. Larijani, “First report on the validity of a continuous Metabolic Syndrome score as an indicator for Metabolic Syndrome in a national sample of paediatric population—the CASPIAN-III study,” Endokrynologia Polska, vol. 64, no. 4, pp. 278-284, 2013.
[17] A. L. Beam, and I. S. Kohane, “Big Data and Machine Learning in Health Care,” JAMA, vol. 319, no. 13, pp. 1317-1318, 2018.
[18] J. H. Chen, and S. M. Asch, “Machine Learning and Prediction in Medicine — Beyond the Peak of Inflated Expectations,” New England Journal of Medicine, vol. 376, no. 26, pp. 2507-2509, 2017.
[19] B. A. Goldstein, A. M. Navar, and R. E. Carter, “Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges,” European Heart Journal, vol. 38, no. 23, pp. 1805-1814, 2016.
[20] S. M. Cho, P. C. Austin, H. J. Ross, H. Abdel-Qadir, D. Chicco, G. Tomlinson, C. Taheri, F. Foroutan, P. R. Lawler, and F. Billia, “Machine Learning Compared To Conventional Statistical Models For Predicting Myocardial Infarction Readmission And Mortality: A Systematic Review,” Canadian Journal of Cardiology, 2021.
[21] H. C. Lee, J. S. Park, J. C. Choe, J. H. Ahn, H. W. Lee, J.-H. Oh, J. H. Choi, K. S. Cha, T. J. Hong, and M. H. Jeong, “Prediction of 1-Year Mortality from Acute Myocardial Infarction Using Machine Learning,” The American Journal of Cardiology, vol. 133, pp. 23-31, 2020.
[22] M. V. Bhargavi, V. R. Mudunuru, and S. Veeramachaneni, "Colon cancer stage classification using decision trees," Data Engineering and Communication Technology, pp. 599-609: Springer, 2020.
[23] A. G. Aydin, O. Eray, A. V. Sayrac, A. Oskay, And U. D. Ulusar, “The Reliability of an Artificial Intelligence Tool,‘Decision Trees’, in Emergency Medicine Triage,” 2020.
[24] K. T. Win, “Comparison of C4. 5 and Weighted C4. 5 Decision Trees for Breast Cancer Classification,” Unversity of Computer Studies, Yangon, 2020.
[25] G. Battineni, N. Chintalapudi, and F. Amenta, “Late-Life Alzheimer’s Disease (AD) Detection Using Pruned Decision Trees,” Int J Brain Disord Treat, vol. 6, pp. 033, 2020.
[26] M. Mamprin, S. Zinger, P. de With, J. Zelis, and P. Tonino, "Gradient boosting on decision trees for mortality prediction in transcatheter aortic valve implantation." pp. 325-329.
[27] M. M. Ghiasi, “Implementing decision tree-based algorithms in medical diagnostic decision support systems,” Memorial University of Newfoundland, 2020.
[28] A. Alaoui, and Z. Elberrichi, "Enhanced Ant Colony Algorithm for Best Features Selection for a Decision Tree Classification of Medical Data," Critical Approaches to Information Retrieval Research, pp. 278-293: IGI Global, 2020.
[29] Y. Wei, X. Wang, and M. Li, “Intelligent Medical Auxiliary Diagnosis Algorithm Based on Improved Decision Tree,” Journal of Electrical and Computer Engineering, vol. 2020, 2020.
[30] C.-S. Yu, Y.-J. Lin, C.-H. Lin, S.-T. Wang, S.-Y. Lin, S. H. Lin, J. L. Wu, and S.-S. Chang, “Predicting metabolic syndrome with machine learning models using a decision tree algorithm: Retrospective cohort study,” JMIR medical informatics, vol. 8, no. 3, pp. e17110, 2020.
[31] J. C. Eisenmann, K. R. Laurson, K. D. DuBose, B. K. Smith, and J. E. Donnelly, “Construct validity of a continuous metabolic syndrome score in children,” Diabetology & metabolic syndrome, vol. 2, no. 1, pp. 1-8, 2010.
[32] H.-S. Ejtahed, Z. Mahmoodi, M. Qorbani, P. Angoorani, M. E. Motlagh, S. Hasani-Ranjbar, H. Ziaodini, M. Taheri, R. Heshmat, and R. Kelishadi, “A comparison between body mass index and waist circumference for identifying continuous metabolic syndrome risk score components in Iranian school-aged children using a structural equation modeling approach: the CASPIAN-V study,” Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, pp. 1-8, 2020.
[33] N. V. Chawla, “SMOTEBoost: Improving prediction of the minority class in boosting, in Knowledge Discovery in Databases: PKDD ” Springer, vol. P.107-119, 2003.
[34] A. Ramezankhani, “The impact of oversampling with SMOTE on the performance of 3 classifiers in prediction of type 2 diabetes,” Medical Decision Making, vol. p. 0272989X14560647., 2014.
[35] N. Chawla, “SMOTE: Synthetic Minority Over-Sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp. p. 321-357, 2002.
[36] R. A. Fisher, “The statistical utilization of multiple measurements,” Annals of eugenics, vol. 8, no. 4, pp. 376-386, 1938.
[37] K. Fukunaga, Introduction to statistical pattern recognition: Elsevier, 2013.
[38] A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI communications, vol. 30, no. 2, pp. 169-190, 2017.
[39] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput, G. Srivastava, and T. Baker, “Analysis of dimensionality reduction techniques on big data,” IEEE Access, vol. 8, pp. 54776-54788, 2020.
[40] A. M. Martínez, and A. C. Kak, “Pca versus lda,” IEEE transactions on pattern analysis and machine intelligence, vol. 23, no. 2, pp. p. 228-233, 2001.
[41] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees: CRC press, 1984.
[42] S. García, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization,” Journal of Heuristics, vol. 15, no. 6, pp. 617-644, 2009.
[43] J. W. Johnson, “A Heuristic Method for Estimating the Relative Weight of Predictor Variables in Multiple Regression,” Multivariate Behav Res, vol. 35, no. 1, pp. p. 1-19, 2000.
[44] J. C. Eisenmann, K. R. Laurson, K. D. DuBose, B. K. Smith, and J. E. Donnelly, “Construct validity of a continuous metabolic syndrome score in children.,” Diabetology & metabolic syndrome, vol. 2, no. 1, pp. 8, 2010.
[45] F. Taheri , K. Namakin, M. Zardast, T. Chahkandi , T. Kazemi , and B. Bijari, “ Cardiovascular Risk Factors: A Study on the Prevalence of MS among 11-18 Years Old School Children in East of Iran, 2012,” Nutr Food SCI Res, vol. 2, no. 1, pp. 27-34, 2015.
[46] B. Battaloglu Inanc, “Metabolic Syndrome in School Children in Mardin, South-Eastern of Turkey,” Eurasian J Med, vol. 46, no. 3, pp. 156-163, 2014.
[47] W. Ahrens, L. A. Moreno, S. Mårild, D. Molnár, A. Siani, and S. De Henauw, “Metabolic syndrome in young children: definitions and results of the IDEFICS study,” Int J Obes (Lond), vol. 38, no. Suppl 2, pp. S4-s14, 2014.
[48] N. Rizk, M. Amin, and M. Yousef, “A pilot study on metabolic syndrome and its associated features among Qatari school children,” Int J Gen Med, vol. 4, pp. 521-525, 2011.
[49] A. Z. Iqbal, S. Basharat , and A. Basharat “Prevalence of the metabolic syndrome and its component abnormalities among school age Pakistani children,” J Ayub Med Coll Abbottabad, vol. 26, no. 2, pp. 194-199, 2014.
[50] G. Shafiee, R. Kelishadi , R. Heshmat, M. Qorbani, M. E. Motlagh , and T. Aminaee, “First report on the validity of a continuous Metabolic Syndrome score as an indicator for Metabolic Syndrome in a national sample of paediatric population—the CASPIAN-III study,” Endokrynol Pol, vol. 64, no. 4, pp. 278-284, 2013.
[51] F. Costa Teixeira, F. E. Felix Pereira , A. Fernandes Pereira , and B. Gonçalves Ribeiro “Metabolic syndrome's risk factors and its association with nutritional status in school children,” Prev Med Rep, vol. 6, no. 2017, pp. 27-32, 2017.
[52] C. Cadenas-Sanchez , J. R. Ruiz, I. Labayen, I. Huybrechts, Y. Manios, and M. González-Gross, “Prevalence of Metabolically Healthy but Overweight/Obese Phenotype and Its Association With Sedentary Time, Physical Activity, and Fitness.,” J Adolesc Health., vol. 61, no. 1, pp. 107-114, 2017.
[53] I. S. Okosun, J. M. Boltri, R. Lyn, and M. Davis-Smith “Continuous metabolic syndrome risk score, body mass index percentile, and leisure time physical activity in American children,” J Clin Hypertens (Greenwich), vol. 1, no. 2, pp. 636-644, 2010.
[54] T. Cohen, T. Hazell, C. A. Vanstone, C. Rodd, and H. A. Weiler, “A family-centered lifestyle intervention for obese six- to eight-year-old children: results from a one-year randomized controlled trial conducted in Montreal, Canada,” Can J Public Health, vol. 107, no. 4-5, pp. 453-460, 2016.
[55] R. M. Mantovani, N. P. Rocha, D. M. Magalhães, I. G. Barbosa , A. L. Teixeira, and A. C. Simões E Silva “Early changes in adipokines from overweight to obesity in children and adolescents,” J Pediatr (Rio J), vol. 92, no. 6, pp. 624-630, 2016.
[56] S. M. Barbalho, M. Oshiiwa, F. C. Sato Fontana, E. Ribeiro Finalli , M. Paiva Filho , and A. P. Machado Spada, “Metabolic syndrome and atherogenic indices in school children: A worrying panorama in Brazi,” Diabetes Metab Syndr, vol. S1871-4021, no. 17, pp. 30003-30006, 2017.