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Abstract 

In this paper, a novel direct adaptive fuzzy system is proposed to control flexible-joint robots including 

actuator dynamics. This design includes two interior loops. The inner loop controls the motor position using 

the proposed approach, while the outer one controls the joint angle of robots using a proportional-integral-

derivative (PID) control law. One novelty of this paper is the use of a particle swarm optimization (PSO) 

algorithm for optimizing the control design parameters in order to achieve the desired performance. It is 

worthy of note that to form the control law by considering practical considerations, just the available 

feedbacks are used. It is beneficial for industrial applications, where the real-time computation is costly. The 

proposed control approach has a fast response with a good tracking performance under the well-behaved 

control efforts. The stability is guaranteed in the presence of both the structured and unstructured 

uncertainties. As a result, all the system states remain bounded. The results of the simulation conducted on a 

two-link flexible-joint robot show the efficiency of the proposed scheme. 

 

Keywords: Fuzzy System, Particle Swarm Optimization, Flexible-Joint Robot, Actuator Dynamics. 

1. Introduction 

Due to the non-linearities and coupling effects, the 

trajectory tracking control of robot manipulators 

with joint flexibilities is a challenging problem. 

Compared with the rigid robots, the number of 

degrees of freedom becomes twice the number of 

control actions due to flexibility in the joints, and 

the matching property between the non-linearities 

and inputs is lost [1]. As a result, to improve the 

performance and to avoid the unwanted 

oscillations for practical applications, joint 

flexibility must be taken into account in both 

modeling and control. However, to simplify the 

complexity of the controller design, most 

controllers for industrial robots are designed based 

on the rigid-robot assumption [2]. As a result of 

considering the actuator dynamics and joint 

flexibility, the controller design would become 

extremely complex. Therefore, the modeling and 

control of the flexible-joint robots are more 

difficult than those of the rigid robots [3].  

The torques are the inputs to the system equations. 

However, in many papers, such as the feedback 

linearization method [4], the adaptive sliding 

mode technique [5], and the proportional-

derivative control approach [6] dynamics of the 

actuators for providing the desired torques are 

excluded [7]. It has been shown that actuator 

dynamics form an important part of the complete 

robot dynamics, especially in the cases of high-

velocity movement and highly-varying loads [8]. 

One of the drawbacks of these previously-

published results is that they require velocity 

measurements. Moreover, in practical robotic 

systems, the velocity measurements obtained 

through tachometers are contaminated by noise 

[9-11].  

More specifically, the major limitation associated 

with the mentioned control schemes is that these 

schemes assume that torques can be directly 

applied to the robot links, i.e. the actuator 

dynamics is ignored and the control is designed at 

a dynamic level with the torque as input. 

Researchers often refer to this method as the 

torque-control strategy.  

To solve the aforementioned problems, the 

voltage-control strategy was proposed [12]. In this 
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strategy, the actuator dynamics is also taken into 

account, and the voltages of motors are considered 

as the inputs of the robotic system including the 

actuators and robot manipulators. Recently, robust 

control [13] and non-linear adaptive control [14] 

of flexible-joint robots have been developed using 

the voltage-control strategy. On the other hand, 

including the electrical sub-system of the actuator 

dynamics causes several challenging problems. 

Some of these reasons are as follow [15]: 1) The 

electrical sub-system increases the complexity of 

the system model such that a 5
th
  order non-linear 

differential equation should be employed for 

describing a single link flexible joint robot [16]. 

2) Any practical control system is subject to some 

upper and lower bounds that limit the actuator 

input command. In addition, there are unwanted 

non-linearities, which come from dynamical 

effects such as deadzone, backlash, and hysteresis. 

These constraints make the control design 

problem extremely difficult. 

Alternatively, fuzzy control, as a model-free 

approach, can be easily designed to control non-

linear uncertain systems [17]. So far, fuzzy 

control of robot manipulators has received 

considerable attention for overcoming uncertainty, 

non-linearity, and coupling [17-19]. The fuzzy 

adaptive control approaches are classified into two 

categories, direct adaptive fuzzy control and 

indirect adaptive fuzzy control algorithms [17]. In 

the direct adaptive fuzzy control, the fuzzy 

controller is a single fuzzy system constructed 

(initially) from the control knowledge. On the 

other hand, in the indirect adaptive fuzzy control, 

the fuzzy controller comprises a number of fuzzy 

systems constructed (initially) from the plant 

knowledge. 

This paper discusses the problem of designing a 

novel direct adaptive fuzzy control for a class of 

flexible-joint robotic manipulators including 

actuator dynamics in the presence of uncertainties 

associated with both the robot and motor 

dynamics. An advantage is that it uses the 

voltage-control strategy instead of the torque- 

control strategy, which is simpler, less 

computational, and more effective than the 

torque-control strategy. An electrically-driven 

manipulator is then controlled via its motors as 

individual single-input/single-output systems. The 

design includes two interior loops: the inner loop 

controls the motor position using the proposed 

approach, while the outer loop controls the joint 

angle of the robot using a proportional-integral-

derivative (PID) control law.  In addition, 

performance of the control system is improved by 

optimizing the PID gains.  

Another novelty of this paper is the use of a 

particle swarm optimization (PSO) algorithm for 

optimizing the control design parameters in order 

to achieve the desired performance. It is worthy of 

note that one of the advantages of the proposed 

method is that there is no need for a velocity 

measurement. Based on the Lyapunov stability 

theorem, the stability analysis was presented. 

Finally, simulations were conducted on two-link 

robotic manipulators to show the effectiveness of 

the proposed control scheme. As a result, the 

advocated design methodology not only assures a 

closed-loop stability but also a desired tracking 

performance can be achieved for the overall 

system.  

The rest of the paper is organized as follows: 

Section 2 presents modeling of the flexible-joint 

robots. Section 3 introduces PSO. Section 4 

develops the proposed method. Section 5 presents 

the simulation results, and finally, Section 6 

concludes the paper. 

 

2. Electrically-driven fexible-joint robot 

dynamics  

Consider  a  flexible-joint  robot,  which  is  

driven  by  geared  permanent  magnet  dc  

motors.  If  the  joint  flexibility  is  modeled  by  a  

linear  torsional  spring,  the dynamic  equations  

of  motion can be expressed as follow [13, 14]: 

( ) ( , ) ( )

( )

d

m

D C g

K r

      

 

   


 (1) 

( )m m mJ B rK r         (2) 

where,
nR   is a vector of joint angles, 

n

m R   

is a vector of rotor angles, and 
n

d R   denotes 

unknown disturbances including unstructured 

dynamics and unknown payload dynamics. Thus 

this system possesses 2n  coordinates as [ ]m  . 

The matrix ( )D   is an n n  matrix of 

manipulator inertia, ( , ) nC R     is the vector of 

centrifugal and Coriolis forces, ( ) ng R  is a 

vector of gravitational forces, and R  is a 

torque vector of motors. The diagonal matrices 

,J B and r represent the coefficients of the motor 

inertia, motor damping, and reduction gear, 

respectively. The diagonal matrix K represents 

the lumped flexibility provided by the joint and 

reduction gear. To simplify the model, both the 

joint stiffness and gear coefficients are assumed 

constant. The vector of gravitational forces ( )g   

is assumed a function of only the joint positions as 

used in the simplified model [20]. Note that the 
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vector and matrix are represented in the bold form 

for clarity. 

System (1-2) is highly non-linear, extensively 

computational, heavily coupled, and a multi-

input/multi-output system with 2n coordinates. 

Complexity of the model has been a serious 

challenge in robot modeling and control in the 

literature. It is expected to face a higher 

complexity if the proposed model includes the 

actuator dynamics. In order to obtain the motor 

voltages as inputs, consider the electrical equation 

of the geared permanent magnet DC motors in the 

following matrix form: 

a a b mu RI LI K     (3) 

where 
nu R  is a vector of motor voltages, 

n

aI R  is a vector of motor currents, and m  is a 

vector of rotor velocities. The diagonal matrices 

,R L  and bK  represent the coefficients of 

armature resistance, armature inductance, and 

back-emf constant, respectively. The motor torque 

  as an input for dynamic equation (2), is 

produced by the motor currents as: 

m aK I   (4) 

where, mK  is a diagonal matrix of the torque 

constants. Equations (1-4) form the robotic system 

such that the voltage vector u is the input vector, 

and the joint angle vector   is the output vector. 

The dynamics of the electrical robot (1)-(4) in the 

state space is formed as: 

( )X f X bu     (5) 

where: 

2

1

1 1 1 1 2 2

3

1 2

1 3 4 5

1

4 5

1

1

1

( )( ( ) ( , )

( ) )

( )

( )

0 0

0 ( )

, ,0 0

0 0

0

m

b

d

m

m

a

X

D X g X KX C X X X

f X Krx

J rKX r KX BX K X

L K X RX

D X

b X

L I



 

 













 
 

   
  
 

   
   

    
    

    
      
    
    
        

 

 

where, 1 2 3 4, , ,m mX X X X        and 

5 aX I . 

Equation (5) shows a highly-coupled non-linear 

large system, where the state vector X includes 

vectors of position and velocity to the motor and 

the joint and the motor current.  

 

 

3. Particle swarm optimization 

The particle swarm optimization (PSO) algorithm 

is a population-based search algorithm based on 

the simulation of the social behavior of birds 

within a flock [21]. This algorithm optimizes a 

problem by having a population of candidate 

solutions and moving these particles around in the 

search-space according to simple mathematical 

formulae over the particle position and velocity. 

The position of each particle is changed based on 

the experiences of the particle itself and those of 

its neighbors [22,23]. Consequently, the particles 

tend to fly towards the better searching areas over 

the searching space [24,25]. 

The velocity of the     particle (  ) is calculated as 

follows [23,26]: 

1 1

2 2

( 1) . ( ) ( ( )

( )) ( ( ) ( ))

i i i

i i

v t w v t c r pbest t

x t c r gbest t x t

   

 
 (6) 

where, in the     iteration, ix is the particle 

position, ipbest  is the previous best particle 

position, gbest  is the previous global best 

position of particles,   is the inertia weight, 1c   and 

2c  are the acceleration coefficients namely the 

cognitive and social scaling parameters, 

respectively, and 1r   and 2r   are two random 

numbers in the range of [0 1] .  

The new position of the     particle is then 

calculated as [26]: 

( 1) ( ) ( 1)i i ix t x t v t     (7) 

The PSO algorithm is performed repeatedly until 

the goal is achieved. The number of iterations can 

be set to a specific value as a goal of optimization. 

In addition, to enhance the performance of PSO 

based on the experimental results, the inertia 

weight was proposed to control the velocity, as 

[27]: 

max

1 2 2

max

( )( )niter iter
w w w w

iter


    (8) 

where, n  is the non-linear modulation index, w  

decreases from a higher value 1w  to a lower value 

2w and maxiter  is the maximum iteration number. 

Moreover, proper fine-tuning of the parameters 1c   

and 2c  in (6) may result in faster convergence of 

the algorithm and alleviation of the local minima 

[28]. Hence, 1c  and 2c  are given as: 



Moradi & Izadpanah/ Journal of AI and Data Mining, Vol 5, No 1, 2017. 
 

140 

 

max

1 1 1 1

max

max

2 2 2 2

max

( )( )

( )( )

i f f

i f f

iter iter
c c c c

iter

iter iter
c c c c

iter


  


  

 (9) 

where, 1ic and 2ic are the initial values for the 

acceleration coefficient 1c  and 2c   and 1fc  and 

2fc  are the final values for the acceleration 

coefficients 1c  and 2c , respectively [28, 29]. 

Simulations were carried out with various 

constraint optimization problems to find out the 

best ranges of values for 1c
 
and 2c . From the 

results, it was observed that the best solutions 

were determined when changing 1c  from 2.5 to 

0.5 and changing 2c  from 0.5 to 2.5 over the full 

range of search [29]. 

 

4. Proposed control law 

To control such a complicated system, a novel 

simple controller was proposed using a voltage-

control strategy. The design includes two interior 

loops: the inner loop controls the motor position, 

while the outer loop controls the joint angle of the 

robot manipulator. The outer loop provides the 

desired trajectory for the inner loop.  
 

4.1. Designing inner loop 

In order to design the inner loop to control the 

motor position, the electrical equation for a 

permanent magnet dc motor is written as: 

a a b mu RI LI k       (10) 

Where ,R L and bk  denote the armature 

resistance, inductance, and back emf constant, 

respectively, u  is the motor voltage, aI  is the 

motor current, m  is the rotor position, and   

represents the external disturbance (assumed to be 

bounded). 

The motor angle m , as an output, can be 

controlled via the voltage u , as an input.  From 

(10) we have: 

1 a a

m

b b b

RI LI
u

k k k





    (11) 

Using feedback linearization by assuming  0  , 

a perfect control law can be obtained as: 

( ( ))a a

eq b md md m

b

RI LI
u k

k
   


     (12) 

where,  is a positive gain, and md  is a desired 

motor angle.  

Substituting (12) into (11), and after some 

manipulation, yields: 

0e e   (13) 

where, e  is the tracking error, expressed by 

md me    . It can be concluded that the error 

approaches zero using the control law (12).  

Feedback linearization is one of the popular 

techniques used in the non-linear control 

approaches. Feedback linearization can convert a 

multi-input/multi-output non-linear system to 

single-input/single-output linear decoupled 

systems. However, feedback linearization suffers 

from some problems such as model uncertainty 

and additional computations in control efforts. In 

fact, a perfect model is required to apply feedback 

linearization, while a perfect model is not 

available. Therefore, performances of control 

strategies are dependent on the model used in the 

feedback linearization [30]. 

From (12), one can note that the feedback 

linearization controller requires an exact 

cancellation of non-linearities to achieve the 

desired performance. In the presence of 

uncertainties, the non-linearities may not get 

canceled exactly, which may result in a poor 

performance, and thus, it is necessary to 

compensate for the effects of the uncertainties. To 

overcome this drawback, the following control 

law is proposed: 

D b su u k u   (14) 

where,  Du  is the output of an adaptive fuzzy 

system, and  su can be considered as an extra term 

to overcome uncertainties. Substituting (14) into 

(11) gives: 

1 1

1

a a

m D s eq

b b b b

eq

b

RI LI
u u u

k k k k

u
k





    



 (15) 

By substituting (12) into (15), one can obtain: 

1

1
( )

a a

m D s

b b b

a a

md md m eq

b b

RI LI
u u

k k k

RI LI
u

k k




   


    


     

(16) 

After some simple manipulations, we have: 

1
( ) (

)

m md md m D

b

eq s

u
k

u u

    



   

  

 (17) 

where, 
bk


   . The role of su  is presented by 

(17). It is quite obvious from (17) that su  is 
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employed to attenuate the external disturbance.  

Further simplification gives: 

1
( )eq D s

b

e e u u u
k

        (18) 

where, e is md m  . 

We design a fuzzy controller using two variables 

as the inputs to the fuzzy controller namely the 

tracking error e and its derivative e .  If three 

membership functions are given to each fuzzy 

input, the whole control space is covered by nine 

fuzzy rules. The linguistic fuzzy rules are 

proposed in the form of: 

:l l l lR if e is A and e is B then y y  (19) 

where, lR  denotes the     fuzzy rule for 

1,...,9l  In the     rule, ly  is a crisp output, and  
lA  and lB  are the fuzzy membership functions 

belonging to the fuzzy variables   and  ̇, 

respectively. Three Gaussian membership 

functions, namely Positive (P), Zero (Z), and 

Negative (N) are defined for input   in the 

operating range of the manipulator. They are 

expressed as: 

 

2

2

2

2

2

2

1 1

1 2( 1) 1 .5
( )

2 .5 0

0 0

0 0

2 0 .5
( )

1 2( 1) .5 1

1 1

( ) exp( ), .5
2

N

p

z

e

e e
e

e e

e

e

e e
e

e e

e

e
e





 


 

     

 
  

 




 
 

   
 

  

 

(20) 

The membership functions of e  are given the 

same as e . If we use the singleton fuzzifier and 

the center average defuzzifier, Du is calculated by: 

9

1

( ) ( , )l T

l

l

u e y e e 


    (21) 

where 
1 2 9

1 2 9[ ... ], [ ... ]T y y y        and 

[ ]e e e . In the meantime, 1  is expressed as 

( ) ( )

9

( ) ( )
1

( , )
l l

l L

A e B e

l l

A e B e
l

e e
 



 







 

(22) 

where, 
( ) ( )

, [0 1]l lA e B e
   . The parameter  in 

(21) is determined by the adaptive rule afterward. 

According to the universal approximation 

theorem, there exists an optimal fuzzy system 

  
 ( | ) in the form of (21) such that: 
* *( , ) T

Du e e     (23) 

where,  is the  approximation error, assumed to 

be bounded by   , where   is a positive 

scalar.  Employing a fuzzy system to approximate 

Du  yields: 
*( ) T

Du e    (24) 

where, ̂  is the estimated vector of  . One can 

obtain: 
* ( ) ( ) T

D Du e u e        (25) 

where, * ˆ  .  

Using (18), and by adding and subtracting 
* ( )Du e  , one can obtain:  

*1
( ( ) ( ))

1

D D

b

s

b

e e u e u e
k

w u
k





      

 

 (26) 

where, * ( )D Dw u e u   . Substituting (25) into 

(26) yields: 

1 1
( )T

s

b b

e e w u
k k

          (27) 

where, 
bk


 . To establish convergence of the 

error, a lyapunove function is defined as: 

2

1

1
0.5

2

TV e


     (28) 

where, 1  is a positive constant. Taking the time 

derivative of the above equation yields: 

1

1 TV ee


     (29) 

Substituting (27) into (29) yields: 

1

1 1
( ( )

1
)

T

b b

T

s

V e e w
k k

u

  



      

   

 (30) 

After some simple manipulations, one can obtain: 

2

1

1
( )

( )

T

b b

s

e e
V e w

k k

e u

 




      



 (31) 

Suppose that su e . Thus: 

2

1

1
( 1) ( )

( )

T

b b

e e
V e w

k k

e

 




      

 

 (32) 
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To establish the convergence, the following 

adaptive law is given: 

 

1
ˆ / be k    (33) 

 
Figure 1. Block diagram of control system. 

 

In order to evaluate the adaptive law (33), we 

substitute it into (32) to obtain: 

2 ( 1) ( )
b

e
V e w e

k
        (34) 

For achieving 0V  , (34) can be recast as: 

2 ( 1) ( )
b

e
V e w e

k
        (35) 

For achieving 0V  , it is required that: 

( ) 0
b

e
e w

k
    (36) 

From the universal approximation theorem, it can 

be expected that the terms   and   should be very 

small, if not equal to zero, in the adaptive fuzzy 

system. Hence, using the Cauchy–Schwartz 

inequality, and by assuming that 
1( )   , 

where 
1  is a positive scalar, we can obtain: 

1( )e e    (37) 

Thus in order to satisfy (36), we suggest: 

1

b

e
e w

k
   (38) 

Substituting for 1

b

e
w

e k
  in (35) gives: 

2 ( 1)V e     (39) 

Therefore, e L , and 
2 1

0 0

( 1)e V
 

       

implies 2e L . In addition, we have already 

assumed that L  . As a result, (27) implies

e L . Hence, asymptotic convergence of error 

can be concluded using the Barbalat’s lemma. 

Namely, lim ( ) 0
t

e t


 . 

 

 
 

4.2. Designing outer loop 

The outer loop is designed to control the joint 

angle and providing the desired     to the inner 

loop using a PID ordinary control law as: 

md d p ik E k E k E dt      (40) 

where,  ,p dk k , and  ik  are positive constant 

gains. dE     denotes the joint tracking error, 

 is the 

actual joint angle, and 
d  is the desired joint 

angle. To enhance the control system 

performance, the gains of PID control law are 

optimized using PSO. In addition, according to 

the proof given by [14], the robotic system is 

stable as well. As a conclusion, based on the 

stability analysis, all the signals required to form 

(14) are bounded. 

To clarify the proposed control algorithm, a block 

diagram of the control system is depicted in figure 

1.  

In addition, to summarize the above analysis, a 

design procedure for the proposed approach is 

proposed as follows: 

Step 1: Construct membership function for e  and

e . 

Step 2: Designing inner loop: Specify the desired 

coefficients 1  and  . 

Step 3: Designing outer loop: Apply PSO 

algorithm, and find optimal specify coefficients 

,p dk k and ik . 

Step 4: Obtain the control law in (14), and apply it 

to the electrically-driven flexible-joint robot. 

 

5. Simulation results 

In this section, the proposed approach is applied 

to control a two-link flexible-joint robotic 

manipulator, as shown in figure 2, as described by 

[11,31]: 
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Table 1.  Motor parameters. 

 

    Motors     R      bk      L      J     B      r     K  

1,2    1.26     0.26    0.001    0.0002    0.001     0.01     500 

 
 

2 2 2 2

1 1 2 1 2 1 2 2 2 2 2 1 2 2

2 2

2 2 2 1 2 2 2 2

( 2 )
( )

m l m l l l l c m l m l l c
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m l m l l c m l


   


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 
 
 

 

(41) 

2 1 2 2 2 2 1 2 2 2
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2
( , )

0

m l l s m l l s
C

m l l s
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 



 
  
 

 (42) 

2 2 12 1 2 1 1

2 2 12

( )
( )

m l gc m m l gc
g

m l gc


  
  
 

 (43) 

 

where, 1m  and 2m  are the masses of links 1 and 

2, respectively; 1l  and 2l  are the lengths of links 

1 and 2, respectively; is denotes sin( )i , ic

denotes cos( )i , ijc  denotes cos( )i j  for 

1,2i   and 1,2j  , and g is the acceleration of 

gravity. The parameters of the robot used for 

simulation are 1 2 1 21 , 10 , 8l l m m kg m kg   

and 29.8 /g m s . The parameters of motors are 

given in table 1. Note that the inductances of 

motors are taken into account to consider a more 

complicated model in simulations. 

The desired joint trajectory for the joints is 

smooth, expressed as 1 cos( / 20)d t   , shown 

in figure 3.  

The maximum voltage of each motor is set to

max 40u v . We set the adaptation law with 

ˆ (0) 0   and 1 200   for both motors. 

  

 
Figure 2. Flexible-joint two-link robot actuated by 

brushed DC motors [2]. 

 
Figure 3. Desired trajectory for joints 1 and 2. 

 

The PSO algorithm searches by 20 particles, and 

the maximum iteration maxiter  is set to 100. The 

maximum inertia weight 1w  and the minimum 

inertia weight 2w  are given by 0.9 and 0.4, 

respectively. The coefficients 1ic  and 2ic  are set 

to 2.5 and 0.5, respectively. In addition, the 

coefficients 1fc and 2fc are set to 0.5 and 2.5, 

respectively. For the purpose of comparison, 

simulation studies in three cases are carried out. 

Case 1: In this simulation, no uncertainty is 

considered. The PID gains are set to 

20, 10p ik k  and 2dk  .The performance of 

the control system is shown in figure 4. It is 

evident that the control system is performed well. 

The maximum value of tracking error is 0.135. 

The motor voltages behave well under the 

maximum permitted value of 40 V, as shown in 

figure 5. It is interesting to note that the control 

input is free of chattering. The adaptation of 

parameters in the adaptive law (33) is shown in 

figure 6. The simulation results confirm the 

effectiveness of the proposed method. 

Case 2: In this simulation, to have a better 

comparison, and to enhance the control 

performance, the GA and PSO algorithms are 

used to optimize the PID control law gains in the 

outer loop. The search spaces of PID gains are 

defined as 
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Before proceeding by the optimization operations, 

a performance criterion must be defined.  

 
Figure 4. Tracking performance of proposed approach.  

 
Figure 5. Control effort of proposed approach (motor 

voltages). 

 
Figure 6. Adaptation of parameters. 

 
Figure 7. Desired Convergence of cost function. 

In this paper, the cost function (CF) is defined as: 
20

2 2

1 2

0

1
( )

20
CF e e dt   (44) 

Owing to the randomness of the mentioned 

algorithms, their performance cannot be judged by 

the result of a single run.  Many  trials  with  

different  initializations  should  be  made  to  

acquire  a  useful  conclusion  about  the 

performance of algorithms. An algorithm is robust 

if it gives consistent results during all the trials. 

In order to run the PSO and GA algorithms, a 

population with a size of 20 for 100 iterations is 

used. Regarding (44), comparison of the results 

for 20 independent trials is shown in table 2. 

 

Table 2. Comparison of optimized PID parameters. 

 

Method Best Mean Worst 

GA 0.4316 0.6376 0.9376 

PSO 0.1594 0.1604 0.1622 
 

 

This comparison shows that PSO is superior to 

GA because  the  best  and  the  mean  values  

obtained  by  PSO  are  very  close  to  the  worst  

value. Hence, to save space afterward, just the 

PSO results are presented. In addition, the 

optimization process for PSO is depicted by figure 

7 by calculating the cost function in the global 

best value at each run. 

It is seen that the cost function is well converged. 

The trajectory of the PID gains is shown in figure 

8. It confirms the success of the optimization 

process by using the PSO algorithm. As seen, the 

final values for the PID gains are found as

408.89, 246.98, 13.87p d ik k k   . Figure 9 

illustrates the tracking errors. The maximum value 

for the tracking error for joint 1 is about 0.083, i.e. 

about 61% of its value in case 1. It can be 
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concluded that the PSO algorithm has worked 

well to enhance the control performance.   

 
(a) 

 

(b) 

 
(c) 

Figure 8. Finding PID gains: (a) trajectory of   , (b) 

trajectory of   , (c) trajectory of    . 

 

Case 3: In this simulation, performance of the 

proposed approach in the presence of the 

uncertainties associated with both robot and motor 

is investigated. In this regard, for the robustness 

evaluation of the controllers, external disturbances 

are added to the robot system. The disturbance is 

inserted into the input of each motor as a periodic 

pulse function with a period of 2 S, amplitude 4 

V, time delay of 0.7 S, and pulse width 30% of 

period. This form of disturbance is an example of 

any form that can be applied but it includes jumps 

to cover the complex cases. 

 
Figure 9. Tracking performance of proposed approach in 

optimal case. 

We also choose the exogenous disturbances as: 

 3cos(5 ) 3sin(5 )
T

d t t   . Moreover, the motors 

and robots’ link parameters are considered to be 

80% of their real values defined as before. The 

optimal values of PID gains that have been 

achieved using the PSO algorithm in Case 1 are 

used. The performance of the control system is 

shown in figures 10 and 11. 

It is evident that the effects of disturbances are 

represented as small jumps on the curves of 

tracking errors. In addition, the tracking error in 

the presence of time-variant disturbance is, to 

some extent, more than the previous case. These 

figures show that not only there is no sign of 

chattering in the control inputs in the presence of 

the time-variant disturbance, but also they are 

smooth and in the permitted interval. 

The simulation results thus demonstrate that the 

proposed approach can effectively control the 

flexible-joint robotic system with model 

uncertainties and disturbances. 

Case 4: To have a better comparison, the proposed 

method is compared with a non-linear, approach 

proposed in [14]. The tracking performance of the 

mentioned approach in [14] is illustrated in figure 

12. The maximum value for tracking error is 

0.235, i.e. significantly larger than its value in 

case 2. Generally, it is evident that both methods 

have performed well. However, to some extent, 

the proposed approach has perform better. 

 

6. Conclusion 

This paper presents a direct adaptive fuzzy 

controller for flexible-joint electrically-driven 

robots, considering uncertainties in both the 
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actuator and manipulator dynamics. The design 

includes two interior loops: the inner loop controls 

the motor position using the proposed approach, 

while the outer loop controls the joint angle of the 

robot using a PID control law. The proposed 

approach is based upon the voltage-control 

strategy, which is superior to the well-known 

torque-control strategy. 

 
Figure 10. Tracking performance under disturbance. 

 

 
Figure 11. Motor voltages under disturbance. 

 
Figure 12. Tracking performance of proposed approach 

presented in [14]. 

The main advantage of our proposed methodology 

is that it uses available feedbacks as an important 

advantage from a practical viewpoint, the actuator 

dynamics is considered, and the control 

performance is also enhanced using the PSO 

algorithm. The stability analysis has verified the 

control method, and the simulation results have 

confirmed its effectiveness. 

It is noted that the extension of the proposed 

method to the controller design for AC motors 

deserve further investigations. Practical 

implication of the proposed theoretical results is 

also part of our future works. It is worthy of note 

that from the simulation results, it can be 

concluded that the theoretic results obtained have 

potentials in applications. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

با استفاده از  پذیر با در نظر گرفتن دینامیک محرکهکنترل فازی تطبیقی مستقیم ربات با مفاصل انعطاف

 الگوریتم پرندگان

 

  صمصام ایزد پناه و *مجید مرادی زیرکوهی

  .ایران، بهبهان النبیاء بهبهان،دانشگاه صنعتی خاتم ، برقگروه 

 01/51/5502 ؛ پذیرش50/50/5500 ارسال

 چکیده:

شود. روش طراحی شامل دو حلقه تو در تو های با مفاصل انعطاف پذیر پیشنهاد میدر این مقاله، یک سیستم فازی تطبیقی مستقیم برای کنترل ربات

شود و در حلقه خارجی زوایای مفصل ربات با استفاده از کنترل کننده روش پیشنهادی کنترل میاخلی موقعیت موتور با استفاده از است: در حلقه د

PID کنترل برای  های سیستمظور بهینه کردن پارامترنسازی پرندگان بممقاله استفاده از الگوریتم بهینههای این شود. یکی از نوآوریکنترل می

های در دسترس فیدبک نظر گرفتن ملاحظات عملی فقط از سیگنالت که در تشکیل قانون کنترل با دراسرسیدن به عمکرد مطلوب است. لازم به ذکر 

های صنعتی سودمند است. روش پیشنهادی دارای پاسخ سریع با عمکرد ردگیری مناسب و سیگنال کنترلی گرفته شده است. این مسئله در کاربرد

کراندار  های سیستمشود. در نتیجه تمام سیگنالهای پارامتری و غیر پارامتری اثبات میم قطعیتپایداری سیستم کنترل در حضور عد همواری است.

 پذیر نشان از کارا بودن روش پیشنهادی دارد. ک ربات دو لینکی با مفاصل انعطافسازی سیستم کنترل برای یباشند. شبیهمی

 .پذیر، دینامیک محرکهمفاصل انعطافم پرندگان، ربات با سیستم فازی، الگوریت :کلمات کلیدی

 


