Vahid Kiani; Mahdi Imanparast
Abstract
In this paper, we present a bi-objective virtual-force local search particle swarm optimization (BVFPSO) algorithm to improve the placement of sensors in wireless sensor networks while it simultaneously increases the coverage rate and preserves the battery energy of the sensors. Mostly, sensor nodes ...
Read More
In this paper, we present a bi-objective virtual-force local search particle swarm optimization (BVFPSO) algorithm to improve the placement of sensors in wireless sensor networks while it simultaneously increases the coverage rate and preserves the battery energy of the sensors. Mostly, sensor nodes in a wireless sensor network are first randomly deployed in the target area, and their deployment should be then modified such that some objective functions are obtained. In the proposed BVFPSO algorithm, PSO is used as the basic meta-heuristic algorithm and the virtual-force operator is used as the local search. As far as we know, this is the first time that a bi-objective PSO algorithm has been combined with a virtual force operator to improve the coverage rate of sensors while preserving their battery energy. The results of the simulations on some initial random deployments with the different numbers of sensors show that the BVFPSO algorithm by combining two objectives and using virtual-force local search is enabled to achieve a more efficient deployment in comparison to the competitive algorithms PSO, GA, FRED and VFA with providing simultaneously maximum coverage rate and the minimum energy consumption.
Z. Hassani; M. Alambardar Meybodi
Abstract
A major pitfall in the standard version of Particle Swarm Optimization (PSO) is that it might get stuck in the local optima. To escape this issue, a novel hybrid model based on the combination of PSO and AntLion Optimization (ALO) is proposed in this study. The proposed method, called H-PSO-ALO, uses ...
Read More
A major pitfall in the standard version of Particle Swarm Optimization (PSO) is that it might get stuck in the local optima. To escape this issue, a novel hybrid model based on the combination of PSO and AntLion Optimization (ALO) is proposed in this study. The proposed method, called H-PSO-ALO, uses a local search strategy by employing the Ant-Lion algorithm to select the less correlated and salient feature subset. The objective is to improve the prediction accuracy and adaptability of the model in various datasets by balancing the exploration and exploitation processes. The performance of our method has been evaluated on 30 benchmark classification problems, CEC 2017 benchmark problems, and some well-known datasets. To verify the performance, four algorithms, including FDR-PSO, CLPSO, HFPSO, MPSO, are elected to be compared with the efficiency of H-PSO-ALO. Considering the experimental results, the proposed method outperforms the others in many cases, so it seems it is a desirable candidate for optimization problems on real-world datasets.
Z. Shahpar; V. Khatibi; A. Khatibi Bardsiri
Abstract
Software effort estimation plays an important role in software project management, and analogy-based estimation (ABE) is the most common method used for this purpose. ABE estimates the effort required for a new software project based on its similarity to previous projects. A similarity between the projects ...
Read More
Software effort estimation plays an important role in software project management, and analogy-based estimation (ABE) is the most common method used for this purpose. ABE estimates the effort required for a new software project based on its similarity to previous projects. A similarity between the projects is evaluated based on a set of project features, each of which has a particular effect on the degree of similarity between projects and the effort feature. The present study examines the hybrid PSO-SA approach for feature weighting in analogy-based software project effort estimation. The proposed approach was implemented and tested on two well-known datasets of software projects. The performance of the proposed model was compared with other optimization algorithms based on MMRE, MDMRE, and PRED(0.25) measures. The results showed that weighted ABE models provide more accurate and better effort estimates relative to unweighted ABE models and that the PSO-SA hybrid approach has led to better and more accurate results compared with the other weighting approaches in both datasets.
H.3.2.4. Education
Seyed M. H. Hasheminejad; M. Sarvmili
Abstract
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. ...
Read More
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for using data mining in educational systems. In this paper, we propose a novel rule-based classification method, called S3PSO (Students’ Performance Prediction based on Particle Swarm Optimization), to extract the hidden rules, which could be used to predict students’ final outcome. The proposed S3PSO method is based on Particle Swarm Optimization (PSO) algorithm in discrete space. The S3PSO particles encoding inducts more interpretable even for normal users like instructors. In S3PSO, Support, Confidence, and Comprehensibility criteria are used to calculate the fitness of each rule. Comparing the obtained results from S3PSO with other rule-based classification methods such as CART, C4.5, and ID3 reveals that S3PSO improves 31 % of the value of fitness measurement for Moodle data set. Additionally, comparing the obtained results from S3PSO with other classification methods such as SVM, KNN, Naïve Bayes, Neural Network and APSO reveals that S3PSO improves 9 % of the value of accuracy for Moodle data set and yields promising results for predicting students’ final outcome.
F.2.7. Optimization
M. Kosari; M. Teshnehlab
Abstract
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, ...
Read More
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain identification fractional-order chaotic systems where conventional derivation is replaced by a fractional one with the help of a non-integer derivation. This operator is itself approximated by a N-dimensional system composed of an integrator and a phase-lead filter. A hybrid particle swarm optimization (PSO) and genetic algorithm (GA) method has been applied to estimate the parameters of approximated nonlinear fractional-order chaotic system that modeled by a state-space representation. The feasibility of this approach is demonstrated through identifying the parameters of approximated fractional-order Lorenz chaotic system. The performance of the proposed algorithm is compared with the genetic algorithm (GA) and standard particle swarm optimization (SPSO) in terms of parameter accuracy and cost function. To evaluate the identification accuracy, the time-domain output error is designed as the fitness function for parameter optimization. Simulation results show that the proposed method is more successful than other algorithms for parameter identification of fractional order chaotic systems.
H.6.2.2. Fuzzy set
M. Moradizirkohi; S. Izadpanah
Abstract
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID ...
Read More
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the control design parameters to achieve a desired performance. It is worthy of note that to form control law by considering practical considerations just the available feedbacks are used. It is beneficial for industrial applications wherethe real-time computation is costly. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts. The stability is guaranteed in the presence of both structured and unstructured uncertainties. As a result, all system states are remained bounded. Simulation results on a two-link flexible-joint robot show the efficiency of the proposed scheme.
H.3. Artificial Intelligence
H. Motameni
Abstract
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The ...
Read More
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appointing a leader particle for any n founded particles. We used an intensity criterion to delete the particles in both techniques. The proposed techniques were evaluated based on three standard tests in multi-objective evolutionary optimization problems. The evaluation criterion in this paper is the number of particles in the optimal-Pareto set, error, and uniformity. The results show that the proposed method searches more number of optimal particles with higher intensity and less error in comparison with basic MOPSO and SIGMA and CMPSO and NSGA-II and microGA and PAES and can be used as proper techniques to solve multi-objective optimization problems.
Timing analysis
Z. Izakian; M. Mesgari
Abstract
With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly ...
Read More
With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because of different applications, the problem of clustering the time series data has become highly popular and many algorithms have been proposed in this field. Recently Swarm Intelligence (SI) as a family of nature inspired algorithms has gained huge popularity in the field of pattern recognition and clustering. In this paper, a technique for clustering time series data using a particle swarm optimization (PSO) approach has been proposed, and Pearson Correlation Coefficient as one of the most commonly-used distance measures for time series is considered. The proposed technique is able to find (near) optimal cluster centers during the clustering process. To reduce the dimensionality of the search space and improve the performance of the proposed method, a singular value decomposition (SVD) representation of cluster centers is considered. Experimental results over three popular data sets indicate the superiority of the proposed technique in comparing with fuzzy C-means and fuzzy K-medoids clustering techniques.
Syed Abbas Taher; Mojtaba Pakdel
Abstract
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control ...
Read More
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of shunt reactive compensation devices to be switched)are determined. MORPD is solved using particle swarm optimization (PSO). Also, Pareto Optimality PSO (POPSO) is proposed to improve the performance of the multi-objective optimization task defined with competing and non-commensurable objectives. The decision maker requires managing a representative Pareto-optimal set which is being provided by imposition of a hierarchical clustering algorithm. The proposed approach was tested using IEEE 30-bus and IEEE 118-bus test systems. When simulation results are compared with several commonly used algorithms, they indicate better performance and good potential for their efficient applications in solving MORPD problems.