
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 3, 2021, 329-340.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Hybrid PSO-SA Approach for Feature Weighting in Analogy-Based

Software Project Effort Estimation

Zahra shahpar1, Vahid Khatibi Bardsiri2* and Amid Khatibi Bardsiri2

1. Department of Computer engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.

 2. Department of Computer engineering, Bardsir Branch, Islamic Azad University, Bardsir, Iran.

Article Info Abstract

Article History:
Received 01 October 2020
Revised 26 April 2021

Accepted 07 June 2021

DOI:10.22044/jadm.2021.10119.2152

 The software effort estimation plays an important role in software

project management, and analogy-based estimation (ABE) is the most

common method used for this purpose. ABE estimates the effort

required for a new software project based on its similarity to the

previous projects. A similarity between the projects is evaluated based

on a set of project features, each of which has a particular effect on the

degree of similarity between the projects and the effort feature. The

present study examines the hybrid PSO-SA approach for feature

weighting in the analogy-based software project effort estimation. The

proposed approach is implemented and tested on two well-known

datasets of software projects. The performance of the proposed model

is compared with the other optimization algorithms based on the

MMRE, MDMRE, and PRED (0.25) measures. The results obtained

showed that the weighted ABE models provide more accurate and

better effort estimates relative to the unweighted ABE models and that

the hybrid PSO-SA approach leads to better and more accurate results

compared to the other weighting approaches in both datasets.

Keywords:
Software Effort Estimation,

Analogy-based Estimation,

Feature Weight Optimization,

Particle Swarm Optimization,

Simulated Annealing.

*Corresponding author:
khatibi78@yahoo.com (V. Khatibi

Bardsiri).

1. Introduction

Analogy-based estimation (ABE) is one of the

most commonly used methods for the software

project effort estimation. Introduced by Shepperd

in 1979, this method has achieved a widespread

popularity due to its ease of use and simplicity [1].

ABE starts with collecting data from the previous

software projects in the form of an n*p matrix,

with each row reporting one software project's

information and describing the project with a set

of features and their values. These features are

often defined and used at random and based solely

on their availability, without a formulated

relationship with the target feature, i.e. the amount

of effort required by the software project.

Obviously, these features are not equally

important in all the software projects [2, 3]. The

researchers, therefore, use the weighting

techniques in order to optimize the feature sets. In

these techniques, an appropriate 'weight' or

coefficient is determined for each feature by

analyzing the effect of the independent feature on

the target feature [4, 5]. Feature weighting

expands or compresses the feature space, which,

in turn, affects the proximity of the previous

projects to the target projects, changing the set of

adjacent and neighboring projects that might be

similar to the current project and provide a

solution for it. Such problems are NP-hard and

pose significant computational challenges if the

number of projects and feature sets does not

matter. Selecting a feature subset, which might

appear to be an easier solution, is also NP-hard

but less challenging since each feature is weighted

by zero or one, and for this reason, feature

selection has so far been the dominant approach in

software projects effort estimation [6]. After

reviewing the techniques reported for this

purpose, we present our hybrid feature weighting

approach. In the next section, we analyze the

relevant studies reported in the literature. The

ABE model is then introduced and reviewed. The

research methodology is elaborated in the fourth

mailto:khatibi78@yahoo.com%20(V

Vahid Khatibi Bardsiri et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

330

section. The fifth section describes how the

proposed model is implemented on the dataset.

Finally we analyze and discuss the results of

implementing the proposed approach in the sixth

section.

2. Related Works

Feature weighting is a common approach in

machine learning in order to deal with the

challenge of very large datasets. Even in small

datasets, a large and diverse feature space can lead

to overfitting [7]. In such cases, feature weighting

and selection is an appropriate approach for

determining which features affect the dependent

feature by weighting the features with different

coefficients based on their relationship with the

target feature. For example, the irrelevant or

redundant features are given lower weights. Due

to its focus on the important features, therefore,

this approach leads to a smaller dataset, and as a

result, the research work will be faster, more

accurate, and more extensive. Various objectives

have been mentioned for feature weighting in the

literature, the most important of which include [8,

9]:

- improved model performance and prevention of

overfitting (for example, selecting better clusters

in clustering and improved prediction

performance in supervised classification).

- faster and more cost-effective models.

- acquiring a deeper understanding of the data and

the processes that have generated the data.

- finding a feature subset through feature

weighting in order to improve the prediction

accuracy or reduce the size of the dataset without

a significant negative impact on the accuracy of

classification prediction, using only the selected

features.

Various feature selection and weighting

techniques have been used in order to improve

ABE. These techniques can be classified into

three general approaches including correlation

analysis, exhaustive search, and optimization.

Correlation analysis is a statistical technique used

for estimating the software development effort. In

this method, the dependency level between the

project features is determined by statistical

analysis. The traits that have a weak correlation

with the development effort are assigned lower

weights; the traits with higher correlation

coefficients will have higher weights, and the

traits with no correlation are excluded. The

previous studies have shown that this technique

can improve the ABE's efficiency [10-13].

In the exhaustive search technique, appropriate

weights are selected for the independent features

based on the pre-determined criteria. Analysis of

the dependencies between the features leads to the

formation of several feature subsets. The features

that form the intersection of all subsets are

regarded as the most important features, and

weighting is based on the number of

reappearances of the same feature in various

subsets [14, 15].

The optimization techniques are used for adjusting

the feature weights in the ABE similarity function.

Genetic algorithm is one of the most common

optimization methods employed for determining

the feature weights and the number of neighbors

(KNN) [16-20]. In the previous studies, genetic

algorithm has been used for weighting the features

and for minimizing the error parameter [16-21].

Particle swarm optimization is another method

used for this purpose [22]. Particle swarm

optimization and multi-objective particle swarm

optimization have been used for determining the

number of nearest neighbors, selecting the optimal

feature set, and weighting the features in software

effort estimation [23]. Araujo et al. [24] have

proposed a hybrid linear perceptron method and

used a genetic algorithm for optimizing the

perceptron parameters and selecting the optimal

feature subset with the goal of enhancing the

accuracy of effort estimation. Khatibi et al. [25]

have presented a flexible method for estimating

software development effort, the core idea of

which is to localize adaptation and the weighting

process by clustering the software projects. They

classified the projects into several clusters based

on the key features and used a combination of

ABE and the PSO algorithm for feature

weighting, with different clusters assigning

different weights to each project feature. Instead

of comparing the new project with all the previous

projects, it is only compared with the projects that

fall within the related clusters (based on the

common features). Khatibi et al. [26] have

proposed a PSO-based model for improving the

estimation accuracy. This model is a combination

of PSO algorithms and the ABE approach. In the

present work, a framework is presented in which

the appropriate weights are assigned to the project

features, and thus increase the accuracy of

estimates. The framework includes a training and

a testing phase through which the proposed

estimation model is developed and evaluated. In

this method, the PSO algorithm extracts the

possible weights and selects those weights that

lead to more accurate estimates. Wu et al. [27]

have used the PSO optimization algorithm for

weighting features in the Manhattan and

Euclidean similarity functions, and gray

Hybrid PSO-SA approach for feature weighting in analogy-based software project effort estimation

331

relationship degree. Benala et al. [28] have

employed the differential evolution algorithm in

order to optimize the feature weights for ABE

similarity functions, applying five mutation

strategies. Ranichandra [29] has made an attempt

to optimize the non-orthogonal space distance,

which is a measure of the similarity between the

software projects based on the feature weights and

feature redundancy using the ant colony

optimization algorithm. Khatibi [30] has utilized

the differential evolution algorithm as a tool for

feature weighting. Shah et al. [31] have proposed

a model for software effort estimation that

ensemble Artificial Bee Colony (ABC) with

Analogy-based estimation. Zakrani et al. [32]

have designed a model for effort estimation using

the Support Vector Regression (SVR) and feature

selection methods. Their SVR model was

optimized by a grid search procedure.

The previous studies indicate that the main

challenges in applying the optimization

techniques are the entrapment of optimization

algorithms in local optimization and the high

computational burden. In the present work,

therefore, we intended to use an approach that

could address these two challenges.

3. Analogy-based Estimation

Analogy-based estimation was first proposed by

Sheppard and Schofield as an approach for

estimating the software project effort [1]. The

main idea of this method is to compare the new

project with the previous projects. It measures the

similarity between the current project and the

previous projects, and then estimates the effort

required for it based on that required for the most

similar projects [1, 17]. The ABE approach

consists of four steps [16, 30]:

- Collecting information from the previous

projects in the form of datasets.

- Selecting and weighting the features.

- Using the similarity function in order to

determine the degree of similarity between the

new and past projects and select the most similar

ones.

- Determining the effort required for the new

project using the solution function based on the

efforts reported for the most similar projects.

3.1. Similarity Function

Similarity function plays a pivotal role in the

analogy-based effort estimation. Using different

similarity measures can lead to different results

[33]. In this work, three similarity functions were

employed and examined. Euclidean similarity

function, calculated by (1), has been the most

widely used similarity function in the previous

studies. In this equation, p and 𝑝′ represent the

projects; 𝑤𝑖 is the weight assigned to each feature,

and ranges between 0 and 1; 𝑓𝑖 and 𝑓𝑖
′ are the ith

feature of each project; and 𝑛 is the number of

features. 𝛿 (𝛿=0.0001) is added to obtain the non-

zero results [13, 16-19, 21, 25-27, 30].

Another widely used function is the Manhattan

similarity function (2). Its equation closely

resembles that of Euclidean similarity, and the

only difference is that the former calculates the

absolute value of the difference between the

features [13, 16, 21, 25-27, 30].

In addition to these two commonly used similarity

functions, there are other functions that, despite

their importance, have not received due attention

in the feature selection and weighting studies.

Thus Minkowski similarity function was also used

and examined in the present work. Minkowski

similarity function is a generalization of Euclidean

and Manhattan functions, calculated by (3) [25,

26, 27, 34].

(1)

(2)

(3)

3.2. K-Nearest Neighbor (KNN)

KNN specifies a number (k) of projects closest to

the current project. It is an important parameter of

ABE, and affects the accuracy of effort

estimation. Some authors opt for K=1 in the KNN

algorithm, and the others recommend k equals two

or three. [16, 19, 35]. The previous studies have

shown that finding the optimal KNN is an

important step, and will affect the ABE efficiency.

î
î

í

î
î

ì

ë

¡=¡

¡¸¡

¡¡-

=¡

+¡
=¡

ä=

iiii

iiiii

iiiii

iii

i

n

i ii

ffandalnoarefandfif

ffandalnoarefandfifw

ordinalornumericalarefandfifffw

ffDisw

ffDisw
ppsim

min,0

min,

,)(

,),(

),(

1
),(

2

1
d

î
î

í

î
î

ì

ë

¡=¡

¡¸¡

¡¡-

=¡

+¡
=¡
ä=

iiii

iiiii

iiiii

iii

n

i iii

ffandalnoarefandfif

ffandalnoarefandfifw

ordinalornumericalarefandfifffw

ffDisw

ffDisw
ppsim

min,0

min,

),(

,),(

),(

1
),(

1
d

î
î

í

î
î

ì

ë

¡=¡

¡¸¡

¡¡-

=¡

+¡
=¡

ä=

iiii

iiiii

ii
q

iii

iii

q n

i iii

ffandalnoarefandfif

ffandalnoarefandfifw

ordinalornumericalarefandfifffw

ffDisw

ffDisw
ppsim

min,0

min,

,)(

,),(

),(

1
),(

1
d

Vahid Khatibi Bardsiri et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

332

3.3. Adaptation Function

After identifying the most similar projects, the

effort required for the target project can be

estimated using the statistical methods termed the

adaptation functions. The ABE approach uses the

adaptation function as a mechanism for

aggregation of the effort of most similar previous

projects as the estimation effort of the current

project [36]. The adaptation function is called

"closed project" (CP) if only one project similar to

the target project is selected. If more than two of

the most similar projects are selected, various

adaptation techniques such as the mean matching

function, median matching function, and reverse

distance weighted mean matching function can be

used. Most studies use the weighted mean

matching function, which is calculated by (4),

where k is the number of similar projects, 𝐸0
^ is

the estimated effort, 𝐸𝑖 is the effort for project 𝑥𝑖
and 𝑠(𝑥0 ,𝑥𝑖) is a measure of similarity between

the target project 𝑥0 and a similar project 𝑥𝑖 [27,

28, 30].

(4)

4. Model Description

This work presents a weighting approach based on

the hybrid PSO-SA optimization algorithm for

ABE. As noted earlier, the feature weights are

used in the ABE similarity function. Accordingly,

the PSO-SA optimization algorithm is employed

in order to determine the feature weights in the

similarity determination step of ABE. The

proposed model is implemented in two phases:

training and testing. The feature weights are

determined by PSO-SA in the training phase, and

the proposed model is evaluated in the testing

phase. The evaluation parameters and training and

testing phases are described in the following

sections.

4.1. Performance Measures

The performance measures are used for assessing

the estimation methods. Several parameters have

been utilized for this purpose in the previous

works, among which three measures including the

mean magnitude of relative error (MMRE),

median magnitude of relative error (MDMRE),

and PRED(0.25) are the most widely used.

MMRE represents the average estimation error for

all samples (training or testing), and MDMRE is

the median error in the value determined by the

algorithm relative to the actual effort of the

samples. MMRE and MDMRE are calculated by

(5) and (6), respectively [27, 30].

(5)

𝑀𝐷𝑀𝑅𝐸=𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸) (6)

Where n is the number of projects being

evaluated. The lower the MMRE and MDMRE,

the lower the algorithm's estimation error and the

higher its accuracy [27, 30].

PRED(0.25), calculated by (7), represents the

percentage of samples whose estimation error is

less than or equal to 0.25 [27, 30].

(7)

where 𝑘 is the number of samples for which the

difference between the effort estimated by the

algorithm and the actual effort is less than or

equal to 0.25, and 𝑛 is the total number of samples

evaluated [27, 30].

4.2. Training Phase
The first step in implementing and evaluating the

proposed model on the dataset is data

normalization through which the values of the

features describing the project are brought into the

range [0, 1]. The dataset is then randomly divided

into the training and testing sets using the 3-fold

method. The training and testing sets are used in

order to "train" the model and to assess its

performance, respectively. At the training step,

each similarity function is tuned separately.

During the training process, the weights are

dynamically presented to the similarity function

by the PSO-SA optimization algorithm (Figure 1).

Using the adaptation function and based on the

most similar projects that were selected, the effort

required for the target project is estimated, and the

MRE performance measure is calculated based on

the estimated effort and actual effort of the current

project. This process is repeated and the efforts of

all training projects are estimated. After

processing the entire training dataset, MMRE,

MDMRE, and PRED (0.25) are calculated and the

fitness and cost of the proposed model (or more

accurately, the fitness of the weights provided by

PSO-SA at each iteration) are determined based

on the values of performance parameters by (8).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠=𝑀𝑀𝑅𝐸+𝑀𝐷𝑀𝑅𝐸−𝑃𝑅𝐸𝐷(0.25) (8)

32,1

),(

),(

1

1
0

10^
0 ork

Exxs

xxs
E

k

i
k

i
ii

=

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

=ä
ä=

=

ä=

-
=

n

i EffortActual

EffortEstimatedEffortActual

n
MMRE

1

1

n

k
PRED =)25.0(

Hybrid PSO-SA approach for feature weighting in analogy-based software project effort estimation

333

The training procedure using the PSO-SA

algorithm is repeated three times to tune each

similarity function. At the end of the training

phase, the optimized weights of features in each

similarity function are determined.

Figure 1. Flowchart of training phase for the proposed

model.

4.2.1. PSO-SA

The PSO-SA algorithm is a combination of two

optimization algorithms, namely PSO and SA.

PSO is a population-based algorithm inspired by

the movement of birds in a flock and performs a

global exploration process in the search space. As

mentioned in the Research Background, the PSO

algorithm faces two challenges: slow convergence

and entrapment in local optimization. On the other

hand, the SA algorithm - which simulates the

annealing process in metallurgy – performs a very

good local search for each solution. By a

combination of these two algorithms, therefore,

the problem space can be well-covered by both

the global and local search. First, a random initial

answer is generated and the PSO algorithm starts

searching the problem space (or, in other words,

finding the optimal weight for features), and then

these values are fed as the initial answers into the

SA algorithm. SA prevents the answers from

getting entrapped in the local optimization by

performing a local search and making minor

modifications in the weights generated by PSO,

and the best and most optimal weights are thus

provided for the features. The final output of SA

is feed as the final feature weight into the ABE

similarity function. Using a combination of the

two optimization algorithms (PSO and SA), the

advantages and strengths of both algorithms can

be leveraged. Figure 2 depicts the PSO-SA

algorithm.

(1) iter ←0, 𝑐 𝑝 𝑡 ← 0,

nitialize 𝑠 𝑤 𝑎 𝑟 𝑚 _ 𝑠 𝑖 𝑧 𝑒 particles

(2)  stop_criterion←maximum number of function

valuations or 𝑂 𝑝 𝑡 𝑖 𝑚 𝑎 𝑙 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛 is not attained

(3) while   Not stop_criterion  do

(4)   for  each particle 𝑖 ← 1  to  𝑠 𝑤 𝑎 𝑟 𝑚 _ 𝑠 𝑖 𝑧 𝑒  do

(5)   Evaluate (𝑟 𝑡 𝑖 𝑐 𝑙 𝑒 ())  if  the fitness value is better

than the best fitness value (cbest) in history  then

(6)   Update current value as the new 𝑐 𝑏 𝑒 𝑠 𝑡.
(7) end

(8) end

(9)  Choose the particle with the best fitness value in the

neighborhood (𝑔 𝑏 𝑒 𝑠 𝑡)
(10) for  each particle 𝑖 ← 1  to  𝑠 𝑤 𝑎 𝑟 𝑚 _ 𝑠 𝑖 𝑧 𝑒  do

(11)   Update particle velocity

(12)   Enforce velocity bounds

(13)   Update particle position

(14)   Enforce particle bounds

(15)  end for

(16) if  there is no improvement of global best solution  then

(17) 𝑐 𝑝 𝑡 ← 𝑐 𝑝 𝑡 + 1

(18) end if

(19)   Update global best solution

(20)   𝑐 𝑝 𝑡 ← 0

(21)    if   𝑝 𝑡 = 𝐾  then

(22) 𝑐 𝑝 𝑡 ← 0

(23) / /Apply SA to global best solution

(24) iterSA ← 0, Initialize 𝑇

(25) 𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛 ← global_best_solution

(26) c𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑐 𝑜 𝑠 𝑡 ←Evaluate(𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛)

(27) while  Not SA_stop_criterion  do

(28) while  inner-loop stop criterion  do

(29)

𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟 ←Generate(𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛)

(30) 𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟 _ 𝑐 𝑜 𝑠 𝑡 ← Evaluate(𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟)
(31) if  Accept(current_cost, Neighbor_cost, 𝑇)  then

(32) 𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛 ← 𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟
(33) 𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑐 𝑜 𝑠 𝑡 ← 𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟 _ 𝑐 𝑜 𝑠 𝑡
(34) end

(35) iterSA ← iterSA + 1

(36) Update (global_best_solution)

(37) end

(38) Update(𝑇)

(39) Update (SA_stop_criterion)

(40) end

(41) end

(42)  iter ← iter + 1, Update (stop_criterion)

(43) end

Figure 2. A summary of the PSO-SA algorithm.

4.3. Testing Phase

The accuracy and efficiency of the proposed

model were examined in the testing phase. The

weights proposed in the training phase for the

ABE similarity function were used and evaluated

on the testing dataset. At each iteration, a project

was selected from the testing dataset, and its

similarity with other test projects is determined by

the similarity function and taking into account the

Historical projects

Test dataset

ABE

Similarity function

Solution function

MMRE, MDMRE, PRED (0.25)

Satisfy stopping
criteria

Proposed weights

PSO - SA

Train dataset

Optimized

weights

Yes

No

Vahid Khatibi Bardsiri et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

334

weights obtained in the training phase; and then

its effort is estimated by the adaptation function.

The process is repeated, each time with one of the

projects of the testing dataset, until there are no

projects left untested. Finally, MMRE, MDMRE

and PRED (0.25) are calculated for the evaluation

purposes. These steps are depicted in Figure 3.

Figure 3. Flowchart of testing phase for the proposed

method.

5. Experimental Results

5.1. Description of Datasets

The Albrecht and Desharnais datasets, used in

almost all the previous studies, were selected for

evaluating the proposed model.

The Albrecht dataset contains 24 projects

developed with the third-generation languages.

Completed in the 1970s by IBM, these include 8

projects written in COBOL, 4 written in PL1, and

2 in DMS. The dataset has 5 independent features

including the number of inputs, number of

outputs, number of queries, number of files, and

number of lines of source code, and its dependent

feature is the effort, expressed in terms of 1000

man-hours. Desharnais is one of the most

commonly used datasets for effort estimation. The

dataset is based on the Canadian projects (1989).

It contains 81 software project samples, four of

which have incomplete data, and thus only 77

projects are used. Each sample in this dataset is

described by 11 features, of which 10 are

independent and one is dependent. In the present

work, effort (measured in person-hours) was used

as the dependent variable [28, 30, 37, 38].

5.2. Implementation

As noted in the model description, the 3-fold

cross-validation approach was used for evaluating

the model, and the projects were randomly

divided into the training and testing sets. This

process was repeated thrice and the accuracy and

efficiency of the model were calculated based on

the average of the results of the three repeats. The

ABE model and the hybrid PSO-SA optimization

algorithm were implemented in MATLAB. The

PSO and SA parameters were set as follows:

particle-sizePSO = 100, max-iterPSO = 100, c1PSO =

2, c2PSO = 2, max-iterSA = 1000, T-initialSA =

0.001, T-finalSA = 0, in which particle-sizePSO is

the population size. The max-iterPSO and max-

iterSA define the maximum number of iteration for

PSO and SA respectively. The c1PSO and c2PSO are

the “cognitive parameter” and “social parameter”

respectively. The T-initial and T-final are the

initial temperature and final temperature

respectively (temperature T is considered to be

decreased linearly from T-initial to T-final, during

of the execution the algorithm).

5.3. Results of Albrecht Dataset

Table 1 shows the results of implementing various

ABE approaches on the Albrecht dataset. These

results were obtained by implementation of six

ABE models (unweighted Euclidean, weighted

Euclidean, unweighted Manhattan, weighted

Manhattan, unweighted Minkowski, and weighted

Minkowski similarity functions) together with

four adaptation approaches (CP, Mean, Median,

IRWM) and based on three evaluation measures

(MMRE, MDMRE, and PRED (0.25) on the

testing and training datasets. The results obtained

show that the three weighted approaches are

clearly more efficient, and provid more accurate

estimates compared to the three unweighted

approaches. The three similarity functions

(Euclidean, Manhattan, and Minkowski) with

optimal weights led to lower estimation errors

(MMRE and MDMRE values) and higher PRED

(0.25)s in comparison with the same similarity

functions without weighting. The Manhattan and

Minkowski similarity functions exhibited no

significant difference but both had a higher

efficiency than the Euclidean similarity function.

The results also indicate that the K value affects

the accuracy and efficiency of the models, with

the lowest errors and the highest efficiencies of all

the three weighted similarity functions obtained

with K = 2 and mean adaptation function.

In order to demonstrate the improvement caused

by the application of PSO-SA optimization for

feature weighting, the "improved value" was

Historical projects

Train dataset Test dataset

ABE

Similarity function

Optimized

Weights

Select a project

Solution function

Compute MMRE, MDMRE, PRED (0.25)

No

Any other
projects?

Yes

Hybrid PSO-SA approach for feature weighting in analogy-based software project effort estimation

335

calculated by (9) and (10) for the weighted ABE

methods.
 (9)

 (10)

where 𝑂𝑉 is the magnitude of each one of the

performance measures for the ABE method

without weighting, and 𝐸𝑉 represents the

magnitude of each of the performance measures

for ABE with optimal weights [27]. Table 2

shows the improvement of each one of the

performance measures in the testing and training

datasets (based on (9) and (10). The data in Table

2 are indicative of the improvement of both

MMRE and Pred in both the testing and training

datasets. The highest MMRE improvements are

44% in the testing phase and 36% in the training

phase. Pred has also been significantly improved,

up to a maximum of 201% in the training phase

and 55% in the testing phase. MDMRE has

improved in all cases except for the testing phase

of the ABE model with weighted Euclidean

function, with the maximum improvements being

36% in the testing phase and 48% in the training

phase.

Table 1. Estimation results for different ABE models in the Albrecht dataset.
PRED (0.25) MDMRE MMRE Adaptation

technique

Number of

projects
Methods

Testing Training Testing Training Testing Training

0.40 0.19 0.31 0.65 1.22 0.83 Cp 1 UEue

0.28 0.31 0.42 0.39 1.38 0.60 Mean 2
0.24 0.25 0.44 0.46 1.48 0.66 WM

0.25 0.25 0.34 0.37 1.44 0.53 Mean 3

0.38 0.25 0.42 0.41 1.50 0.59 WM
0.38 0.19 0.36 0.44 1.50 0.59 Median

0.40 0.37 0.45 0.40 1.11 0.46 Cp 1 WEue
0.25 0.61* 0.35* 0.22* 0.94 0.37* Mean 2

0.37 0.53 0.32 0.21 0.92 0.36 WM

0.25 0.46 0.48 0.29 1.20 0.40 Mean 3
0.38 0.52 0.28 0.23 0.90 0.39 WM

0.38 0.28 0.34 0.40 0.92 0.48 Median

0.38 0.25 0.56 0.54 1.26 0.71 Cp 1 UMan
0.38 0.44 0.52 0.37 1.16 0.60 Mean 2

0.25 0.38 0.50 0.36 1.09 0.63 WM

0.13 0.13 0.51 0.43 1.36 0.62 Mean 3
0.38 0.25 052 0.39 1.40 0.61 WM

0.40 0.06 0.40 0.48 1.38 0.67 Median

0.25 0.33 0.39 0.40 1.03 0.43 Cp 1 WMan
0.50 0.63* 0.25* 0.21* 0.84* 0.40* Mean 2

0.38 0.58 0.49 0.20 0.92 0.36 WM

0.25 0.43 0.40 0.56 0.86 0.42 Mean 3
0.25 0.50 0.36 0.24 0.90 0.37 WM

0.36 0.32 0.34 0.40 0.98 0.48 Median

0.18 0.19 0.53 0.42 1.47 0.67 Cp 1 UMINK
0.36 0.31 0.62 0.52 1.27 0.68 Mean 2

0.15 0.19 0.44 0.46 1.27 0.67 WM

0.15 0.13 0.35 0.38 1.20 0.64 Mean 3
0.25 0.25 0.30 0.41 1.17 0.62 WM

0.19 0.13 0.36 0.46 1.17 0.69 Median

0.25 0.56 .34 0.24 1.04 0.45 Cp 1 WMINK
0.50 0.63* 0.39* 0.20* 0.52* 0.40* Mean 2

0.38 0.60 0.29 0.17 0.59 0.44 WM

0.25 0.63 0.48 0.20 0.63 0.50 Mean 3
0.25 0.57 0.35 0.19 0.73 0.40 WM

0.25 0.36 0.35 0.38 0.73 0.46 Median

Table 2. Improvement of different ABE models for the Albrecht dataset.

PRED (0.25) MDMRE MMRE Methods

Testing (%) Training (%) Testing (%) Training (%) Testing (%) Training (%)

7.24 90.48 -0.58 35.17 29.01 34.24 WEue - ABE

16.24 148.65 36.69 23.08 27.15 35.93 WMan - ABE

54.89 200.55 9.33 47.64 44.09 33.17 WMink - ABE

As mentioned in Section 2, many researchers have

used the PSO and GA optimization algorithms for

feature weighting. Therefore, In order to

comprehensively examine and validate the

proposed approach, we compared it with two

feature weighting approaches based on the PSO

and GA optimization algorithms. Moreover, the

proposed approach was compared with the

reported results of some existing techniques in the

literature: a support vector regression based on

feature selection (SVR-FS) [32] and a differential

evolution in analog-based estimation (DABE)

[28].

MdMREandMMREfor
OV

EVOV
valueimproved %100*

-
=

)25.0(Pr%100* edfor
OV

OVEV
valueimproved

-
=

Vahid Khatibi Bardsiri et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

336

With the Albrecht dataset, three of the various

combinations including the weighted Euclidean

function and mean adaptation function and KNN

= 2, Manhattan similarity function and mean

adaptation function and KNN = 2, and Minkowski

function and mean adaptation function and KNN

= 2 gave the best results. These three

combinations were thus selected for comparison

with the other weighting methods. Table 3 shows

the estimates made by various weighting

approaches on the Albrecht dataset. These results

obtained indicate the superiority of the PO-SA

weighting approach over the other approaches

(except DABE) according to all the three

performance measures in both the testing and

training datasets. The PSO and GA weighting

approaches exhibited a high performance in the

training dataset but their performance in the

testing dataset was not satisfactory, which is

indicative of overlearning in these two

approaches. AS seen in Table 3, the proposed

model achieves outperforms compared to the

SVR-FS model. DABE achieved MMRE = 0.02

and MDMRE = 0.02, less than our results. In the

case of PRED (0.25) the PSO-SA approach with

PRED (0.25) = 0.50 achieved the best results.

Table 3. Results of comparisons for the Albrecht dataset.

PRED (0.25) MDMRE MMRE
Methods

Testing Training Testing Training Testing Training

0.25 0.61 0.35 0.22 0.94 0.37* WEue

PSO-SA 0.50* 0.63* 0.25* 0.21 0.84 0.40 WMan

0.50* 0.63* 0.39 0.20* 0.52* 0.40 WMink

0.25 0.56 0.39 0.24 1.13 0.39 WEue

PSO 0.38 0.57 0.35 0.22 1.14 0.39 WMan

0.36 0.61 0.30 0.24 1.57 0.50 WMink

0.38 0.58 0.33 0.23 1.09 0.39 WEue

GA 0.38 0.55 0.34 0.27 1.10 0.47 WMan

0.38 0.60 0.30 0.23 1.55 0.46 WMink

0.37 0.17 0.02 0.001 0.02 0.10 DABE, 2017 [28]

0.29 N/A 0.32 N/A 0.58 N/A SVR-FS, 2019 [32]

Figures 4 and 5 were drawn based on the three

performance measures for the testing and training

datasets, respectively, in order to enable a more

accurate comparison of the results.

As it can be seen in Figure 4, which depicts the

training phase for the Albrecht dataset (except the

SVR-FS model, because its training data is not

available), the DABE model has the lowest

MMRE AND MDMRE. After that, the ABE

methods with a weighted Euclidean similarity

function have the lowest MMRE, and among the

three weighting approaches, PSO-SA has the

lowest MMRE followed by PSO. On the other

hand application of the PSO-SA optimization

algorithm for weighting prominently improved the

PRED (0.25) measure. The ABE methods with

Manhattan and Minkowski similarity functions,

which are weighted with PSO-SA and GA,

respectively, have lower MDMRE values relative

to those weighted with PSO. Overall, the PSO-SA

weighting approach led to better results compared

to the PSO and GA approaches in the training

phase on the Albrecht dataset.

The accuracies of different approaches in the

testing phase on the Albrecht dataset are shown in

Figure 5. The DABE and SVR-FS models have

the lowest MMRE and MDMRE values. For the

MMRE measure, weighting with PSO-SA is

evidently the best approach compared to the GA

and PSO approaches (for all the three similarity

functions). MDMRE is the lowest for the ABE

methods with Euclidean and Manhattan similarity

functions weighted compared to the PSO-SA and

GA approaches. Judging by the PRED (0.25)

measure, the ABE methods with Manhattan and

Minkowski similarity functions weighted with

PSO-SA are the best approaches compared to the

other options. It can be concluded from the testing

and training results that the PSO-SA optimization

algorithm has prominently improved the PRED

(0.25) measures.

Figure 4. Accuracy comparisons for the Albrecht training

dataset.

Hybrid PSO-SA approach for feature weighting in analogy-based software project effort estimation

337

Figure 5. Accuracy comparisons for the Albrecht testing

dataset.

5.4. Results of Desharnais Dataset

Table 4 presents the results of applying various

ABE combinations to the Desharnais dataset,

demonstrating the superiority of the ABE methods

weighted with the Euclidean and Manhattan

similarity functions over the other combinations in

both the testing and training datasets. The ABE

methods with all the three similarity functions

(Euclidean, Manhattan, and Minkowski)

performed better in the weighted mode than in

the corresponding unweighted mode (as indicated

by all the performance measures). Euclidean and

Manhattan weighted ABE outperformed

Minkowski weighted ABE, and there is no

significant difference between the former two

combinations according to the performance

measures.

Table 5 represents the degree of improvement of

the three weighted ABE approaches in the

Desharnais dataset at both the training and testing

phases. Improvement of all measures except

MDMRE at the testing phase of weighted ABE

with Manhattan similarity function is quite

evident in all cases. The Minkowski similarity

function led to the highest MMRE improvements

(42.39% and 22.90% at the training and testing

phases, respectively). For MDMRE, the maximum

improvement is 35.51% at the training phase and

24.12% at the testing phase. The corresponding

values for the Pred performance measure are

82.39% at the testing phase and 67.82% at the

training phase.

Table 4. Estimation results for different ABE models in the Desharnais dataset.
PRED (0.25) MDMRE MMRE Adaptation

technique

Number of

projects
Methods

Testing Training Testing Training Testing Training

0.35 0.35 0.45 0.34 0.51 0.53 Cp 1 UEue

0.46 0.45 0.33 0.30 0.47 0.59 Mean 2
0.46 0.43 0.29 0.30 0.46 0.55 WM

0.35 0.37 0.34 0.38 0.47 0.68 Mean 3

0.38 0.39 0.31 0.37 0.45 0.59 WM
0.42 0.27 0.30 0.35 0.46 0.67 Median

0.38 0.47 0.35 0.28 0.46 0.40 Cp 1 WEue

0.38* 0.55* 0.20* 0.22* 0.38* 0.38* Mean 2
0.46 0.50 0.31 0.25 0.45 0.39 WM

0.50 0.53 0.27 0.24 0.53 0.40 Mean 3

0.46 0.55 0.27 0.23 0.47 0.39 WM
0.50 0.50 0.25 0.30 0.42 0.38 Median

0.35 0.35 0.46 0.32 0.48 0.50 Cp 1 UMan

0.38 0.41 0.34 0.32 0.48 0.63 Mean 2
0.42 0.45 0.34 0.26 0.45 0.56 WM

0.38 0.37 0.31 0.38 0.46 0.66 Mean 3

0.42 0.43 0.31 0.37 0.44 0.60 WM
0.46 0.33 0.26 0.32 0.47 0.65 Median

0.35 0.47 0.39 0.27 0.50 0.40 Cp 1 WMan

0.54 0.52 0.21 0.22 0.40 0.39 Mean 2
0.46 0.52 0.32 0.24 0.44 0.36 WM

0.50* 0.58* 0.24* 0.21* 0.38* 0.36* Mean 3

0.35 0.56 0.31 0.22 0.46 0.37 WM
0.50 0.54 0.24 0.24 0.42 0.38 Median

0.12 0.45 0.57 0.27 1.02 0.43 Cp 1 UMINK

0.27 0.24 0.45 0.55 0.9 1.17 Mean 2

0.19 0.27 0.51 0.45 0.93 0.86 WM

0.31 0.35 0.38 0.38 0.82 0.98 Mean 3

0.23 0.35 0.47 0.43 0.87 0.93 WM
0.19 0.25 0.55 0.46 0.95 1 Median

0.27 0.46 0.46 0.27 1.01 0.44 Cp 1 WMINK

0.38* 0.57* 0.34* 0.21* 0.49* 0.39* Mean 2
0.35 0.51 0.38 0.31 0.84 0.47 WM

0.42 0.52 0.31 0.24 0.61 0.50 Mean 3

0.42 0.51 0.33 0.24 0.79 0.57 WM
0.43 0.46 0.40 0.28 0.51 0.43 Median

The proposed PSO-SA weighting approach was

compared with the PSO weighting approach, GA

weighting approach, and the reported results of

some existing techniques in the literature: a case-

based reasoning PSO (CBR-PSO) [27], a

differential evolution algorithm based ABE

Vahid Khatibi Bardsiri et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

338

(DEABE) [30], a bee colony guided analogy-

based estimation (BABE) [31], and SVR-FS [32].

The results of different techniques on the

Desharnais dataset are summarized in Table 6.

According to the results obtained, using the PSO-

SA approach for feature weighting leads to better

results compared to the other approaches except

for DEABE and BABE for all the performance

measures. MMRE of the BABE model is less than

other techniques. MMRE of DEABE is similar to

the PSO-SA approach. In the case of PRED

(0.25), the DEABE model with PRED (0.25) =

0.81 achieved the best result, and the PSO-SA

approach with PRED (0.25) = 0.50 has also an

acceptable result.

Table 5. Improvements of different ABE models for the Desharnais dataset.

PRED (0.25) MDMRE MMRE
Methods

Testing (%) Training (%) Testing (%) Training (%) Testing (%) Training (%)

12.36 40.37 17.48 25.00 3.77 34.60 WEue - ABE

12.54 37.89 -9.86 27.47 6.36 36.52 WMan - ABE

82.39 67.82 24.12 35.51 22.90 42.39 WMink - ABE

Table 6. Results of comparisons for the Desharnais dataset.

PRED(0.25) MDMRE MMRE
Methods

Testing Training Testing Training Testing Training

0.38 0.55 0.20 0.22 0.38 0.38 WEue

PSO-SA 0.50 0.58 0.24 0.21 0.38 0.36 WMan

0.38 0.57 0.34 0.21 0.49 0.39 WMink

0.54 0.50 0.20 0.25 0.40 0.40 WEue

PSO 0.46 0.55 0.27 0.22 0.40 0.38 WMan

0.38 0.50 0.34 0.26 0.79 0.52 WMink

0.50 0.53 0.26 0.22 0.40 0.41 WEue

GA 0.42 0.54 0.27 0.23 0.41 0.36 WMan

0.31 0.51 0.76 0.24 0.54 0.45 WMink

0.35 0.46 0.40 0.29 0.58 0.46 CBR-PSO, 2018 [27]

0.22 N/A 0.38 N/A 0.46 N/A SVR-FS, 2019 [32]

0.81 N/A 0.31 N/A 0.37 N/A DEABE, 2020 [30]

0.47 0.29 N/A N/A 0.09 0.06 BABE, 2020 [31]

The performance measures for the training and

testing phases of the different approaches are

compared in Figures 6 and 7, respectively.

Figure 6 shows the accuracy of the different

models for the Desharnais dataset at the training

phase. Among all the techniques, BABE is the

best based on the MMMRE measure. In terms of

MDMRE and PRED (0.25), the PSO-SA

approach clearly outperforms the other

techniques, and the PSO approach is in the next

ranking. Accuracies of the different models for

the Desharnais dataset at the testing phase are

depicted in Figure 7. The superiority of the

DEABE model is quite evident according to the

PRED (0.25) measure, and the PSO-SA and PSO

approaches are in the next rankings, respectively.

In terms of MMRE and MDMRE, the PSO-SA

approach clearly outperforms the other techniques

but there is not much difference between the PSO-

SA approach and DEABE at the testing phase.

6. Conclusions

In this work, a hybrid approach for feature

weighting in the analogy-based software

development effort estimation was proposed. We

investigated the ABE model with three widely

used similarity functions (Euclidean, Manhattan,

and Minkowski) based on the feature weights

optimized by PSO-SA. Two well-known datasets

(Desharnais and Albrecht) were used in order to

evaluate the proposed model. The performance of

the PSO-SA approach was compared with those

of the two weighting approaches frequently cited

in the literature (PSO and GA). Moreover, the

proposed model was compared with the reported

results of some existing techniques in the

literature based on the MMRE, MDMRE, and

PRED (0.25) performance measures.

The Implementation results show, according to

the performance measures, that the combined

PSO-SA approach improved the efficiency of

estimation at both the training and testing phases.

The PSO-SA weighting approach for the ABE

model with the Manhattan and Minkowski

similarity functions, mean adaptation function and

KNN = 2 in Albrecht dataset, and the PSO-SA

weighting approach for the ABE model with the

Euclidean and Manhattan similarity functions,

Hybrid PSO-SA approach for feature weighting in analogy-based software project effort estimation

339

mean adaptation function and KNN = 2, 3 in the

Desharnais dataset led to the best results and the

most accurate estimates compared to the other

approaches. These findings confirm that PSO-SA

is a suitable approach for feature weighting with

the ABE model. Further studies can examine

other global and local optimization algorithms and

their combinations for feature weighting, and the

application of other optimization techniques,

neural networks, fuzzy techniques, and ensemble

learning and their combinations.

Figure 6. Accuracy comparisons for the Desharnais

training dataset.

Figure 7. Accuracy comparisons for the Desharnais

testing dataset.

References
[1] M. Shepperd and C. Schofield, “Estimating

software project effort using analogies,” IEEE

Transactions on Software Engineering, vol. 23, no. 11,

pp. 736-743, 1997.

[2] I. Guyon and A. Elisseeff “An introduction to

variable and feature selection,” Journal of Machine

Learning Research, vol. 3, pp. 1157-1182, 2003.

[3] D. B. Skalak, “Prototype and feature selection by

sampling and random mutation hill climbing

algorithms,” In 11th International Machine Learning

Conference, ICML-94, Morgan Kau_mann, pp. 293-

301, 1994.

[4] Z. Shahpar et al., “Improvement of effort

estimation accuracy in software projects using a feature

selection approach,” Journal of Advances in Computer

Engineering and Technology, vol. 2, pp. 31-38, 2016.

[5] E. Papatheocharous et al., “Feature Subset

Selection for Software Cost Modelling and

Estimation,” Engineering Intelligent Systems, vol. 18,

2010.

[6] B. B. Sigweni, “An Investigation of Feature

Weighting Algorithms and Validation Techniques

using Blind Analysis for Analogy-based Estimation,”

Ph.D. dissertation, Brunel Univ., London, 2016.

[7] A. Kolcz and Y. Wen-tau “Raising the baseline for

high-precision text classifiers,” Proceedings of the 13th

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 400-409,

2007.

[8] Y. Saeys, I. Inza and P. Larranaga, “A review of

feature selection techniques in bioinformatics,”

Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.

[9] D. Koller and M. Sahami “Toward optimal feature

selection,” Tech. Rep. TR-1996-77, Stanford InfoLab.

1996.

[10] J. W. Keung and B. Kitchenham, “Optimizing

Project Feature Weights for Analogy-based Software

Cost Estimation using the Mantel Correlation,” IEEE,

14th Asia-Pacific Software Engineering Conference,

Aichi, pp. 222-229, 2007.

[11] J. W. Keung, A. Kitchenham and D. R. Jeffery,

“Analogy-X: Providing Statistical Inference to

Analogy-Based Software Cost Estimation,” IEEE

Transactions on Software Engineering, vol. 34, no. 4,

pp. 471-484, 2008.

[12] J. Wen, S. Li. and L. Tang, “Improve Analogy-

based Software Effort Estimation using Principal

Components Analysis and Correlation Weighting,”

16th Asia-Pacific Software Engineering Conference,

pp. 179-186, 2009.

[13] E. Khatibi and V. Khatibi, “Model to estimation

the software development effort based on in-depth

analysis of project attributes,” The Institution of

Engineering and Technology, vol. 9, pp. 109-118,

2015.

[14] J. Li and G. Ruhe, “Software effort estimation by

analogy using attribute selection based on rough set

analysis,” International Journal of Software

Engineering and Knowledge Engineering, vol. 18, no.

1, pp. 1-23, 2008.

[15] J.Li and G. Ruhe, “Analysis of attribute weighting

heuristics for analogy based software effort estimation

method AQUA+,” Empirical Software Engineering,

vol. 13, no. 1, pp. 63-96, 2008.

[16] Y. F. Li, M. Xie, and T. N. Goh, “A study of

project selection and feature weighting for analogy

based software cost estimation,” The Journal of

Systems and Software, vol. 82, no. 2, pp. 241-252,

2009.

Vahid Khatibi Bardsiri et al./ Journal of AI and Data Mining, Vol. 9, No. 3, 2021

340

[17] Y. F. Li, M. Xie, and T. N. Goh, “A study of

genetic algorithm for project selection for analogy

based software cost estimation,” IEEE, International

Conference on Industrial Engineering and Engineering

Management, Singapore, pp. 1256-1260, 2007.

[18] S. J. Huang and N. H. Chiu, “Optimization of

Analogy Weights by Genetic Algorithm for Software

Effort Estimation,” Information and Software

technology, vol. 48, pp. 1034-1045, 2006.

[19] Y. F. Li, M. Xie, and T. N. Goh, “Optimization of

feature weights and number of neighbors for Analogy

based cost Estimation in software project

management,” IEEE International Conference on

Industrial Engineering and Engineering Management,

Singapore, pp. 1542-1546, 2008.

[20] A. L. I. Oliveira et al., “GA-based method for

feature selection and parameters optimization for

machine learning regression applied to software effort

estimation,” Information and Software Technology,

vol. 52, no. 11, pp. 1155-1166, 2010.

[21] V. Khatibi et al., “A hybrid method for increasing

the accuracy of software development effort

estimation,” Scientific Research and Essays, vol. 6, no.

30, pp. 6382-6382, 2011.

[22] P. Reddy, C. Hari and S. Rao “Multi- Objective

Particle Swarm Optimization for Software Cost

Estimation,” International Journal of Computer

Applications, vol. 32, no. 3, pp. 13-17, 2011.

[23] M. Azzeh et al., “Pareto efficient multi-objective

optimization for local tuning of analogy-based

estimation,” Springer, Neural Comput & Applic,

November, vol. 27, no. 8, pp. 2241-2265, 2015.

[24] R. D. A. Araujo, S. Soares and A. L. I. Oliveria,

“Hybrid morphological methodology for software

development cost estimation,” Expert Systems with

Applications, vol. 39, pp. 6129–6139, 2012.

[25] V. Khatibiet et al., “A flexible method to estimate

the software development effort based on the

classification of projects and localization of

comparisons,” Empirical Software Engineering, vol.

19, pp. 857-884, 2014.

[26] V. Khatibi et al., “A pso-based model to increase

the accuracy of software development effort

estimation,” Software Quality Journal, vol. 21, pp.

501-526, 2013.

[27] D. Wu, J. Li and C. Bao, “Case-based reasoning

with optimized weight derived by particle swarm

optimization for software effort estimation,” soft

computing, vol. 22, 5299–5310, 2018.

[28] T. R. Benala and R. Mall, “DABE: Differential in

Analogy-Based Software Development Effort

Estimation,” Swarm and Evolutionary Computation,

vol. 38, pp. 158-172, 2017.

[29] S. Ranichandra “Optimization Non-Orthogonal

space distance using ACO in software cost estimation,”

Mukt shabd journal, vol. IX, pp. 1592-1604, 2020.

[30] A. Khatibi, “An Intelligent Model to Predict the

Development Time and Budget of Software Projects,”

Int. J. Non-linear Anal. Appl. vol. 11, no. 2, pp. 85-

102, 2020.

[31] A. M. Shah et al., “Ensembling artificial bee

colony with analogy-Based Estimation to Improve

software Development Effort Prediction,” IEE Access,

vol. 8, pp. 58402-58415, 2020.

[32]A. Zakrani, M. Hain and A. Idri, “Improving

Software Development effort estimating using Support

Vector Regression and Feature Selection,” IAES

International Journal of Artificial Intelligence, vol. 8,

no. 4, pp. 399-410, 2019.

[33] E. Mendes, N. Mosley and S. Counsell, “A

replicated assessment of the use of adaptation rules to

improve web cost estimation,” IEEE, International

Symposium on In Empirical Software Engineering, pp.

100-109, 2003.

[34] I. Angelis and I. Stamelos, “A Simulation Tool for

Efficient Analogy Based Cost Estimation,” Empirical

Software Engineering, vol. 5, no. 1, pp. 35-68, 2000.

[35] J. Keung, “Software development cost estimation

using analogy: a review,” IEEE, Software Engineering

Conference, Australian, pp. 327-336, 2009.

[36] S. K. Pal and S. C. K. Shiu, Foundations of soft

case-based reasoning, John Wiley and Sons, New

Jersey, 2004.

[37] J. Desharnais, “Statistical Analysis on the

Productivity of Data Processing with Development

Projects using the Function Point Technique,” Master's

thesis, Quebec University, 1988.

[38] S. Beiranvand and M. A. Z. Chahooki, “Bridging

the semantic gap for software effort estimation by

hierarchical feature selection techniques,” Journal of

AI and Data Mining, vol. 4, no. 2, pp. 157-168, 2016.

