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Abstract

Although many mathematicians have searched on the fractional calculus since many years ago, its
application in engineering, especially in modeling and control, does not have many antecedents. Since there
is much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to
model the physical systems accurately. This paper deals with the time-domain identification fractional-order
chaotic systems, where conventional derivation is replaced by a fractional one with the help of a non-integer
derivation. This operator is itself approximated by an N-dimensional system composed of an integrator and a
phase-lead filter. A hybrid particle swarm optimization (PSO)-genetic algorithm (GA) method is applied to
estimate the parameters of the approximated non-linear fractional-order chaotic system modeled by a state-
space representation. The feasibility of this approach is demonstrated through identifying the parameters of
the approximated fractional-order Lorenz chaotic system. The performance of the proposed algorithm is
compared with GA and standard particle swarm optimization (SPSO) in terms of parameter accuracy and
cost function. In order to evaluate the identification accuracy, the time-domain output error is designed as the
fitness function for parameter optimization. The simulation results show that the proposed method is more
successful than the other algorithms for parameter identification of the fractional-order chaotic systems.

Keywords: Parameter ldentification, Chaotic System, Particle Swarm Optimization, Genetic Algorithm,
Fractional Calculus.

1. Introduction

In the last two decades, fractional calculus has
been applied in an increasing number of fields
due to the fact that the fractional-order modeling
can describe the real-world physical phenomena
more reasonably and accurately than the classical
integer order calculus [1, 2]. It has been found
that many real objects and processes in
interdisciplinary fields can be described by
fractional differential equations.

The diffusion of heat into a semi-infinite solid [2],
voltage-current relation of a semi-infinite lossy
transmission line [3], viscoelastic systems [4],
dielectric polarization [5], model of love between
humans [6], model of happiness [7], and model of
non-local epidemics [8] are just a few examples
of the fractional calculus applications.

Different methods have been proposed for the
identification of fractional-order systems. Most of
them consist of the generalization to fractional
order systems of standard methods that are used
in the identification of systems with integer order
derivatives.

Although many methods have been proposed for
parameter identification of integer-order chaotic
systems [9-13], a little work has been done for
fractional-order chaotic systems [14-16].

Time domain methods have been introduced, for
example in [17, 18], where a method based on the
discretization of a fractional differential equation
using Grunwald-Letnikov’s definition has been
introduced, and the parameters have been
estimated using the least-squares approach. In
[19], a method based on the approximation of a
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fractional integrator by a rational model has been
proposed. In [20], the use of methods based on
fractional orthogonal bases has been introduced.
In [21], identification of fractional-order systems
using the modulating function method in case of
noisy measurements has been proposed. Other
techniques can also be found, for example in [22,
23].

In this paper, we deal with time domain
identification of fractional-order non-linear
systems modeled by a state-space representation.
The general problem is the identification of a
non-linear  fractional-order  system,  and
particularly, estimation of the fractional
derivation order of fractional-order.

According to the approach proposed in [19], we
intended to describe the input—output behavior of
the system. Estimation of parameters of the model
represents a non-linear problem that we proposed
to solve using the PSO-GA method. The first
problem to solve was that of numerical
integration of the fractional differential system. In
other words, it is necessary to propose a fractional
derivation operator in order to simulate the
system in a conventional way. This operator is
defined using the frequency considerations
derived from the approach initiated by Oustaloup
[19]. The particularity of this approach is to rely
on the numerical simulation of the model in order
to generate the output error, and on the
minimization of the resulting quadratic criterion
using a PSO-GA method.

In the next section, basic definitions of fractional
derivatives, integrals, and non-linear fractional-
order systems are recalled. The output error
method based on the PSO-GA method is applied
to the identification of fractional-order non-linear
chaotic system in Section Ill. The numerical
results are presented in Section IV, followed by
conclusions, summarizing the main results
obtained.

2. Mathematical background

2.1. Fractional non-linear systems
Fractional-order calculus is the generalization of
the classical integer order calculus. In this paper,
we will consider the general incommensurate
fractional-order non-linear system, represented as
follows [1]:

oD X (1) = 1,06, (8), X, (0, -+, %, (1), 1),
Xx;(0)=c,,i=1,2,---,n,

) ®
YO=Clx, %, - x,]
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where, c; is the initial conditions, o; is the
fractional orders, and C=[0 0 1].

The equilibrium points of system (1) are
calculated via solving the following equation:
f(X)=0 )
and we suppose that E"=(x;,X,,--,X.) is an
equilibrium point of system (1).

2.2. Fractional derivative

There are several definitions for fractional-order
derivative [2], three most commonly used ones
are the Grunwald-Letnikov, Riemann-Liouville,
and Caputo derivation definitions.

The Riemann-Liouville derivative definition of
the order o can be described as:

e [ 1 f(D)
th f(t)_ dt® |:F(1’l—(1) .[ (t_l.)(x-ml dri|’

3)

where, n-1<a<nneN and I(a)=[x"'e*dx is
0

the gamma function.

The Caputo derivative definition

following form:

has the

1 ¢ fO0)
o) (4)

The Grunwald-Letnikov’s derivation definition
can be written as:

Dif(t)=

t-c

. 1 .
SO g =lim— > o f(khjh), (3)
j=0

where, h is the sample time,|.| is the flooring
function, and the coefficient

w_ (DT+) .
T e @

2.3. Fractional integration
The ath non-integer order Riemann-Liouville
integral (o real positive) of a function f(t) can be

defined by the following relation [1]:

ummﬁ%ﬂHWmm 5)

2.4. Approximation of fractional operators

Fractional operators are usually approximated by
high order rational models. As a result, a
fractional model and its rational approximation
have the same dynamics within a limited
frequency band. The most commonly used
approximation of s* in the frequency band
[o,,®,] is the recursive distribution of zeros and

poles proposed by Oustaloup [17]. Trigeassou et
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al. [24] have suggested to use an integrator
outside the frequency range[w,,®,]instead of a

gain:

la(s)=%,

. () C, [ 1+s/o, B C_ﬁ +s/o, (©)
1+s/m, S a lt+s/o,

The block diagram of approximation of fractional

integration, relation (8), can be represented as in
figure 1:

S 5 S
1+— I+— 1+—
u I R D X5 Xy Gy Xy
‘ s S 5
S 1+ 1+— 1+—
! @, Oy

Figure 1 I(s) Block diagram [19].

The operator I (s) is characterized by six
parameters, where o, and ®, define the

frequency range, N is the number of cells (it is
directly related to the quality of the desired

approximation), and pulsations o, and o, are
linked by:
o, =Ao;,  with A>1
. : ()
o, =No,, with n>1
The fractional order of operator is:
log(»)
log(t) ®)

where, A and n are real parameters that depend

on the differentiation order o. A bigger N
causes a better approximation of the integrator
1,(s)-

As I’ (s) is composed of a product of cells, we
define the state-variables as the output of each
cell [19], according to figure 1.

This system corresponds to the state-space

representation:
Mx=Ax+Bu

or equivalently:

Xx=A"x+B"u,
A'=M'A, B'=M'B. ®)
where
1 0 .. 0]
A 1 0 ... 0
M={0 A 1 . i,
: “. 0 0
0 0 A 1]
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0 0 0
o -o 0 0
A=| 0 o, -o, R
o 0
L0 ... 0 oy -o]
G, Fx, ]
0 2
B=| : [, x=
L 0 i _XN+1_

Thus fractional integrator operator corresponds to
the symbolic representation given in figure 2.

J‘ Xyva =V

A" T

Figure 2. State-space representation of operator [19].

i =Xx,
—

B*

3. Fractional identification technique
According to figure 2, for using this
approximation, the non-linear model could be
approached by a state-space representation, as in
figure 3:
dx(t)
dat”

X (t)

()

f (X u,t)

—Uu(t)

Figure 3. State-space representation of non-linear system.

Thus the approximated state space representation
is:

X()=g(X(t)u()).1.6),

y()=CX(t)

where, 0 consists of the model parameters and

(10)

operator  parameters (o,,0,, and ),
c=[o 0 1], and:

X(®),u(t),t,0)=A" X

9(X(®),u(t).1,0) (® 11)

+BFX(0),u(0), ).

3.1. Output error method
We consider identification and parameter
estimation of the non-linear model in the time
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domain with the help of M data pairs {u,.y,},

where y, represents values of true output.

The model coefficients are conventional
parameters that are easily estimated. On the other
hand, the real difficulty of the problem deals with
the parameter o, which corresponds to a complex
reality. Thus the identification problem is non-
linear, and it is justified to use an output-error
technique.

Let us consider the quadratic criterion:

1 M * ~ ~
3= (Y, - 9(u,0))? (12)
M k=1
where, 9k(u,é) represents the numerical
simulation of non-linear model based on

estimation 0, and excited by input u(t) .

y(t) is non-linear in the parameters 0; thus

quadratic criterion J has to be minimized
iteratively by an optimization algorithm, while

obtaining proper parameters, 6. In the case of
linear or non-linear rational systems, the
numerical simulation of the model is a very
classical and simple problem. This technique [19]
can be schematized by the drawing in figure 4.

» System |

et Critertion
Function

).

e |

g | Optimization

Algorithm

Figure 4. Output-error identification technique.

3.2. Genetic algorithm

The genetic algorithm (GA) is a kind of
intelligent  optimization method, proposed by
Holland [25], which imitates the natural genetic
phenomena of selection, cross-over and mutation
operations in nature. Jong has carried out a great
guantity of optimization tests with numerical
functions using the Holland’s theory, which
proves that GA is an effective and efficient
stochastic search method [26]. In the 1990s, GA
was widely used in the scope of engineering such
as reservoir operation optimization [27],
numerical model parameter optimization [28],
inverse problem research [29], vehicle routing
problem [30], and routing in wireless sensor
network [31].

GA starts with an initial population that contains
a number of individuals, and then new individuals
are produced to be better adapted to the
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environment with random selection, cross-over,
and mutation. The best individual is eventually
achieved by a number of evolution steps
(generations). Every individual in a population is
a feasible solution for the optimization problems,
and the best individual is the optimal solution to
the optimization problem. Compared with the
other optimization algorithms, GA has the
following advantages:

1. The optimization objective function can
be either a continuous function or a
discrete function [28];

2. It has the property of global search and
automatic convergence to the optimal
solution;

3. ltisrobust in dealing with complex non-
linear problems;

4. The principle is
understand,  versatile,
maneuverable.

5. Calculation of sensitivity functions in
gradient-based methods is not required.

Many improvements have been made to GA
considering its wide applications including a
niche technology of cross-over operation [24], a
uniform mutation operation method [25], an
adaptive algorithm of cross-over and mutation
probability [26-27], and the hybrid particle swarm
optimization (PSO) and GA method [32]. In this
paper, the hybrid PSO-GA method has been used.

simple,
and

gasy to
highly

3.3. Particle swarm optimization

Standard particle swarm optimization (SPSO) is a
kind of swarm intelligence method achieved by
individual particle improvements together with
cooperation and competition among the whole
population [33-35]. The algorithm works by
initializing a flock of birds randomly over the
searching space, where every bird is called as a
“particle”. These “particles” fly with a certain
velocity and find the global best position after
some iteration. At each iteration, each particle can
adjust its velocity vector based on its momentum
and the influence of its best position as well as the
best position of the best individual. Then the
particle flies to a newly computed position.
Suppose that the search space is n-dimensional,
and then the position and velocity of the ith

particle are represented by x; = [ X;, - - . X, '
and v, =[v,V,...v,]', respectively. The
fitness of each particle can be evaluated according
to the objective function of the optimization

problem. The best previously visited position of
the particle i is noted as its personal best position,
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denoted by p, = [p,, P, - - - P ] - The position of
the best individual of the swarm is noted as the
global best position G=[g, 9, ...9,] . At each
step, the velocity of a particle and its new position
are assigned as follow:

V;(t+l) = o vi(t) + cn (pi-x;)
+ C,r1, (G-x;)

X;(t+1) = x;(t) + v,(t+1) (14)
where, t is the current step number, o is the
inertia weight, ¢, and c, are the acceleration

constants, r; and r, are two random numbers in
the range [0,1], x,(t) is the current position of the

particle, P, is the best one of the solutions this

particle has reached, and G is the best one of the
solutions all the particles have reached. The PSO
algorithm performs repeated operations of the
update equations above until a stopping criterion
is reached. In [34], the authors have introduced a
constriction factor y into the PSO algorithm. The

aim is to prevent particle explosion and to control
convergence. In the PSO algorithm with a
constriction factor, the velocity updating process
(16) is modified to:

vi(t+1) = [v;(t) + 5 (p;-x;)
+ Gl (G'Xi)]

where, ¢, =c, =2.05 and y =0.7298 are the near

optimal values in this PSO algorithm. With the
new velocity updating (18), the PSO algorithm
with a constriction factor is shown to outperform
the basic PSO algorithm [34].

o is the inertia weight that is employed to control
the impact of the previous history of velocities on
the current velocity. The Linear time-varying
weighting function is usually utilized in the
following:

(iter , - iter)

iter_..
where, o, Iis the current weight, o, is the

initial weight, o, is the final weight, iter_ is
the maximum iteration number, and iter is the
current iteration number [36, 37].

In [32], modifications have been made in PSO
using GA to improve the performance and reach
global maxima. The genetic operators can be used
to prevent premature convergence. Using the
cross-over operation, information can be
exchanged between two particles that improve the
likelihood of searching for the global optimum.
Similarly, by applying mutation to PSO,
population diversity can be managed.

(13)

(15)

Oy = ((Dmin “Opax )+(Dmax (16)
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Hence, a non-linear fractional identification
model based on the PSO-GA method can be
established through the following steps:

Step 1. Initialization: Set the counter of
evolution t=0, randomly generate the initial

positions X(0) and velocities V(0) and the

maximum number of generation T, =500 as the
termination condition.

Step 2: Individual evaluation: Calculate the
fitness value of each individual in population
X(t).

Step 3: Obtain the new velocities V(t+1) and
positions X(t+1) of particles using equations
(17) and (18), and then update P, and G .

Step 4: Selection operation: Apply the
tournament selection operation [38] to the
population.

Step 5: Cross-over operation: Apply the
arithmetic cross-over operation [38] to the

population.

Step 6: Mutation operation: Apply the mutation
operation [38] to the population. After Steps 4, 5,
and 6, new generation population will be
obtained, and then update P, and G again.

Step 7: Termination condition judgment: If
t=T,_ as the termination conditions, the individual
that has the most suitable fitness value in the
processing will be selected as the optimal
solution; otherwise, back to Step 2. With this, an
identification model of non-linear fractional order
system is established based on PSO-GA. A
working flow chart of the model is shown in
figure 5.

5. Simulation results

To demonstrate the effectiveness of the proposed
parameter identification method for fractional-
order chaotic system, simulation of the fractional-
order chaotic Lorenz system is presented. All the
algorithms are implemented using the MATLAB
8.1 programming language. In the simulation, the
control parameters of all algorithms are set as
follow: the population size M =20, the initial
inertia weight o is set to %, c, =c, =2.05, the
cross-over and mutation probability is equal to
0.7, and the algorithm terminates when a
maximum generation number is reached; it is set
to 500 generations, and the fitness function is
calculated by relation (15).
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Update position and
velocity

Exporting the optimal
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Figure 5. Flow chart for identification model parameters
based on PSO-GA.

Now consider the fractional-order commensurate-
order Lorenz system [39], described by:

oDYX() = o(y(t) - x(V),

DIV = x®) (p - z(1) - y(b),
oDiz(t) = x(®)y(t) - pt),

17

where, o, p, B, and q are unknown parameters to
be identified.

In this paper, we let the true parameters of system
(19) to be (o, p, B) = (10, 28, 8/3) andg=0.99. To

obtain the standard state variables x, y, and z, we
solve system (20) using the numerical algorithm
derived from the G-L definition of fractional
derivatives, where the initial condition
(X0, Yo, Z,)=(0.1,0.1,0.1) and the step size
h=0.001. The numerical results show that it is
chaotic, and its chaotic behavior is shown in
figure 6. Then a frequency interval equal to 4
decades is used to approximate the fractional-
order derivative with o, =10° rad/s and o, =10"
rad/s. Using this approximation and the same
initial conditions for the step size, the numerical
results for 6 cells is shown in figure 7. As it is
seen, both shapes have a chaotic behavior and
almost the same action. In this example, the
parameters to be identified arec, p, B, and g. In
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the experiments, the search ranges of parameters
are set as 0<o<20, 0<p<50, 0<B<5,

0<®, <1, 0<w, <100,and 0<q<1.

Figure 6. Chaotic behavior of fractional-order Lorenz
system with G-L definition of fractional derivatives when

(o,p, B) = (10, 28,8/3), g =0.99.

IS
&
——

/AN S .

Figure 7. Chaotic behavior of fractional-order Lorenz
system with approximated fractional derivatives when

(o, p, B) = (10,28,8/3), =099, and N=6.

Tables 1, 2, and 3 list the best results and standard
deviations of parameters obtained by algorithms,
where each algorithm runs 10  times
independently.

From table 1, it can be seen that the best results
obtained by GA are different from the true
parameter values. According to table 2, the PSO
algorithm has achieved better results than the GA
method. It can be concluded that the performance
of PSO is better than GA. Table 3 represents the
best results using the hybrid PSO-GA method,
which has derived true parameters with increase
in the number of cells. Based on the results of the
three tables, the hybrid GA-PSO method was
found to be more effective than the other
algorithms in terms of the convergence speed and
preventing the premature convergence to reach
the optimal state.
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Table 1. Results obtained by GA method for parameter estimation of approximated fractional-order Lorenz system with
2,3,4,5,and 6 cells.

Cell
number o Stdof Std of Std of e stdof oo
(N) b p o, o,
O(exact) 10 - 28 - 8/3 - 0.001 - 10 - 0.99 - -
2 841 302 271 49 236 086 0046 0032 1059 634 09727 0077  3.267
3 19.88 211 27.98 0.262 2.663 0.207 0.026 0.029 9.07 2277 09829  0.012 0.455
4 129 6.42 28.07 0.273 2.63 0.555 0.025 0.032 18.11 6.151 0.9813 0.076 0.776
5 1654 561 272 0974 329 0665 0052 0027 20  7.668 09906 0223 3386
6 10.98 4.26 28.03 0.844 3.109 0.572 6.3¢” 0.003 2.67 1.391 1 0.087 1.026

Table 2. Results obtained by PSO method for parameter estimation of approximated fractional-order Lorenz system with
2,3,4,5,and 6 cells.

Cell
Numper o Stdof g Suof sdof , ~ Sdof .~ Stdof stdof g ]
B P , o, q
(N)
Oexac) 10 . 28 . 873 o001 - 10 089 - .
2 919 647 269 616 251 0762 0076 0028 1069 544 09751 025 1387
3 1293 491 28004 0035 2663 0005 0002 0002 1008 0013 0989 00014 0.0077
4 10009 187 28000 0320 26673 0099 9.9¢* 0002 10015 3.837 09900 0041  0.0038
5 10227 357 27992 0976 26778 0452 96e* 0002 9.827 3898 09903 0145 0.0347
6 632 334 27924 139 274 0525 00014 00005 388 4466 09907 0008  0.5814

Table 3. Results obtained by PSO-GA method for parameter estimation of approximated fractional-order Lorenz system

with 2, 3, 4, 5 and 6 cells.

Cell Std
std Std Std Std of Std of
number ¢ B o, of q Best J
(N) of ¢ of p of p b o, b o, q
Olexact) 10 - 28 - 8/3 - 0.001 - 10 E 0.99 - E
2 9965 253  27.987 555 2660 0822 0058 1084 10031 3424 09819 01167 0.0468
3 11324 416  28.001 8384 26659 0.09 00014 00017 10026 2973 09896 0.0005 0.0033
4 10.000 412  28.000 0050 26667 0297 0001 00033 10000 8375 09900 0058 28
5 10.000 2.97  28.000 0189 26667 0227 0001 00000 10.000 2480 09900 00277 2.36¢°
6 10.000  4.32  28.000 0488 2.6667 0520  0.001 0.0019 10.000 6.611 0.9900 0.0418 9.7e™
Also it could be seen that an increase in the
number of cells improved the results but caused N (S
to get more complicated equations, and it was - :Zsfpso
more difficult to achieve the optimum point. 10 P
Hence, using 4 cells suggested better results.
Figure 8 represents the objective function value
(J) for algorithms with 4 cells. It shows that the Ems |
hybrid GA-PSO method is better than the GA and .
PSO methods in terms of the convergence speed
and preventing the premature convergence to
reach the optimal point. 10"
6' COHCIUSlon 0 Sb 1(;0 15r0 2(;0 25r0 3(;0 3!;0 4(;0 45r0 500

This paper proposes an identification algorithm
based on the hybrid PSO-GA method in the time
domain using the output error technique for the
approximated non-linear fractional-order chaotic
systems. The results obtained verify that this
algorithm can precisely identify the coefficients
and fractional-order of the Lorenz chaotic system.
Taking the effective fitness function, the PSO-GA

method can do the global search and solve the References

Iteration

GA-PSO methods.

Figure 1. Objective function values J for GA, PSO, and

to the kind of system. Effectively, with the
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consider more complex systems, and then to
identify them using the proposed algorithm.
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