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Abstract 

Although many mathematicians have searched on the fractional calculus since many years ago, its 

application in engineering, especially in modeling and control, does not have many antecedents. Since there 

is much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to 

model the physical systems accurately. This paper deals with the time-domain identification fractional-order 

chaotic systems, where conventional derivation is replaced by a fractional one with the help of a non-integer 

derivation. This operator is itself approximated by an N-dimensional system composed of an integrator and a 

phase-lead filter. A hybrid particle swarm optimization (PSO)-genetic algorithm (GA) method is applied to 

estimate the parameters of the approximated non-linear fractional-order chaotic system modeled by a state-

space representation. The feasibility of this approach is demonstrated through identifying the parameters of 

the approximated fractional-order Lorenz chaotic system. The performance of the proposed algorithm is 

compared with GA and standard particle swarm optimization (SPSO) in terms of parameter accuracy and 

cost function. In order to evaluate the identification accuracy, the time-domain output error is designed as the 

fitness function for parameter optimization. The simulation results show that the proposed method is more 

successful than the other algorithms for parameter identification of the fractional-order chaotic systems. 

 

Keywords: Parameter Identification, Chaotic System, Particle Swarm Optimization, Genetic Algorithm, 

Fractional Calculus. 

1. Introduction 

In the last two decades, fractional calculus has 

been applied in an increasing number of fields 

due to the fact that the fractional-order modeling 

can describe the real-world physical phenomena 

more reasonably and accurately than the classical 

integer order calculus [1, 2]. It has been found 

that many real objects and processes in 

interdisciplinary fields can be described by 

fractional differential equations. 

The diffusion of heat into a semi-infinite solid [2], 

voltage-current relation of a semi-infinite lossy 

transmission line [3], viscoelastic systems [4], 

dielectric polarization [5], model of love between 

humans [6], model of happiness [7], and model of 

non-local epidemics [8] are just a few examples 

of the fractional calculus applications. 

Different methods have been proposed for the 

identification of fractional-order systems. Most of 

them consist of the generalization to fractional 

order systems of standard methods that are used 

in the identification of systems with integer order 

derivatives.  

Although many methods have been proposed for 

parameter identification of integer-order chaotic 

systems [9-13], a little work has been done for 

fractional-order chaotic systems [14-16]. 

Time domain methods have been introduced, for 

example in [17, 18], where a method based on the 

discretization of a fractional differential equation 

using Grunwald-Letnikov’s definition has been 

introduced, and the parameters have been 

estimated using the least-squares approach. In 

[19], a method based on the approximation of a 
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fractional integrator by a rational model has been 

proposed. In [20], the use of methods based on 

fractional orthogonal bases has been introduced. 

In [21], identification of fractional-order systems 

using the modulating function method in case of 

noisy measurements has been proposed. Other 

techniques can also be found, for example in [22, 

23]. 

In this paper, we deal with time domain 

identification of fractional-order non-linear 

systems modeled by a state-space representation. 

The general problem is the identification of a 

non-linear fractional-order system, and 

particularly, estimation of the fractional 

derivation order of fractional-order. 

According to the approach proposed in [19], we 

intended to describe the input–output behavior of 

the system. Estimation of parameters of the model 

represents a non-linear problem that we proposed 

to solve using the PSO-GA method. The first 

problem to solve was that of numerical 

integration of the fractional differential system. In 

other words, it is necessary to propose a fractional 

derivation operator in order to simulate the 

system in a conventional way. This operator is 

defined using the frequency considerations 

derived from the approach initiated by Oustaloup 

[19]. The particularity of this approach is to rely 

on the numerical simulation of the model in order 

to generate the output error, and on the 

minimization of the resulting quadratic criterion 

using a PSO-GA method.  

In the next section, basic definitions of fractional 

derivatives, integrals, and non-linear fractional-

order systems are recalled. The output error 

method based on the PSO-GA method is applied 

to the identification of fractional-order non-linear 

chaotic system in Section III. The numerical 

results are presented in Section IV, followed by 

conclusions, summarizing the main results 

obtained. 

 

2. Mathematical background 

2.1. Fractional non-linear systems 

Fractional-order calculus is the generalization of 

the classical integer order calculus. In this paper, 

we will consider the general incommensurate 

fractional-order non-linear system, represented as 

follows [1]: 

 

 

iα

0 t i i 1 2 n

i i

T

1 2 n

D x (t) = f (x (t), x (t), , x (t), t),

x (0) = c , i = 1,2, ,n,

y(t) = C x x x

 
    

(1) 

where, ic  is the initial conditions, 
iα  is the 

fractional orders, and  C = 0 0 1 . 

The equilibrium points of system (1) are 

calculated via solving the following equation: 

f(X) = 0     (2)     

and we suppose that * * * *

1 2 nE = (x ,x , ,x )  is an 

equilibrium point of system (1). 
 

2.2. Fractional derivative 

There are several definitions for fractional-order 

derivative [2], three most commonly used ones 

are the Grunwald-Letnikov, Riemann-Liouville, 

and Caputo derivation definitions. 

The Riemann-Liouville derivative definition of 

the order α  can be described as: 
tα

R α

c t α α-n+1

c

d 1 f(τ)
D f(t)= dτ ,

dt Γ(n-α) (t-τ)

 
 
 

     (3)     

where, n-1 α n,n N    and α-1 -x

0

Γ(α) = x e dx



  is 

the gamma function. 

The Caputo derivative definition has the 

following form: 
t (n)

C α

c t α-n+1

c

1 f (τ)
D f(t)= dτ,

Γ(n-α) (t-τ)     (4)     

The Grunwald-Letnikov’s derivation definition 

can be written as: 

j

t-c

h
GL α (α)

c t t=kh αh 0
j=0

1
D f(t) = lim ω f(kh-jh),

h

 
 
 


      (3)     

where, h  is the sample time, .    is the flooring 

function, and the coefficient 
j

(α)

j

(-1) Γ(α+1)
ω = , j=0,1, .

Γ(j+1)Γ(α-j+1)
    (4)     

 

2.3. Fractional integration 

The α th  non-integer order Riemann–Liouville 

integral ( α  real positive) of a function f(t)  can be 

defined by the following relation [1]: 
t

α-1

α

0

1
I (f(t))= (t-τ) f(τ)dτ

Γ(α) 
     (5)    

 

2.4. Approximation of fractional operators 
Fractional operators are usually approximated by 

high order rational models. As a result, a 

fractional model and its rational approximation 

have the same dynamics within a limited 

frequency band. The most commonly used 

approximation of αs  in the frequency band 

b h[ω ,ω ]  is the recursive distribution of zeros and 

poles proposed by Oustaloup [17]. Trigeassou et 
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al. [24] have suggested to use an integrator 

outside the frequency range
b h[ω ,ω ] instead of a 

gain: 

α α

1-α
N

* 0 b 0 k
α

k=1h k

1
I (s)= ,

s

C 1+s/ω C 1+s/ω
I (s)=

s 1+s/ω s 1+s/ω

 
 

 


      (6)     

The block diagram of approximation of fractional 

integration, relation (8), can be represented as in 

figure 1: 
 

 

Figure 1 
*

αI (s)  Block diagram [19]. 

The operator *

αI (s)  is characterized by six 

parameters, where 1ω  and Nω  define the 

frequency range, N  is the number of cells (it is 

directly related to the quality of the desired 

approximation), and pulsations iω   and iω  are 

linked by:  

i i

i+1 i

ω = λω , with λ >1

ω = ηω , with η >1




 (7)     

The fractional order of operator is: 

log(λ)
α=1-

log(λη)
  (8)     

where, λ  and η  are real parameters that depend 

on the differentiation order α . A bigger N  

causes a better approximation of the integrator 

αI (s) . 

As *
αI (s)  is composed of a product of cells, we 

define the state-variables as the output of each 

cell [19], according to figure 1. 

This system corresponds to the state-space 

representation: 
Mx=Ax+Bu   

or equivalently:  

where 

1 0 … … 0

-λ 1 0 … 0

M= ,0 -λ 1

0 0

0 … 0 -λ 1

 
 
 
 
 
 
  

 

1 1

2 2

N N

1n

2

N+1

0 0 … … 0

ω -ω 0 … 0

A= 0 ω -ω ,

0

ω -ω0 … 0

xG

x0

B= , x= .

x0

 
 
 
 
 
 
 
 

  
  
  
  
  
  
     

 

 

Thus fractional integrator operator corresponds to 

the symbolic representation given in figure 2. 
 

 

Figure 2. State-space representation of operator [19].  

 

3. Fractional identification technique  

According to figure 2, for using this 

approximation, the non-linear model could be 

approached by a state-space representation, as in 

figure 3: 

 

Figure 3. State-space representation of non-linear system. 

Thus the approximated state space representation 

is: 

X(t)=g(X(t),u(t),t,θ),

y(t)=CX(t)
    (10)     

where, θ  consists of the model parameters and 

operator parameters ( 1 Nω ,ω , and α ), 

 C= 0 0 1 , and: 

*

*

g(X(t),u(t),t,θ)=A X(t)

+B f(X(t),u(t),t).
 (11)     

 

3.1. Output error method 

We consider identification and parameter 

estimation of the non-linear model in the time 

...

( )I s



( , , )f X u t

C

( )u t

( )d x t

dt





( )y t
( )x t

* *

* -1 * -1

x=A x+B u,

A =M A, B =M B.
   (9) 
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domain with the help of M data pairs *

k k{u ,y } , 

where *

ky   represents values of true output. 

The model coefficients are conventional 

parameters that are easily estimated. On the other 

hand, the real difficulty of the problem deals with 

the parameter α , which corresponds to a complex 

reality. Thus the identification problem is non-

linear, and it is justified to use an output-error 

technique. 

Let us consider the quadratic criterion: 
M

* 2

k

k=1

1 ˆˆJ = (y - y(u,θ))
M
  (12) 

where, k
ˆŷ (u,θ)  represents the numerical 

simulation of non-linear model based on 

estimation θ̂ ,  and excited by input u(t) . 

ŷ(t)  is non-linear in the parameters θ̂ ; thus 

quadratic criterion J  has to be minimized 

iteratively by an optimization algorithm, while 

obtaining proper parameters, θ̂ . In the case of 

linear or non-linear rational systems, the 

numerical simulation of the model is a very 

classical and simple problem. This technique [19] 

can be schematized by the drawing in figure 4. 

System

Model

Critertion

Function

Optimization 

Algorithm

u(t)

y*(t)

ŷ(t)

+

-

ε(t)

 Figure 4. Output-error identification technique. 

3.2. Genetic algorithm 

The genetic algorithm (GA) is a kind of 

intelligent  optimization method, proposed by 

Holland [25], which imitates the natural genetic 

phenomena of selection, cross-over and mutation 

operations in nature. Jong has carried out a great 

quantity of optimization tests with numerical 

functions using the Holland’s theory, which 

proves that GA is an effective and efficient 

stochastic search method [26]. In the 1990s, GA 

was widely used in the scope of engineering such 

as reservoir operation optimization [27], 

numerical model parameter optimization [28], 

inverse problem research [29], vehicle routing 

problem [30], and routing in wireless sensor 

network [31]. 

GA starts with an initial population that contains 

a number of individuals, and then new individuals 

are produced to be better adapted to the 

environment with random selection, cross-over, 

and mutation. The best individual is eventually 

achieved by a number of evolution steps 

(generations). Every individual in a population is 

a feasible solution for the optimization problems, 

and the best individual is the optimal solution to 

the optimization problem. Compared with the 

other optimization algorithms, GA has the 

following advantages: 

1. The optimization objective function can 

be either a continuous function or a 

discrete function [28];  

2. It has the property of global search and 

automatic convergence to the optimal 

solution;  

3. It is robust in dealing with complex non-

linear problems;  

4. The principle is simple, easy to 

understand, versatile, and highly 

maneuverable. 

5. Calculation of sensitivity functions in 

gradient-based methods is not required. 

Many improvements have been made to GA 

considering its wide applications including a 

niche technology of cross-over operation [24], a 

uniform mutation operation method [25], an 

adaptive algorithm of cross-over and mutation 

probability [26-27], and the hybrid particle swarm 

optimization (PSO) and GA method [32]. In this 

paper, the hybrid PSO-GA method has been used. 

 

3.3. Particle swarm optimization 

Standard particle swarm optimization (SPSO) is a 

kind of swarm intelligence method achieved by 

individual particle improvements together with 

cooperation and competition among the whole 

population [33-35]. The algorithm works by 

initializing a flock of birds randomly over the 

searching space, where every bird is called as a 

“particle”. These “particles” fly with a certain 

velocity and find the global best position after 

some iteration. At each iteration, each particle can 

adjust its velocity vector based on its momentum 

and the influence of its best position as well as the 

best position of the best individual. Then the 

particle flies to a newly computed position. 

Suppose that the search space is n-dimensional, 

and then the position and velocity of the i th 

particle are represented by  
T

i i1 i2 inx  =  x  x  . . . x    

and  
T

i i1 i2 inv  =  v  v  . . . v , respectively. The 

fitness of each particle can be evaluated according 

to the objective function of the optimization 

problem. The best previously visited position of 

the particle i is noted as its personal best position, 
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denoted by  
T

i i1 i2 inp  = p  p  . . . p  . The position of 

the best individual of the swarm is noted as the 

global best position   T

1 2 nG = g  g  . . . g   . At each 

step, the velocity of a particle and its new position 

are assigned as follow: 

i i 1 1 i i

2 2 i

v (t+1) = ω v (t) + c r (p -x )

+ c r (G-x )
    (13) 

i i ix (t+1) = x (t) + v (t+1)     (14) 

where, t  is the current step number, ω  is the 

inertia weight, 
1c  and 

2c  are the acceleration 

constants, r1 and r2 are two random numbers in 

the range [0,1] , 
ix (t)  is the current position of the 

particle, 
iP  is the best one of the solutions this 

particle has reached, and G  is the best one of the 

solutions all the particles have reached. The PSO 

algorithm performs repeated operations of the 

update equations above until a stopping criterion 

is reached. In [34], the authors have introduced a 

constriction factor χ  into the PSO algorithm. The 

aim is to prevent particle explosion and to control 

convergence. In the PSO algorithm with a 

constriction factor, the velocity updating process 

(16) is modified to: 

i i 1 1 i i

2 2 i

v (t+1) = χ [v (t) + c r (p -x )

+ c r (G-x )]
 (15) 

where, 
1 2c c 2.05   and 0.7298   are the near 

optimal values in this PSO algorithm. With the 

new velocity updating (18), the PSO algorithm 

with a constriction factor is shown to outperform 

the basic PSO algorithm [34]. 

ω  is the inertia weight that is employed to control 

the impact of the previous history of velocities on 

the current velocity. The Linear time-varying 

weighting function is usually utilized in the 

following: 

 max

iter min max max

max

iter - iter
ω = ω -ω +ω

ite
( )

r
     (16) 

where, 
iterω  is the current weight, 

maxω  is the 

initial weight, 
minω  is the final weight, 

maxiter  is 

the maximum iteration number, and iter  is the 

current iteration number [36, 37]. 

In [32], modifications have been made in PSO 

using GA to improve the performance and reach 

global maxima. The genetic operators can be used 

to prevent premature convergence. Using the 

cross-over operation, information can be 

exchanged between two particles that improve the 

likelihood of searching for the global optimum. 

Similarly, by applying mutation to PSO, 

population diversity can be managed. 

Hence, a non-linear fractional identification 

model based on the PSO-GA method can be 

established through the following steps: 

Step 1: Initialization: Set the counter of 

evolution t=0 , randomly generate the initial 

positions  X 0  and velocities  V 0  and the 

maximum number of generation T 500m   as the 

termination condition. 

Step 2: Individual evaluation: Calculate the 

fitness value of each individual in population

 X t . 

Step 3: Obtain the new velocities  V t + 1  and 

positions  X t + 1  of particles using equations 

(17) and (18), and then update jP  and G . 

Step 4: Selection operation: Apply the 

tournament selection operation [38] to the 

population. 

Step 5: Cross-over operation: Apply the 

arithmetic cross-over operation [38] to the 

population. 

Step 6: Mutation operation: Apply the mutation 

operation [38] to the population. After Steps 4, 5, 

and 6, new generation population will be 

obtained, and then update jP  and G again. 

Step 7: Termination condition judgment: If 

t=Tm
 as the termination conditions, the individual 

that has the most suitable fitness value in the 

processing will be selected as the optimal 

solution; otherwise, back to Step 2. With this, an 

identification model of non-linear fractional order 

system is established based on PSO-GA. A 

working flow chart of the model is shown in 

figure 5.  
 

5. Simulation results  

To demonstrate the effectiveness of the proposed 

parameter identification method for fractional-

order chaotic system, simulation of the fractional-

order chaotic Lorenz system is presented. All the 

algorithms are implemented using the MATLAB 

8.1 programming language. In the simulation, the 

control parameters of all algorithms are set as 

follow: the population size M = 20 , the initial 

inertia weight   is set to χ , 
1 2c c 2.05  , the 

cross-over and mutation probability is equal to 

0.7, and the algorithm terminates when a 

maximum generation number is reached; it is set 

to 500 generations, and the fitness function is  

calculated by relation (15). 
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Figure 5. Flow chart for identification model parameters 

based on PSO-GA. 

Now consider the fractional-order commensurate-

order Lorenz system [39], described by: 

q

0 t

q

0 t

q

0 t

D x(t) = σ(y(t) - x(t)),

D y(t) = x(t)(ρ - z(t)) - y(t),

D z(t) = x(t) y(t) - β z(t),

       (17) 

where, σ, ρ, β , and q  are unknown parameters to 

be identified. 

In this paper, we let the true parameters of system 

(19) to be    σ, ρ, β = 10, 28, 8/3  and q=0.99 . To 

obtain the standard state variables x, y, and z, we 

solve system (20) using the numerical algorithm 

derived from the G–L definition of fractional 

derivatives, where the initial condition 

0 0 0( ) (x , y , z = 0.1,0.1,0.1)  and the step size 

h = 0.001.  The numerical results show that it is 

chaotic, and its chaotic behavior is shown in 

figure 6. Then a frequency interval equal to 4 

decades is used to approximate the fractional-

order derivative with -3

bω =10  rad/s and 1

hω =10  

rad/s. Using this approximation and the same 

initial conditions for the step size, the numerical 

results for 6 cells is shown in figure 7. As it is 

seen, both shapes have a chaotic behavior and 

almost the same action. In this example, the 

parameters to be identified are σ, ρ, β , and q . In 

the experiments, the search ranges of parameters 

are set as 0 σ 20  , 0 ρ 50  , 0 β 5  , 

b0 ω 1  , 
h0 ω 100  , and 0 q 1  .  

 

Figure 6. Chaotic behavior of fractional-order Lorenz 

system with G–L definition of fractional derivatives when

   σ, ρ, β = 10, 28, 8 / 3 , q =0.99 . 

 

Figure 7. Chaotic behavior of fractional-order Lorenz 

system with approximated fractional derivatives when

   σ, ρ, β = 10, 28, 8 / 3 , q =0.99 , and N = 6 . 

Tables 1, 2, and 3 list the best results and standard 

deviations of parameters obtained by algorithms, 

where each algorithm runs 10 times 

independently.  

From table 1, it can be seen that the best results 

obtained by GA are different from the true 

parameter values. According to table 2, the PSO 

algorithm has achieved better results than the GA 

method. It can be concluded that the performance 

of PSO is better than GA. Table 3 represents the 

best results using the hybrid PSO-GA method, 

which has derived true parameters with increase 

in the number of cells. Based on the results of the 

three tables, the hybrid GA-PSO method was 

found to be more effective than the other 

algorithms in terms of the convergence speed and 

preventing the premature convergence to reach 

the optimal state.  
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Also it could be seen that an increase in the 

number of cells improved the results but caused 

to get more complicated equations, and it was 

more difficult to achieve the optimum point. 

Hence, using 4 cells suggested better results. 

Figure 8 represents the objective function value 

(J) for algorithms with 4 cells. It shows that the 

hybrid GA-PSO method is better than the GA and 

PSO methods in terms of the convergence speed 

and preventing the premature convergence to 

reach the optimal point. 

6. Conclusion 

This paper proposes an identification algorithm 

based on the hybrid PSO-GA method in the time 

domain using the output error technique for the 

approximated non-linear fractional-order chaotic 

systems. The results obtained verify that this 

algorithm can precisely identify the coefficients 

and fractional-order of the Lorenz chaotic system. 

Taking the effective fitness function, the PSO-GA 

method can do the global search and solve the 

parameter identification issue for non-linear 

fractional-order systems. However, we noticed 

that the interest of this approach was not limited 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Objective function values J for GA, PSO, and 

GA-PSO methods. 

to the kind of system. Effectively, with the 

fractional integrator operator, it is possible to 

consider more complex systems, and then to 

identify them using the proposed algorithm. 
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4 12.9 6.42 28.07 0.273 2.63 0.555 0.025 0.032 18.11 6.151 0.9813 0.076 0.776 

5 16.54 5.61 27.2 0.974 3.29 0.665 0.052 0.027 20 7.668 0.9906 0.223 3.386 

6 10.98 4.26 28.03 0.844 3.109 0.572 6.3e-4 0.003 2.67 1.391 1 0.087 1.026 

 
Table 2. Results obtained by PSO method for parameter estimation of approximated fractional-order Lorenz system with 

2, 3, 4, 5, and 6 cells. 

Cell 

Number 

(N) 

 Std of 
  

 
Std of 

 
 Std of 

   
Std of 

 
 

Std of 

 
q 

Std of 

q 
Best J 

0(exact) 10 - 28 - 8/3 - 0.001 - 10 - 0.99 - - 

2 9.19 6.47 26.9 6.16 2.51 0.762 0.076 0.028 10.69 5.44 0.9751 0.25 1.387 

3 12.93 4.91 28.004 0.035 2.663 0.005 0.002 0.002 10.08 0.013 0.989 0.0014 0.0077 
4 10.009 1.87 28.000 0.329 2.6673 0.099 9.9e-4 0.002 10.015 3.837 0.9900 0.041 0.0038 

5 10.227 3.57 27.992 0.976 2.6778 0.452 9.6e-4 0.002 9.827 3.898 0.9903 0.145 0.0347 

6 6.32 3.34 27.924 1.39 2.74 0.525 0.0014 0.0005 3.88 4.466 0.9907 0.008 0.5814 

 
Table 3. Results obtained by PSO-GA method for parameter estimation of approximated fractional-order Lorenz system 

with 2, 3, 4, 5 and 6 cells. 

Cell 

number 

(N) 

 
Std 

of   
 

 
Std 

of  
 

Std 

of  
  

Std of 

 
 

Std 

of 

 
q 

Std of 

q 
Best J 

0(exact) 10 - 28  - 8/3 - 0.001 - 10 - 0.99 - - 
2 9.965 2.53 27.987  5.55 2.660 0.822 0.058 1.084 10.031 3.424 0.9819 0.1167 0.0468 

3 11.324 4.16 28.001  8.384 2.6659 0.109 0.0014 0.0017 10.026 2.973 0.9896 0.0005 0.0033 

4 10.000 4.12 28.000  0.050 2.6667 0.297 0.001 0.0033 10.000 8.375 0.9900 0.058 2.8e-11 

5 10.000 2.97 28.000  0.189 2.6667 0.227 0.001 0.0000 10.000 2.480 0.9900 0.0277 2.36e-9 

6 10.000 4.32 28.000  0.488 2.6667 0.520 0.001 0.0019 10.000 6.611 0.9900 0.0418 9.7e-10 
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روش های غیرخطی مرتبه کسری آشوبگونه با مشتق مرتبه کسری تقریبی براساس شناسایی سیستم

 سازی ازدحام ذراتبهینه-ترکیبی الگوریتم ژنتیک
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 چکیده:

سدازی و د آن در مهندسی، مخصوصاً در مددلراند، اما کاربوی حسابان مرتبه کسری تحقیق کردهبسیاری از ریاضیدانان بر رهای قبل طی سالدر اگرچه 

هدای سدازی سیسدت مددلامکدان گیدر در حسدابان کسدری، گیر و انتگرالمرتبه مشتقدر انتخاب  بیشترکنترل، سابقه زیادی ندارد. بدلیل وجود آزادی 

های آشوبگونه مرتبه کسری در بعد زمدان، کده مشدتق مرسدوس توسدط ندو  قاله مرتبط است با شناسایی سیست کند. این ممیفراه  تر فیزیکی را دقیق

بعدی تشکیل شدده از یدک انتگدرال گیدر و یدک -Nشود. این عملگر خودش توسط یک سیست  اده از مشتق غیر صحیح جایگزین میکسری آن با استف

شدود تدا پارامترهدای سیسدت  به کار برده مدی (PSO)سازی ازدحاس ذراتبهینه-(GA)شود. روش ترکیبی الگوریت  ژنتیکتقریب زده می فاز-پیشفیلتر 

آشوبگونه مدل شده توسط یک نمایش فضای حالت را تخمین بزند. امکان پدذیر بدودن ایدن روش توسدط شناسدایی پارامترهدای  غیرخطی مرتبه کسری

سدازی ازدحداس ذرات ن شدده بدا الگدوریت  ژنتیدک و بهیندهشود. عملکرد الگوریت  بیدانه لرنز مرتبه کسری نشان داده میزده شده آشوبگو  تقریبسیست

ان تدابع بدرازش بدرای شود. به منظور ارزیابی دقت شناسایی، خطای خروجی در بعد زمان به عندوپارامتر و تابع هزینه مقایسه می استاندارد به لحاظ دقت

هدای آشدوبگونه مرتبده کسدری شده برای شناسدایی پدارامتر سیسدت  دهد که روش بیانسازی نشان میشود. نتایج شبیهمطرح میسازی پارامترها بهینه

 های دیگر است.تر از الگوریت وفقم

 کسری.سازی ازدحاس ذرات، الگوریت  ژنتیک، حسابان پارامتر، سیست  آشوبگونه، بهینه شناسایی :کلمات کلیدی

 




