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 The software effort estimation plays an important role in software 

project management, and analogy-based estimation (ABE) is the most 

common method used for this purpose. ABE estimates the effort 

required for a new software project based on its similarity to the 

previous projects. A similarity between the projects is evaluated based 

on a set of project features, each of which has a particular effect on the 

degree of similarity between the projects and the effort feature. The 

present study examines the hybrid PSO-SA approach for feature 

weighting in the analogy-based software project effort estimation. The 

proposed approach is implemented and tested on two well-known 

datasets of software projects. The performance of the proposed model 

is compared with the other optimization algorithms based on the 

MMRE, MDMRE, and PRED (0.25) measures. The results obtained 

showed that the weighted ABE models provide more accurate and 

better effort estimates relative to the unweighted ABE models and that 

the hybrid PSO-SA approach leads to better and more accurate results 

compared to the other weighting approaches in both datasets.  
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1. Introduction 

Analogy-based estimation (ABE) is one of the 

most commonly used methods for the software 

project effort estimation. Introduced by Shepperd 

in 1979, this method has achieved a widespread 

popularity due to its ease of use and simplicity [1]. 

ABE starts with collecting data from the previous 

software projects in the form of an n*p matrix, 

with each row reporting one software project's 

information and describing the project with a set 

of features and their values. These features are 

often defined and used at random and based solely 

on their availability, without a formulated 

relationship with the target feature, i.e. the amount 

of effort required by the software project. 

Obviously, these features are not equally 

important in all the software projects [2, 3]. The 

researchers, therefore, use the weighting 

techniques in order to optimize the feature sets. In 

these techniques, an appropriate 'weight' or 

coefficient is determined for each feature by 

analyzing the effect of the independent feature on 

the target feature [4, 5]. Feature weighting 

expands or compresses the feature space, which, 

in turn, affects the proximity of the previous 

projects to the target projects, changing the set of 

adjacent and neighboring projects that might be 

similar to the current project and provide a 

solution for it. Such problems are NP-hard and 

pose significant computational challenges if the 

number of projects and feature sets does not 

matter. Selecting a feature subset, which might 

appear to be an easier solution, is also NP-hard 

but less challenging since each feature is weighted 

by zero or one, and for this reason, feature 

selection has so far been the dominant approach in 

software projects effort estimation [6]. After 

reviewing the techniques reported for this 

purpose, we present our hybrid feature weighting 

approach. In the next section, we analyze the 

relevant studies reported in the literature. The 

ABE model is then introduced and reviewed. The 

research methodology is elaborated in the fourth 
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section. The fifth section describes how the 

proposed model is implemented on the dataset. 

Finally we analyze and discuss the results of 

implementing the proposed approach in the sixth 

section.  

 

2. Related Works  

Feature weighting is a common approach in 

machine learning in order to deal with the 

challenge of very large datasets. Even in small 

datasets, a large and diverse feature space can lead 

to overfitting [7]. In such cases, feature weighting 

and selection is an appropriate approach for 

determining which features affect the dependent 

feature by weighting the features with different 

coefficients based on their relationship with the 

target feature. For example, the irrelevant or 

redundant features are given lower weights. Due 

to its focus on the important features, therefore, 

this approach leads to a smaller dataset, and as a 

result, the research work will be faster, more 

accurate, and more extensive. Various objectives 

have been mentioned for feature weighting in the 

literature, the most important of which include [8, 

9]: 

- improved model performance and prevention of 

overfitting (for example, selecting better clusters 

in clustering and improved prediction 

performance in supervised classification). 

- faster and more cost-effective models. 

- acquiring a deeper understanding of the data and 

the processes that have generated the data. 

-  finding a feature subset through feature 

weighting in order to improve the prediction 

accuracy or reduce the size of the dataset without 

a significant negative impact on the accuracy of 

classification prediction, using only the selected 

features. 

Various feature selection and weighting 

techniques have been used in order to improve 

ABE. These techniques can be classified into 

three general approaches including correlation 

analysis, exhaustive search, and optimization. 

Correlation analysis is a statistical technique used 

for estimating the software development effort. In 

this method, the dependency level between the 

project features is determined by statistical 

analysis. The traits that have a weak correlation 

with the development effort are assigned lower 

weights; the traits with higher correlation 

coefficients will have higher weights, and the 

traits with no correlation are excluded. The 

previous studies have shown that this technique 

can improve the ABE's efficiency [10-13]. 

In the exhaustive search technique, appropriate 

weights are selected for the independent features 

based on the pre-determined criteria. Analysis of 

the dependencies between the features leads to the 

formation of several feature subsets. The features 

that form the intersection of all subsets are 

regarded as the most important features, and 

weighting is based on the number of 

reappearances of the same feature in various 

subsets [14, 15]. 

The optimization techniques are used for adjusting 

the feature weights in the ABE similarity function. 

Genetic algorithm is one of the most common 

optimization methods employed for determining 

the feature weights and the number of neighbors 

(KNN) [16-20]. In the previous studies, genetic 

algorithm has been used for weighting the features 

and for minimizing the error parameter [16-21]. 

Particle swarm optimization is another method 

used for this purpose [22]. Particle swarm 

optimization and multi-objective particle swarm 

optimization have been used for determining the 

number of nearest neighbors, selecting the optimal 

feature set, and weighting the features in software 

effort estimation [23]. Araujo et al. [24] have 

proposed a hybrid linear perceptron method and 

used a genetic algorithm for optimizing the 

perceptron parameters and selecting the optimal 

feature subset with the goal of enhancing the 

accuracy of effort estimation. Khatibi et al. [25] 

have presented a flexible method for estimating 

software development effort, the core idea of 

which is to localize adaptation and the weighting 

process by clustering the software projects. They 

classified the projects into several clusters based 

on the key features and used a combination of 

ABE and the PSO algorithm for feature 

weighting, with different clusters assigning 

different weights to each project feature. Instead 

of comparing the new project with all the previous 

projects, it is only compared with the projects that 

fall within the related clusters (based on the 

common features). Khatibi et al.  [26] have 

proposed a PSO-based model for improving the 

estimation accuracy. This model is a combination 

of PSO algorithms and the ABE approach. In the 

present work, a framework is presented in which 

the appropriate weights are assigned to the project 

features, and thus increase the accuracy of 

estimates. The framework includes a training and 

a testing phase through which the proposed 

estimation model is developed and evaluated. In 

this method, the PSO algorithm extracts the 

possible weights and selects those weights that 

lead to more accurate estimates. Wu et al. [27] 

have used the PSO optimization algorithm for 

weighting features in the Manhattan and 

Euclidean similarity functions, and gray 
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relationship degree. Benala et al. [28] have 

employed the differential evolution algorithm in 

order to optimize the feature weights for ABE 

similarity functions, applying five mutation 

strategies. Ranichandra [29] has made an attempt 

to optimize the non-orthogonal space distance, 

which is a measure of the similarity between the 

software projects based on the feature weights and 

feature redundancy using the ant colony 

optimization algorithm. Khatibi [30] has utilized 

the differential evolution algorithm as a tool for 

feature weighting. Shah et al. [31] have proposed 

a model for software effort estimation that 

ensemble Artificial Bee Colony (ABC) with 

Analogy-based estimation. Zakrani et al. [32] 

have designed a model for effort estimation using 

the Support Vector Regression (SVR) and feature 

selection methods. Their SVR model was 

optimized by a grid search procedure. 

The previous studies indicate that the main 

challenges in applying the optimization 

techniques are the entrapment of optimization 

algorithms in local optimization and the high 

computational burden. In the present work, 

therefore, we intended to use an approach that 

could address these two challenges. 

 

3. Analogy-based Estimation  

Analogy-based estimation was first proposed by 

Sheppard and Schofield as an approach for 

estimating the software project effort [1]. The 

main idea of this method is to compare the new 

project with the previous projects. It measures the 

similarity between the current project and the 

previous projects, and then estimates the effort 

required for it based on that required for the most 

similar projects [1, 17]. The ABE approach 

consists of four steps [16, 30]: 

- Collecting information from the previous 

projects in the form of datasets. 

- Selecting and weighting the features. 

- Using the similarity function in order to 

determine the degree of similarity between the 

new and past projects and select the most similar 

ones. 

- Determining the effort required for the new 

project using the solution function based on the 

efforts reported for the most similar projects.  
 
3.1. Similarity Function 

Similarity function plays a pivotal role in the 

analogy-based effort estimation. Using different 

similarity measures can lead to different results 

[33]. In this work, three similarity functions were 

employed and examined. Euclidean similarity 

function, calculated by (1), has been the most 

widely used similarity function in the previous 

studies. In this equation, p and 𝑝′ represent the 

projects; 𝑤𝑖 is the weight assigned to each feature, 

and ranges between 0 and 1; 𝑓𝑖 and 𝑓𝑖
′ are the ith 

feature of each project; and 𝑛 is the number of 

features. 𝛿 (𝛿=0.0001) is added to obtain the non-

zero results [13, 16-19, 21, 25-27, 30]. 

Another widely used function is the Manhattan 

similarity function (2). Its equation closely 

resembles that of Euclidean similarity, and the 

only difference is that the former calculates the 

absolute value of the difference between the 

features [13, 16, 21, 25-27, 30].  

In addition to these two commonly used similarity 

functions, there are other functions that, despite 

their importance, have not received due attention 

in the feature selection and weighting studies. 

Thus Minkowski similarity function was also used 

and examined in the present work. Minkowski 

similarity function is a generalization of Euclidean 

and Manhattan functions, calculated by (3) [25, 

26, 27, 34]. 

  

 

(1) 

 

(2) 

 

(3) 

 

3.2. K-Nearest Neighbor (KNN) 

KNN specifies a number (k) of projects closest to 

the current project. It is an important parameter of 

ABE, and affects the accuracy of effort 

estimation. Some authors opt for K=1 in the KNN 

algorithm, and the others recommend k equals two 

or three. [16, 19, 35]. The previous studies have 

shown that finding the optimal KNN is an 

important step, and will affect the ABE efficiency. 
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3.3. Adaptation Function 

After identifying the most similar projects, the 

effort required for the target project can be 

estimated using the statistical methods termed the 

adaptation functions. The ABE approach uses the 

adaptation function as a mechanism for 

aggregation of the effort of most similar previous 

projects as the estimation effort of the current 

project [36]. The adaptation function is called 

"closed project" (CP) if only one project similar to 

the target project is selected. If more than two of 

the most similar projects are selected, various 

adaptation techniques such as the mean matching 

function, median matching function, and reverse 

distance weighted mean matching function can be 

used. Most studies use the weighted mean 

matching function, which is calculated by (4), 

where k is the number of similar projects, 𝐸0
^ is 

the estimated effort, 𝐸𝑖  is the effort for project 𝑥𝑖 
and 𝑠(𝑥0 ,𝑥𝑖) is a measure of similarity between 

the target project 𝑥0 and a similar project 𝑥𝑖  [27, 

28, 30]. 

 

 

(4) 

 

4. Model Description 

This work presents a weighting approach based on 

the hybrid PSO-SA optimization algorithm for 

ABE. As noted earlier, the feature weights are 

used in the ABE similarity function. Accordingly, 

the PSO-SA optimization algorithm is employed 

in order to determine the feature weights in the 

similarity determination step of ABE. The 

proposed model is implemented in two phases: 

training and testing. The feature weights are 

determined by PSO-SA in the training phase, and 

the proposed model is evaluated in the testing 

phase. The evaluation parameters and training and 

testing phases are described in the following 

sections.  

 

4.1. Performance Measures 

The performance measures are used for assessing 

the estimation methods. Several parameters have 

been utilized for this purpose in the previous 

works, among which three measures including the 

mean magnitude of relative error (MMRE), 

median magnitude of relative error (MDMRE), 

and PRED(0.25) are the most widely used. 

MMRE represents the average estimation error for 

all samples (training or testing), and MDMRE is 

the median error in the value determined by the 

algorithm relative to the actual effort of the 

samples. MMRE and MDMRE are calculated by 

(5) and (6), respectively [27, 30]. 

 

 
(5) 

𝑀𝐷𝑀𝑅𝐸=𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸)  (6) 

 

Where n is the number of projects being 

evaluated. The lower the MMRE and MDMRE, 

the lower the algorithm's estimation error and the 

higher its accuracy [27, 30]. 

PRED(0.25), calculated by (7), represents the 

percentage of samples whose estimation error is 

less than or equal to 0.25 [27, 30]. 

 

 
(7) 

where 𝑘 is the number of samples for which the 

difference between the effort estimated by the 

algorithm and the actual effort is less than or 

equal to 0.25, and 𝑛 is the total number of samples 

evaluated [27, 30]. 
 

4.2. Training Phase 
The first step in implementing and evaluating the 

proposed model on the dataset is data 

normalization through which the values of the 

features describing the project are brought into the 

range [0, 1]. The dataset is then randomly divided 

into the training and testing sets using the 3-fold 

method. The training and testing sets are used in 

order to "train" the model and to assess its 

performance, respectively. At the training step, 

each similarity function is tuned separately.  

During the training process, the weights are 

dynamically presented to the similarity function 

by the PSO-SA optimization algorithm (Figure 1). 

Using the adaptation function and based on the 

most similar projects that were selected, the effort 

required for the target project is estimated, and the 

MRE performance measure is calculated based on 

the estimated effort and actual effort of the current 

project. This process is repeated and the efforts of 

all training projects are estimated. After 

processing the entire training dataset, MMRE, 

MDMRE, and PRED (0.25) are calculated and the 

fitness and cost of the proposed model (or more 

accurately, the fitness of the weights provided by 

PSO-SA at each iteration) are determined based 

on the values of performance parameters by (8). 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠=𝑀𝑀𝑅𝐸+𝑀𝐷𝑀𝑅𝐸−𝑃𝑅𝐸𝐷(0.25) (8) 
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The training procedure using the PSO-SA 

algorithm is repeated three times to tune each 

similarity function. At the end of the training 

phase, the optimized weights of features in each 

similarity function are determined. 

 

             

 

  

 

 

 

 

 

 

 
 

 
 

 

 

 

 

Figure 1. Flowchart of training phase for the proposed 

model. 

4.2.1. PSO-SA 

The PSO-SA algorithm is a combination of two 

optimization algorithms, namely PSO and SA. 

PSO is a population-based algorithm inspired by 

the movement of birds in a flock and performs a 

global exploration process in the search space. As 

mentioned in the Research Background, the PSO 

algorithm faces two challenges: slow convergence 

and entrapment in local optimization. On the other 

hand, the SA algorithm - which simulates the 

annealing process in metallurgy – performs a very 

good local search for each solution. By a 

combination of these two algorithms, therefore, 

the problem space can be well-covered by both 

the global and local search. First, a random initial 

answer is generated and the PSO algorithm starts 

searching the problem space (or, in other words, 

finding the optimal weight for features), and then 

these values are fed as the initial answers into the 

SA algorithm. SA prevents the answers from 

getting entrapped in the local optimization by 

performing a local search and making minor 

modifications in the weights generated by PSO, 

and the best and most optimal weights are thus 

provided for the features. The final output of SA 

is feed as the final feature weight into the ABE 

similarity function. Using a combination of the 

two optimization algorithms (PSO and SA), the 

advantages and strengths of both algorithms can 

be leveraged. Figure 2 depicts the PSO-SA 

algorithm. 

(1) iter ←0, 𝑐 𝑝 𝑡 ← 0,                                                                     

nitialize 𝑠 𝑤 𝑎 𝑟 𝑚 _ 𝑠 𝑖 𝑧 𝑒 particles 

(2)  stop_criterion←maximum number of function 

valuations or 𝑂 𝑝 𝑡 𝑖 𝑚 𝑎 𝑙 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛 is not attained 

(3) while   Not stop_criterion  do 

(4)   for  each particle 𝑖 ← 1  to  𝑠 𝑤 𝑎 𝑟 𝑚 _ 𝑠 𝑖 𝑧 𝑒  do 

(5)     Evaluate (   𝑟 𝑡 𝑖 𝑐 𝑙 𝑒 (  ) )  if  the fitness value is better      

than the best fitness value (cbest) in history  then 

(6)     Update current value as the new 𝑐 𝑏 𝑒 𝑠 𝑡. 
(7) end  

(8) end  

(9)  Choose the particle with the best fitness value in the 

neighborhood (𝑔 𝑏 𝑒 𝑠 𝑡) 
(10) for  each particle 𝑖 ← 1  to  𝑠 𝑤 𝑎 𝑟 𝑚 _ 𝑠 𝑖 𝑧 𝑒  do 

(11)       Update particle velocity 

(12)        Enforce velocity bounds 

(13)        Update particle position 

(14)        Enforce particle bounds 

(15)  end for 

(16) if  there is no improvement of global best solution  then 

(17)  𝑐 𝑝 𝑡 ← 𝑐 𝑝 𝑡 + 1 

(18) end if 

(19)   Update global best solution 

(20)   𝑐 𝑝 𝑡 ← 0 

(21)    if   𝑝 𝑡 = 𝐾  then 

(22)  𝑐 𝑝 𝑡 ← 0 

(23)  / /Apply SA to global best solution 

(24)  iterSA ← 0, Initialize 𝑇 

(25)  𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛 ← global_best_solution 

(26) c𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑐 𝑜 𝑠 𝑡 ←Evaluate(𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛) 

(27) while  Not SA_stop_criterion  do 

(28)    while  inner-loop stop criterion  do 

(29)  

𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟 ←Generate(𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛) 

(30)  𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟 _ 𝑐 𝑜 𝑠 𝑡 ← Evaluate(𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟) 
(31)  if  Accept(current_cost, Neighbor_cost, 𝑇)  then 

(32)  𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑠 𝑜 𝑙 𝑢 𝑡 𝑖 𝑜 𝑛 ← 𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟 
(33) 𝑐 𝑢 𝑟 𝑟 𝑒 𝑛 𝑡 _ 𝑐 𝑜 𝑠 𝑡 ← 𝑁 𝑒 𝑖 𝑔 ℎ 𝑏 𝑜 𝑟 _ 𝑐 𝑜 𝑠 𝑡 
(34) end 

(35) iterSA ← iterSA + 1 

(36) Update (global_best_solution) 

(37)  end 

(38) Update(𝑇) 

(39) Update (SA_stop_criterion) 

(40) end 

(41) end 

(42)  iter ← iter + 1, Update (stop_criterion) 

(43) end 

Figure 2. A summary of the PSO-SA algorithm. 

 

4.3. Testing Phase 

The accuracy and efficiency of the proposed 

model were examined in the testing phase. The 

weights proposed in the training phase for the 

ABE similarity function were used and evaluated 

on the testing dataset. At each iteration, a project 

was selected from the testing dataset, and its 

similarity with other test projects is determined by 

the similarity function and taking into account the 

Historical projects 

Test dataset 

ABE 

Similarity function 

Solution function 

MMRE, MDMRE, PRED (0.25) 

Satisfy stopping 
criteria 

Proposed weights 

PSO - SA 

Train dataset 

Optimized 

weights 

Yes 

No 
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weights obtained in the training phase; and then 

its effort is estimated by the adaptation function. 

The process is repeated, each time with one of the 

projects of the testing dataset, until there are no 

projects left untested. Finally, MMRE, MDMRE 

and PRED (0.25) are calculated for the evaluation 

purposes. These steps are depicted in Figure 3. 

 

 

             

  

 

 

  

 

 

 

 

 

Figure 3. Flowchart of testing phase for the proposed 

method. 

 

5. Experimental Results 

5.1. Description of Datasets 

The Albrecht and Desharnais datasets, used in 

almost all the previous studies, were selected for 

evaluating the proposed model.  

The Albrecht dataset contains 24 projects 

developed with the third-generation languages. 

Completed in the 1970s by IBM, these include 8 

projects written in COBOL, 4 written in PL1, and 

2 in DMS. The dataset has 5 independent features 

including the number of inputs, number of 

outputs, number of queries, number of files, and 

number of lines of source code, and its dependent 

feature is the effort, expressed in terms of 1000 

man-hours. Desharnais is one of the most 

commonly used datasets for effort estimation. The 

dataset is based on the Canadian projects (1989). 

It contains 81 software project samples, four of 

which have incomplete data, and thus only 77 

projects are used. Each sample in this dataset is 

described by 11 features, of which 10 are 

independent and one is dependent. In the present 

work, effort (measured in person-hours) was used 

as the dependent variable [28, 30, 37, 38]. 

 

 

5.2. Implementation 

As noted in the model description, the 3-fold 

cross-validation approach was used for evaluating 

the model, and the projects were randomly 

divided into the training and testing sets. This 

process was repeated thrice and the accuracy and 

efficiency of the model were calculated based on 

the average of the results of the three repeats. The 

ABE model and the hybrid PSO-SA optimization 

algorithm were implemented in MATLAB. The 

PSO and SA parameters were set as follows: 

particle-sizePSO = 100, max-iterPSO = 100, c1PSO = 

2, c2PSO = 2, max-iterSA = 1000, T-initialSA = 

0.001, T-finalSA = 0, in which particle-sizePSO is 

the population size. The max-iterPSO and max-

iterSA define the maximum number of iteration for 

PSO and SA respectively. The c1PSO and c2PSO are 

the “cognitive parameter” and “social parameter” 

respectively. The T-initial and T-final are the 

initial temperature and final temperature 

respectively (temperature T is considered to be 

decreased linearly from T-initial to T-final, during 

of the execution the algorithm). 

 

5.3. Results of Albrecht Dataset 

Table 1 shows the results of implementing various 

ABE approaches on the Albrecht dataset. These 

results were obtained by implementation of six 

ABE models (unweighted Euclidean, weighted 

Euclidean, unweighted Manhattan, weighted 

Manhattan, unweighted Minkowski, and weighted 

Minkowski similarity functions) together with 

four adaptation approaches (CP, Mean, Median, 

IRWM) and based on three evaluation measures 

(MMRE, MDMRE, and PRED (0.25) on the 

testing and training datasets. The results obtained 

show that the three weighted approaches are 

clearly more efficient, and provid more accurate 

estimates compared to the three unweighted 

approaches. The three similarity functions 

(Euclidean, Manhattan, and Minkowski) with 

optimal weights led to lower estimation errors 

(MMRE and MDMRE values) and higher PRED 

(0.25)s in comparison with the same similarity 

functions without weighting. The Manhattan and 

Minkowski similarity functions exhibited no 

significant difference but both had a higher 

efficiency than the Euclidean similarity function. 

The results also indicate that the K value affects 

the accuracy and efficiency of the models, with 

the lowest errors and the highest efficiencies of all 

the three weighted similarity functions obtained 

with K = 2 and mean adaptation function. 

In order to demonstrate the improvement caused 

by the application of PSO-SA optimization for 

feature weighting, the "improved value" was 

Historical projects 

Train dataset Test dataset 

ABE 

Similarity function 

Optimized 

Weights 

Select a project 

Solution function 

Compute MMRE, MDMRE, PRED (0.25) 

No 

Any other 
projects? 

Yes 



Hybrid PSO-SA approach for feature weighting in analogy-based software project effort estimation  

335 

 

calculated by (9) and (10) for the weighted ABE 

methods. 
 (9) 

 
 (10) 

 

where 𝑂𝑉 is the magnitude of each  one of the 

performance measures for the ABE method 

without weighting, and 𝐸𝑉 represents the 

magnitude of each of the performance measures 

for ABE with optimal weights [27]. Table 2 

shows the improvement of each one of the 

performance measures in the testing and training 

datasets (based on (9) and (10). The data in Table 

2 are indicative of the improvement of both 

MMRE and Pred in both the testing and training 

datasets. The highest MMRE improvements are 

44% in the testing phase and 36% in the training 

phase. Pred has also been significantly improved, 

up to a maximum of 201% in the training phase 

and 55% in the testing phase. MDMRE has 

improved in all cases except for the testing phase 

of the ABE model with weighted Euclidean 

function, with the maximum improvements being 

36% in the testing phase and 48% in the training 

phase. 

Table 1. Estimation results for different ABE models in the Albrecht dataset. 
PRED (0.25) MDMRE MMRE Adaptation 

technique 

Number of 

projects 
Methods 

Testing Training Testing Training Testing Training 

0.40 0.19 0.31 0.65 1.22 0.83 Cp 1 UEue 

0.28 0.31 0.42 0.39 1.38 0.60 Mean 2  
0.24 0.25 0.44 0.46 1.48 0.66 WM   

0.25 0.25 0.34 0.37 1.44 0.53 Mean 3  

0.38 0.25 0.42 0.41 1.50 0.59 WM   
0.38 0.19 0.36 0.44 1.50 0.59 Median   

0.40 0.37 0.45 0.40 1.11 0.46 Cp 1 WEue 
0.25 0.61* 0.35* 0.22* 0.94 0.37* Mean 2  

0.37 0.53 0.32 0.21 0.92 0.36 WM   

0.25 0.46 0.48 0.29 1.20 0.40 Mean 3  
0.38 0.52 0.28 0.23 0.90 0.39 WM   

0.38 0.28 0.34 0.40 0.92 0.48 Median   

0.38 0.25 0.56 0.54 1.26 0.71 Cp 1 UMan 
0.38 0.44 0.52 0.37 1.16 0.60 Mean 2  

0.25 0.38 0.50 0.36 1.09 0.63 WM   

0.13 0.13 0.51 0.43 1.36 0.62 Mean 3  
0.38 0.25 052 0.39 1.40 0.61 WM   

0.40 0.06 0.40 0.48 1.38 0.67 Median   

0.25 0.33 0.39 0.40 1.03 0.43 Cp 1 WMan 
0.50 0.63* 0.25* 0.21* 0.84* 0.40* Mean 2  

0.38 0.58 0.49 0.20 0.92 0.36 WM   

0.25 0.43 0.40 0.56 0.86 0.42 Mean 3  
0.25 0.50 0.36 0.24 0.90 0.37 WM   

0.36 0.32 0.34 0.40 0.98 0.48 Median   

0.18 0.19 0.53 0.42 1.47 0.67 Cp 1 UMINK 
0.36 0.31 0.62 0.52 1.27 0.68 Mean 2  

0.15 0.19 0.44 0.46 1.27 0.67 WM   

0.15 0.13 0.35 0.38 1.20 0.64 Mean 3  
0.25 0.25 0.30 0.41 1.17 0.62 WM   

0.19 0.13 0.36 0.46 1.17 0.69 Median   

0.25 0.56 .34 0.24 1.04 0.45 Cp 1 WMINK 
0.50 0.63* 0.39* 0.20* 0.52* 0.40* Mean 2  

0.38 0.60 0.29 0.17 0.59 0.44 WM   

0.25 0.63 0.48 0.20 0.63 0.50 Mean 3  
0.25 0.57 0.35 0.19 0.73 0.40 WM   

0.25 0.36 0.35 0.38 0.73 0.46 Median   

Table 2. Improvement of different ABE models for the Albrecht dataset. 

PRED (0.25) MDMRE MMRE Methods 

Testing (%) Training (%) Testing (%) Training (%) Testing (%) Training (%)  

7.24 90.48 -0.58 35.17 29.01 34.24 WEue - ABE 

16.24 148.65 36.69 23.08 27.15 35.93 WMan - ABE 

54.89 200.55 9.33 47.64 44.09 33.17 WMink - ABE 

As mentioned in Section 2, many researchers have 

used the PSO and GA optimization algorithms for 

feature weighting. Therefore, In order to 

comprehensively examine and validate the 

proposed approach, we compared it with two 

feature weighting approaches based on the PSO 

and GA optimization algorithms. Moreover, the 

proposed approach was compared with the 

reported results of some existing techniques in the 

literature: a support vector regression based on 

feature selection (SVR-FS) [32] and a differential 

evolution in analog-based estimation (DABE) 

[28].  

MdMREandMMREfor
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EVOV
valueimproved %100*

-
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With the Albrecht dataset, three of the various 

combinations including the weighted Euclidean 

function and mean adaptation function and KNN 

= 2, Manhattan similarity function and mean 

adaptation function and KNN = 2, and Minkowski 

function and mean adaptation function and KNN 

= 2 gave the best results. These three 

combinations were thus selected for comparison 

with the other weighting methods. Table 3 shows 

the estimates made by various weighting 

approaches on the Albrecht dataset. These results 

obtained indicate the superiority of the PO-SA 

weighting approach over the other approaches 

(except DABE) according to all the three 

performance measures in both the testing and 

training datasets. The PSO and GA weighting 

approaches exhibited a high performance in the 

training dataset but their performance in the 

testing dataset was not satisfactory, which is 

indicative of overlearning in these two 

approaches. AS seen in Table 3, the proposed 

model achieves outperforms compared to the 

SVR-FS model. DABE achieved MMRE = 0.02 

and MDMRE = 0.02, less than our results. In the 

case of PRED (0.25) the PSO-SA approach with 

PRED (0.25) = 0.50 achieved the best results.  

Table 3. Results of comparisons for the Albrecht dataset. 

PRED (0.25) MDMRE MMRE 
Methods 

Testing Training Testing Training Testing Training 

0.25 0.61 0.35 0.22 0.94 0.37* WEue 

PSO-SA 0.50* 0.63* 0.25* 0.21 0.84 0.40 WMan 

0.50* 0.63* 0.39 0.20* 0.52* 0.40 WMink 

0.25 0.56 0.39 0.24 1.13 0.39 WEue 

PSO 0.38 0.57 0.35 0.22 1.14 0.39 WMan 

0.36 0.61 0.30 0.24 1.57 0.50 WMink 

0.38 0.58 0.33 0.23 1.09 0.39 WEue 

GA 0.38 0.55 0.34 0.27 1.10 0.47 WMan 

0.38 0.60 0.30 0.23 1.55 0.46 WMink 

0.37 0.17 0.02 0.001 0.02 0.10 DABE, 2017 [28] 

0.29 N/A 0.32 N/A 0.58 N/A SVR-FS,  2019 [32] 

 

Figures 4 and 5 were drawn based on the three 

performance measures for the testing and training 

datasets, respectively, in order to enable a more 

accurate comparison of the results. 

As it can be seen in Figure 4, which depicts the 

training phase for the Albrecht dataset (except the 

SVR-FS model, because its training data is not 

available), the DABE model has the lowest 

MMRE AND MDMRE. After that, the ABE 

methods with a weighted Euclidean similarity 

function have the lowest MMRE, and among the 

three weighting approaches, PSO-SA has the 

lowest MMRE followed by PSO. On the other 

hand application of the PSO-SA optimization 

algorithm for weighting prominently improved the 

PRED (0.25) measure. The ABE methods with 

Manhattan and Minkowski similarity functions, 

which are weighted with PSO-SA and GA, 

respectively, have lower MDMRE values relative 

to those weighted with PSO. Overall, the PSO-SA 

weighting approach led to better results compared 

to the PSO and GA approaches in the training 

phase on the Albrecht dataset. 

The accuracies of different approaches in the 

testing phase on the Albrecht dataset are shown in 

Figure 5. The DABE and SVR-FS models have 

the lowest MMRE and MDMRE values. For the 

MMRE measure, weighting with PSO-SA is 

evidently the best approach compared to the GA 

and PSO approaches (for all the three similarity 

functions). MDMRE is the lowest for the ABE 

methods with Euclidean and Manhattan similarity 

functions weighted compared to the PSO-SA and 

GA approaches. Judging by the PRED (0.25) 

measure, the ABE methods with Manhattan and 

Minkowski similarity functions weighted with 

PSO-SA are the best approaches compared to the 

other options. It can be concluded from the testing 

and training results that the PSO-SA optimization 

algorithm has prominently improved the PRED 

(0.25) measures. 

 

 
Figure 4. Accuracy comparisons for the Albrecht training 

dataset. 
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Figure 5. Accuracy comparisons for the Albrecht testing 

dataset. 

5.4. Results of Desharnais Dataset 

Table 4 presents the results of applying various 

ABE combinations to the Desharnais dataset, 

demonstrating the superiority of the ABE methods 

weighted with the Euclidean and Manhattan 

similarity functions over the other combinations in 

both the testing and training datasets. The ABE 

methods with all the three similarity functions 

(Euclidean, Manhattan, and Minkowski) 

performed better in the weighted mode than in  

the corresponding unweighted mode (as indicated 

by all the performance measures). Euclidean and 

Manhattan weighted ABE outperformed 

Minkowski weighted ABE, and there is no 

significant difference between the former two 

combinations according to the performance 

measures. 

Table 5 represents the degree of improvement of 

the three weighted ABE approaches in the 

Desharnais dataset at both the training and testing 

phases. Improvement of all measures except 

MDMRE at the testing phase of weighted ABE 

with Manhattan similarity function is quite 

evident in all cases. The Minkowski similarity 

function led to the highest MMRE improvements 

(42.39% and 22.90% at the training and testing 

phases, respectively). For MDMRE, the maximum 

improvement is 35.51% at the training phase and 

24.12% at the testing phase. The corresponding 

values for the Pred performance measure are 

82.39% at the testing phase and 67.82% at the 

training phase. 

Table 4. Estimation results for different ABE models in the Desharnais dataset. 
PRED (0.25) MDMRE MMRE Adaptation  

technique 

Number of 

projects 
Methods 

Testing Training Testing Training Testing Training 

0.35 0.35 0.45 0.34 0.51 0.53 Cp 1 UEue 

0.46 0.45 0.33 0.30 0.47 0.59 Mean 2  
0.46 0.43 0.29 0.30 0.46 0.55 WM   

0.35 0.37 0.34 0.38 0.47 0.68 Mean 3  

0.38 0.39 0.31 0.37 0.45 0.59 WM   
0.42 0.27 0.30 0.35 0.46 0.67 Median   

0.38 0.47 0.35 0.28 0.46 0.40 Cp 1 WEue 

0.38* 0.55* 0.20* 0.22* 0.38* 0.38* Mean 2  
0.46 0.50 0.31 0.25 0.45 0.39 WM   

0.50 0.53 0.27 0.24 0.53 0.40 Mean 3  

0.46 0.55 0.27 0.23 0.47 0.39 WM   
0.50 0.50 0.25 0.30 0.42 0.38 Median   

0.35 0.35 0.46 0.32 0.48 0.50 Cp 1 UMan 

0.38 0.41 0.34 0.32 0.48 0.63 Mean 2  
0.42 0.45 0.34 0.26 0.45 0.56 WM   

0.38 0.37 0.31 0.38 0.46 0.66 Mean 3  

0.42 0.43 0.31 0.37 0.44 0.60 WM   
0.46 0.33 0.26 0.32 0.47 0.65 Median   

0.35 0.47 0.39 0.27 0.50 0.40 Cp 1 WMan 

0.54 0.52 0.21 0.22 0.40 0.39 Mean 2  
0.46 0.52 0.32 0.24 0.44 0.36 WM   

0.50* 0.58* 0.24* 0.21* 0.38* 0.36* Mean 3  

0.35 0.56 0.31 0.22 0.46 0.37 WM   
0.50 0.54 0.24 0.24 0.42 0.38 Median   

0.12 0.45 0.57 0.27 1.02 0.43 Cp 1 UMINK 

0.27 0.24 0.45 0.55 0.9 1.17 Mean 2  

0.19 0.27 0.51 0.45 0.93 0.86 WM   

0.31 0.35 0.38 0.38 0.82 0.98 Mean 3  

0.23 0.35 0.47 0.43 0.87 0.93 WM   
0.19 0.25 0.55 0.46 0.95 1 Median   

0.27 0.46 0.46 0.27 1.01 0.44 Cp 1 WMINK 

0.38* 0.57* 0.34* 0.21* 0.49* 0.39* Mean 2  
0.35 0.51 0.38 0.31 0.84 0.47 WM   

0.42 0.52 0.31 0.24 0.61 0.50 Mean 3  

0.42 0.51 0.33 0.24 0.79 0.57 WM   
0.43 0.46 0.40 0.28 0.51 0.43 Median   

The proposed PSO-SA weighting approach was 

compared with the PSO weighting approach, GA 

weighting approach, and the reported results of 

some existing techniques in the literature: a case-

based reasoning PSO (CBR-PSO) [27], a 

differential evolution algorithm based ABE 
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(DEABE) [30], a bee colony guided analogy-

based estimation (BABE) [31], and  SVR-FS [32]. 

The results of different techniques on the 

Desharnais dataset are summarized in Table 6. 

According to the results obtained, using the PSO-

SA approach for feature weighting leads to better 

results compared to the other approaches except 

for DEABE and BABE for all the performance 

measures. MMRE of the BABE model is less than 

other techniques. MMRE of DEABE is similar to 

the PSO-SA approach. In the case of PRED 

(0.25), the DEABE model with PRED (0.25) = 

0.81 achieved the best result, and the PSO-SA 

approach with PRED (0.25) = 0.50 has also an 

acceptable result. 

Table 5. Improvements of different ABE models for the Desharnais dataset. 

PRED (0.25) MDMRE MMRE 
Methods 

Testing (%) Training (%) Testing (%) Training (%) Testing (%) Training (%) 

12.36 40.37 17.48 25.00 3.77 34.60 WEue - ABE 

12.54 37.89 -9.86 27.47 6.36 36.52 WMan - ABE 

82.39 67.82 24.12 35.51 22.90 42.39 WMink - ABE 

Table 6. Results of comparisons for the Desharnais dataset. 

PRED(0.25) MDMRE MMRE 
Methods 

Testing Training Testing Training Testing Training 

0.38 0.55 0.20 0.22 0.38 0.38 WEue 

PSO-SA 0.50 0.58 0.24 0.21 0.38 0.36 WMan 

0.38 0.57 0.34 0.21 0.49 0.39 WMink 

0.54 0.50 0.20 0.25 0.40 0.40 WEue 

PSO 0.46 0.55 0.27 0.22 0.40 0.38 WMan 

0.38 0.50 0.34 0.26 0.79 0.52 WMink 

0.50 0.53 0.26 0.22 0.40 0.41 WEue 

GA 0.42 0.54 0.27 0.23 0.41 0.36 WMan 

0.31 0.51 0.76 0.24 0.54 0.45 WMink 

0.35 0.46 0.40 0.29 0.58 0.46 CBR-PSO, 2018 [27]  

0.22 N/A 0.38 N/A 0.46 N/A SVR-FS,  2019 [32] 

0.81 N/A 0.31 N/A 0.37 N/A DEABE, 2020 [30] 

0.47 0.29 N/A N/A 0.09 0.06 BABE, 2020 [31] 

The performance measures for the training and 

testing phases of the different approaches are 

compared in Figures 6 and 7, respectively.  

Figure 6 shows the accuracy of the different 

models for the Desharnais dataset at the training 

phase. Among all the techniques, BABE is the 

best based on the MMMRE measure. In terms of 

MDMRE and PRED (0.25), the PSO-SA 

approach clearly outperforms the other 

techniques, and the PSO approach is in the next 

ranking. Accuracies of the different models for 

the Desharnais dataset at the testing phase are 

depicted in Figure 7. The superiority of the 

DEABE model is quite evident according to the 

PRED (0.25) measure, and the PSO-SA and PSO 

approaches are in the next rankings, respectively. 

In terms of MMRE and MDMRE, the PSO-SA 

approach clearly outperforms the other techniques 

but there is not much difference between the PSO-

SA approach and DEABE at the testing phase. 

 

6. Conclusions 

In this work, a hybrid approach for feature 

weighting in the analogy-based software 

development effort estimation was proposed. We 

investigated the ABE model with three widely 

used similarity functions (Euclidean, Manhattan, 

and Minkowski) based on the feature weights 

optimized by PSO-SA. Two well-known datasets 

(Desharnais and Albrecht) were used in order to 

evaluate the proposed model. The performance of 

the PSO-SA approach was compared with those 

of  the two weighting approaches frequently cited 

in the literature (PSO and GA). Moreover, the 

proposed model was compared with the reported 

results of some existing techniques in the 

literature based on the MMRE, MDMRE, and 

PRED (0.25) performance measures. 

The Implementation results show, according to 

the performance measures, that the combined 

PSO-SA approach improved the efficiency of 

estimation at both the training and testing phases. 

The PSO-SA weighting approach for the ABE 

model with the Manhattan and Minkowski 

similarity functions, mean adaptation function and 

KNN = 2 in Albrecht dataset, and the PSO-SA 

weighting approach for the ABE model with the 

Euclidean and Manhattan similarity functions, 
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mean adaptation function and KNN = 2, 3 in the 

Desharnais dataset led to the best results and the 

most accurate estimates compared to the other 

approaches. These findings confirm that PSO-SA 

is a suitable approach for feature weighting with 

the ABE model. Further studies can examine 

other global and local optimization algorithms and 

their combinations for feature weighting, and the 

application of other optimization techniques, 

neural networks, fuzzy techniques, and ensemble 

learning and their combinations. 

 

 
Figure 6. Accuracy comparisons for the Desharnais 

training dataset. 

 

Figure 7. Accuracy comparisons for the Desharnais 

testing dataset. 
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