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Abstract 

For Multi-Objective Optimal Reactive Power Dispatch (MORPD), a new approach is proposed as a 

simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage 

stability index of a power system are obtained. Optimal settings of continuous and discrete control variables 

(e.g., generator voltages, tap positions of tap changing transformers and the number of shunt reactive 

compensation devices to be switched) are determined. MORPD is solved using Particle Swarm Optimization 

(PSO). Also, Pareto Optimality PSO (POPSO) is proposed to improve the performance of the multi-objective 

optimization task defined with competing and non-commensurable objectives. The decision maker requires to 

manage a representative Pareto-optimal set provided by imposition of a hierarchical clustering algorithm. The 

proposed approach was tested using IEEE 30-bus and IEEE 118-bus test systems. When simulation results are 

compared with several commonly used algorithms, they indicate better performance and good potential for 

their efficient applications in solving MORPD problems.  

 

Keywords: Optimal reactive power dispatch, Particle swarm optimization, Multi-objective, Pareto optimality, 

Voltage profile, Voltage stability. 

1. Introduction 

The Optimal Reactive Power Dispatch (ORPD) has 

played significant roles in the security and 

economics of power systems. Using this, the 

operators can select a number of control tools such 

as switching reactive power compensators, 

changing generator voltages and adjusting 

transformer tap settings, and achieving the Optimal 

Power Flow (OPF). Considering the given set of 

physical and operating constraints involved, the 

equality constraints include power flow equations 

and the inequality restrictions in various reactive 

power sources. ORPD objective is to minimize the 

transmission loss of the power system, keep the 

voltage profiles within acceptable range and 

improve the voltage security while satisfying 

certain operation constraints. However, as the 

transmission networks have tended to become 

stressed in a large number of utilities across the 

globe due to a variety of reasons, many voltage 

collapse accidents have occurred over the last few 

decades. Hence, voltage security has been 

considered in ORPD. The generator voltages are 

continuous variables, and the transformer ratios 

and shunt capacitors/inductors are discrete ones. 

The problem, therefore, has been defined as a non-

linear, multi-uncertainty, multi-constraint, multi-

minimum and multi-objective optimization (MOO) 

problem with a mixture of discrete and continuous 

variables. 

A number of mathematical models for ORPD have 

been proposed in the literature [1–6]. Most of them 

adopt single-objective function and minimize it 

including transmission loss of the power system. 

Recently, minimizing voltage deviation from the 

desired values and improving voltage stability 

margin are considered as the objective function, 

making ORPD therefore, a MOO exercise [7–10]. 

In previous works, power losses and voltage 

deviation have received comparatively more 

attention than improving voltage stability. In this 
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study, ORPD is similarly formulated as a MOO 

exercise with the objectives containing all three 

indices mentioned above as well as the operating 

constraints and load constraints. 

Mathematical optimization techniques used to 

solve ORPD [1, 2, 7, 8] include gradient-based 

algorithms, linear programming, non-linear 

programming, Newton method and interior point 

methods. These conventional techniques require 

many mathematical assumptions, and hence, for 

problems involving non-continuous and non-linear 

functions, these techniques become less effective 

and are hardly ever used in recent years. 

In recent decades, stochastic and heuristic 

optimization techniques, such as Evolutionary 

Algorithms (EAs), have emerged as efficient 

optimization tools [11]. EAs however, have been 

extensively employed for solving reactive power 

optimization [3–6, 9–10, 12-13]. Some of the 

prominent ones include Genetic Algorithm (GA) 

[14], particle swarm optimization (PSO) [15–19], 

differential evolution (DE) [20–22], seeker 

optimization algorithm (SOA) [23] and non-

dominated sorting genetic algorithm-II (NSAGA-

II) [24–25]. Theoretically, these techniques are 

able to converge to the near global optimum 

solution. PSO [26] was first suggested by Kennedy 

and Eberhart in 1995, and was subsequently 

employed successfully in power system studies for 

such applications as reactive power, voltage 

control, OPF, dynamic security border 

identification and state estimation [27–30]. 

Reviewing most studies to date, seems interesting 

to note that ORPD is not treated as a true multi-

objective problem [18–19, 23], but instead, by 

linear combination of different objectives as a 

weighted sum, ORPD in effect has been often 

converted to a single objective problem. This 

unfortunately, requires multiple runs, as many 

times as the number of desired Pareto-optimal 

solutions. Furthermore, this method cannot be used 

to find Pareto-optimal solutions in problems having 

a non-convex Pareto-optimal front. In addition, 

there is no rational basis of determining adequate 

weights and the objective function formed might 

lose the significance due to combining non-

commensurable objectives. To avoid this 

difficulty, in this study, the concept of Pareto-

optimal set or Pareto-optimal front for MOO was 

presented as adopted in several works presented in 

the literature [9, 24–25]. This method is based on 

optimization of the most preferred objective while 

considering the other objectives as constraints 

bounded by some allowable levels. These levels are 

then altered to generate the entire Pareto-optimal 

set. The most obvious weaknesses of this approach 

are time-consuming and  finding weakly non-

dominated solutions [31]. There are reports of 

Pareto optimization method being used to solve the 

reactive power optimization problem [9, 32], or to 

design the power system stabilizer [33].  

In this paper, an approach is proposed based on 

Pareto Optimality PSO (POPSO) whose 

effectiveness is verified in solving a multi-

objective ORPD (MORPD) by simulating results 

of two standard test systems, including IEEE 30-

bus and IEEE 118-bus power systems. When 

comparing the study results with previous works, 

POPSO was shown to perform well in both test 

systems by showing the solutions near global 

optima.  

2. Problem formulation 

2.1. Objective functions 

The objective functions for both ORPD and voltage 

control problem comprise three important terms in 

which technical and economic goals are 

considered. The economic goal is mainly to 

minimize the active power transmission loss. The 

technical goals are to minimize the load bus voltage 

deviation from the desired voltage and also the L-

index to improve the voltage security [18]. 

2.1.1. Power loss 

Minimizing the active power transmission loss can 

be described as follows [18]: 

   

1

N E

loss k

k

P Loss


Min
 

(1) 

  

Where, Ploss is the active power transmission loss 

of the power system, NE is the number of branches 

and Lossk is the power losses of the kth branch. 

2.1.2. Voltage deviation 

An effective way to improve voltage profile is to 

minimize the selected deviation of voltage from the 

desired value as follow [18]: 

1

NL
ref

i i

i

V V V


   Min
 

(2) 

     

Where, ∑ ∆V is the sum of load bus voltage 

deviation, NL is the total number of the system load 

buses, Vi and Vi
ref are actual and desired voltage 

magnitudes at bus i, respectively. In general, Vi
ref is 

set to be 1.0 pu. 

2.1.3. Voltage stability index 

There are several indices proposed for voltage 

stability and voltage collapse prediction, including: 
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voltage collapse proximity indicator (VCPI) [34] or 

voltage stability margin (VSM) [35]. However, L-

index is a faster one presented by Kessel and 

Glavitsch [36] and developed further by Tuan et al 

[37]. In this paper, L-index is selected as the 

objective function for voltage stability index to 

improve the voltage security and keeps the 

operating system as far as possible from the voltage 

collapse point. Apart from the speedy calculation 

time needed to evaluate each load bus steady state 

voltage stability level, the chosen index can also 

take into account generator buses reaching reactive 

power limits. The L-index value ranges from zero 

to one; zero indicating a stable voltage condition 

(i.e. no system load) and one indicates voltage 

collapse. The bus with the highest L-index value 

will be the most vulnerable bus and hence, this 

method helps identifying the weakest areas needing 

critical reactive power support in the system. A 

summary of how L-index algorithm is evaluated is 

given below [18, 36]: 

The transmission system itself is linear and allows 

a representation in terms of the node admittance 

matrix (Y). The network equations in this terms is: 
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Two categories of nodes are recognized: the load 

bus (PQ) set αL and the generator bus (PV) set αG. 

The hybrid matrix (H) can be generated from 

admittance matrix (Y) by a partial inversion as 

below: 
L L LL LG L

G G GL GG G

V I Z F I
H

I V K Y V

       
          

       
,      (4) 

Where, VL and IL are vectors of voltages and 

currents at PQ buses; VG and IG are vectors of 

voltages and currents at PV buses; ZLL, FLG, KGL, 

YGG are sub-matrices. 

For any consumer node j, j v αL, the following 

equation for Vj can be derived from the H-matrix: 

. .
j ji i ji i

i iL G

V Z I F V
  

   .                           (5) 

Voltage Voj however, is been defined as: 

.
oj ji i

i G

V F V
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  .                                          (6) 

Hence, the local indicator Lj becomes [36]: 

j
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Where, Vi and Vj are the complex voltages, and Fji 

are the coefficients taken from a so-called H 

matrix, generated by a partial inversion of the nodal 

admittance matrix and the coefficients describe the 

system structure. 

For stable situations the condition 0≤Lj≤1 must not 

be violated for any of the nodes j. Hence, a global 

indicator L describing the stability of the whole 

system may be described as: 

 

)(max jj LL
L

                          (8) 

The L value for the best individual is compared 

with the threshold value and if the value is less than 

that, it indicates a voltage secure condition. The 

threshold value is fixed by conducting off-line 

study on the system for different operating 

conditions, thereby, minimizing the system voltage 

indicator [18] that is: 

 

Min f3=L                           (9) 

2.2. Constraints 

Minimizing the said objective functions is 

subjected to a number of equality and inequality 

constraints as outlined below. 

2.2.1. Equality constraint 

This is essentially the load constraint, i.e. the active 

and reactive power balance described by the 

following set of power flow equations [18, 19]: 
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(10) 
Where, Vi is the voltage magnitude at ith bus, Pi and 

Qi are net active and reactive power injection at bus 

i, Gij and Bij are the mutual conductance and 

susceptance between bus i and j respectively, θij is 

the voltage angle difference between bus i and j, 

NB-1 is the total number of buses excluding slack 

bus, NPQ is the set of PQ buses and NL is the number 

of load buses. 

2.2.2. Inequality constraint 

Sometimes referred to as the operational constraint, 

this includes the generator voltages VG, shunt 

compensations QC, transformer tap settings T, 

generator reactive power outputs QG and load bus 

voltages VL defined as [18, 19]: 
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Where, NG, NC, NT and NL are the total number of 

generators, shunt compensations, transformer taps 

and load buses, respectively.  

2.3. Problem statement 

In general, considering aggregation of objectives 

and constraints, power loss, voltage control and 

voltage stability index could be mathematically 

formulated as a non-linear constrained MOO as 

described below [18]: 

min max

( . )

( , )

( , )

. .

( , ) 0

( , ) ( , ) ( , )

loss
Min P x u

Min V x u
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s t
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

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


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

  



(12) 

Where, x is the state variable vector, consisting of 

load bus voltages VL and generator reactive power 

outputs QG; u is the control variable vector 

including generator voltages VG, shunt 

compensations QC and transformer tap settings T. 

H(x,u) and G(x,u) are the compact forms of Eqs. 

(10) and (11), respectively. 

3. Pareto Optimality Particle Swarm 

Optimization (POPSO) 

3.1. Classical particle swarm optimization 

PSO is a stochastic evolutionary computation 

optimization technique based on the movement of 

swarms [26]. It was inspired by social behavior of 

bird flocking or fish schooling. The population is 

considered as swarm, and each individual is called 

a particle randomly initialized. Each of these 

particles traverses the search space looking for the 

global minimum or maximum. The position of each 

particle corresponds to a candidate solution for the 

optimization problem, and is treated as a point in a 

D-dimensional space. For a given particle Pi, its 

position and velocity are represented as 

xi(t)=(xi,1(t),…,xi,d(t),…,xi,D(t)) and 

vi(t)=(vi,1(t),…,vi,d(t) ,…,vi,D(t)), respectively. The 

particles have memory and each particle keeps 

track of its previous best position. The best 

previous position (the position giving the best 

fitness value) found so far by particle Pi is recorded 

as pbesti=(pi,1,…,pi,d,…,pi,D). The swarm 

remembers another value which is the best position 

discovered by the swarm, The best previous 

position among all the particles in the population 

(or in the  neighborhood) is represented as 

gbest=(gi,1,…,gi,d,…,gi,D). The velocity for particle 

and the their positions are updated by the following 

two equations [18, 26]: 
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Where, w is the inertia weight, c1 and c2 are 

learning factors, rand1 and rand2 are two random 

functions in the range [0, 1]. The Eq. (13) is used 

to calculate the ith particle’s velocity by taking three 

terms into consideration: the particle’s previous 

velocity, the distance between the particle’s best 

previous and current positions, and, finally, the 

distance between the position of the best particle in 

the swarm and the ith particle’s current position. 

The ith particle flies toward a new searching point 

according to Eq. (14). In general, the performance 

of each particle is measured by a predefined 

problem-dependent fitness function.  

PSO has three tuning parameters and the 

performance of its algorithm is influence by them. 

The parameters are w, c1 and c2 shown in Eq. (13). 

w is the inertia weight employed to control the 

impact of the previous history of velocities on the 

current one. Suitable selection of the inertia weight 

w can provide a balance between global and local 

exploration abilities, consequently on average less 

iteration is needed to find a sufficiently optimal 

solution [38]. The linearly decreasing w-strategy 

[39] decreases from wmax to wmin, according to the 

following equation: 

 

iter
iter

ww
ww 




m ax

m i nm ax
m ax                             (15) 

Where, iter is the current iteration number and 

itermax is the maximum iteration number, wmax and 

wmin often set to 0.9 and 0.4, also c1 and c2 are the 

learning factors and determine the influence of 

personal best pbesti and global best gbest, 

respectively shown in Eq. (13). Most 

implementations [26–30] use a setting with c1 = c2 

= 2, which means each particle will be attracted to 

the average of pbesti and gbest. Recently, reports 

show that it might be even better to choose a larger 

cognitive parameter c1 than a social parameter c2, 

but with this constraint 421  cc  [40]. 

The number of particles or swarm size Npop is one 

of the most important parameters that influence 

results of PSO.  Too few particles will cause the 

algorithm to become stuck in a local minimum, 

while too many particles will slow down the 

algorithm. The algorithm performance depends 

therefore, on the parameters and the functions 

being optimized, so it is important to find a set of 

parameters that work well in all cases [18]. 
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3.2. Pareto optimality concept 

Optimization of several objective functions 

simultaneously, takes place frequently in power 

system studies. Generally, these functions are non-

commensurable and often have conflicting 

objectives. There are two approaches for solving 

MOO problems. First, is the application of the 

traditional algorithms aiming to convert the multi-

objective to a single objective optimization 

problem, often carried out by aggregating all 

objectives in a weighted function, or simply 

transforming all but one of the objectives into 

constraints. The advantage of such an approach is 

application existing single-objective optimization 

algorithms to solve problem directly and the 

limitations include: 1) requiring a pre-knowledge 

on the relative importance of the objectives and 

their limitations which are being converted into 

constraints; 2) inability to find multiple solutions in 

a single run, thereby requiring it to be applied as 

often as the number of desired Pareto optimal 

solutions; 3) difficulty in evaluating the trade-off 

between objectives and 4) search space should be 

convex, otherwise the solution may not be 

attainable. The second approach is based on Pareto 

optimality (PO) concept, where a set of optimal 

solutions is found, instead of one optimal solution. 

The reason for the optimality of many solutions is 

that no one can be considered to be better than any 

other with respect to all objective functions. 

Compared with traditional algorithms, PO is more 

suitable for solving MOO not only due to the 

ability to obtain multiple solutions in a single run, 

but, a good spread of the non-dominated solutions 

can also be obtained [41].  

The following definitions describe concept of 

Pareto-optimal mathematically [41]: 

Def. 1 The general MOO problem consists of a 

number of objectives to be optimized 

simultaneously and is associated with a number of 

equality and inequality constraints. It can be 

formulated as follows:

1 2
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are un-equality 

constraints, includes the generator voltages, shunt 

compensations, transformer tap settings, generator 

reactive power outputs and load bus voltages. *x


is 

a D-dimensional vector representing the decision 

variables within a parameter space Ω and Nobj is the 

number of objectives. The space spanned by the 

objective vectors is called the objective space. The 

subspace of the objective vectors satisfying the 

constraints is called the feasible space. 

Def. 2 For a MOO problem, any two solutions can 

have one of two possibilities, one covers or 

dominates the other or none dominates the other. In 

a minimization problem, without loss of generality, 

a decision vector 1x
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Def. 3 A decision vector 1x


 is called Pareto-

optimal, if there does not exist another 2x


 that 

dominates it. An objective vector is called Pareto-

optimal, if the corresponding decision vector is 

Pareto-optimal. 

Def. 4 The set of all non-dominated solutions is 

called Pareto optimal set (POS) and the set of the 

corresponding values of the objective functions is 

called Pareto optimal front (POF) or simply Pareto 

front. In case of no non-dominated solution, Pareto 

optimal front would be non-convex. 

PO is shown graphically in Figure 1 for an arbitrary 

two-objective minimization problem. It is apparent 

that for solutions contained in dominated regions, 

there exists at least one solution in the non-

dominated region that is strictly better in terms of 

both objectives. Furthermore, each non-dominated 

solution is obviously not inferior to any solution 

within the entire search space. 
 

 
Figure 1. Depiction of domination using a two-

objective minimization case 

1f

2f

Dominated

Non-Dominated
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3.2.1. Best compromise solution (BCS) 

From the Pareto-optimal set of non-dominated 

solutions, the proposed POPSO selects one 

solution for the decision maker as the best 

compromise solution. For this optimization, due to 

the imprecise nature of the decision making 

process involved, the ith objective function Fi is 

represented by a membership function μi defined as 

[9, 42]: 
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Where, Fi,min and Fi,max are the minimum and 

maximum value of the ith objective function among 

all non-dominated solutions, respectively. For each 

non-dominated solution k, the normalized 

membership function μk is calculated as:  

 
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Where, M is the number of non-dominated 

solutions. Here, the best compromise solution is the 

one with the maximum μk. 

4. Solution algorithm 

The difficulty in extending the original PSO to 

POPSO is the selection of pbest and gbest for each 

particle, since no single optimum solution in Pareto 

optimal set exist. The algorithm uses an archive, 

which is in essence an external repository of the 

population, storing non-dominated solutions. 

Initializing randomly the population starts the 

algorithm. All particles are initially compared with 

each other in order to store the non-dominated ones 

in the archive. Particles velocity and positions are 

updated using Eqs. (13-14) for which gbestd is 

randomly selected from the global Pareto archive 

for each particle, therefore gbestd is transformed to 

gbesti,d . It means that gbest is exclusive for each 

particle. As for the pbesti,d , the first value is set 

equal to the initial position of particle. In the 

subsequent iterations, pbesti,d is updated in the 

following stages:  
(I) if the current pbesti,d(t) dominates the 

new position xi,d(t+1) then  

pbesti,d(t+1)= pbesti,d(t),  

(II) if the new position xi,d(t+1) dominates 

pbesti,d(t) then pbesti,d(t+1)= xi,d(t+1),  

(III) if no one dominates the other, then, 

one of them is randomly selected to be 

the pbesti,d(t+1).    
 

Contrary to standard PSO, where a best solution is 

obtained, there are several equally good non-

dominated solutions stored in the POPSO archive. 

In every iteration t, the new positions of all 

particles are compared to identify the non-

dominated ones, which are then compared further 

with all solutions stored in the archive. Following 

updating the archive, new non-dominated solutions 

are added and old solutions that have become 

dominated are eliminated. The size of the archive 

is therefore, an important parameter, which needs 

to be determined accordingly. Once the archive 

becomes full, a new non-dominated solution is 

found. Then this new solution replaces another 

non-dominated solution randomly selected in the 

archive. In this article, no limit has been considered 

for the archive size. The algorithm runs until the 

maximum number of iterations is reached. Below, 

the proposed POPSO algorithm for solving the 

MORPD is discretely described in steps: 
 

Step 1: Input data 

Input power system data and parameter 

values such as inertia weight w and learning 

factors c1 and c2 in the appropriate equations.  

Step 2: Initialization 

(I) Initialize randomly the position and initial 

velocity of the particles. Each particle in the 

population consists of D component, where D 

is the number of space dimensions indicating 

the number of control variables such as 

generator voltages, transformer taps and 

shunt reactive compensations. Select and 

verify each particle for constraints; if the 

particle doesn’t satisfy the relevant 

constraints, then regenerate another one. 

(II) Compute the multi-objective functions 

(Ploss, ∑ ∆V and L-index) for each particle and 

its relevant constrains using power flow 

algorithm such as Newton Raphson method; 

then save this in a vector form.  

(III) Check the PO of each particle, and store 

non-dominated particles in Pareto archive. If 

the specific constraint doesn’t exist for 

archive, the size of the archive is assumed 

unlimited. 

Step 3: Updating 

(I) Update velocity and positions of particles 

according to Eqs. (13-14); gbesti,d(t) is 

randomly selected from the Pareto archive for 

each particle. 



Taher & Pakdel/ Journal of AI and Data Mining, Vol. 2, No .1, 2014 

45 

 

(II) Update pbesti,d(t+1) for each particle 

according to checking the PO of pbesti,d(t) 

and xi,d(t+1). If no one dominates the other, 

then, one of them is randomly selected to be 

the pbesti,d(t+1). 

 (III) If the particle doesn’t remain within the 

feasible solution region, discard it and mutate 

again. 

Step 4: Evaluation 

Evaluate the multi-objective functions for 

each particle by power flow; and save it in a 

vector form. 

Step 5: Selection and update the archive 

(I) Check the PO of each particle. If the 

fitness value of the particle is non-dominated 

(compared to the Pareto optimal front in the 

archive), save it into the archive. 

(II) If a particle is dominated from the new 

one in the Pareto archive, then discard it. 

Step 6: Repeat 

Repeat step 3 to step 5 until the maximum 

number of iterations is reached. The flowchart 

for the MORPD solution using POPSO is 

illustrated in Figure 2. 

5. Simulation results 

The proposed approach was tested with two non-

linear test systems (IEEE 30-Bus and IEEE 118-

Bus power system) for validation [43]. Basic 

information for test systems as well as control 

variable settings and limits are elaborated in Tables 

1 and 2. The algorithm implemented in MATLAB 

and executed on a PC with a Pentium IV 2.1G 

CPU. 

The following parameters are adopted in POPSO:  

population size = 100; inertia weight w which 

linearly decreases from 1 to 0.5; initial learning 

factors c1 = 2.0 and c2 = 1.6; desired number of 

generations = 50.  
 

Table 1. Control variables of IEEE 30-bus and IEEE 118-

bus test systems 

Test 

system 

Number 

of bus 

Number of 

branch 

Number of 

control 

variables 

VG T QC 

IEEE 

30-bus 

30 41 6    

4 

   4 

IEEE 

118-bus 

118 186 54   

14 

   9 

 

 
Figure 2. Flowchart for solving MORPD problem using 

POPSO. 

 
Table 2. Control variable settings IEEE 30-bus and IEEE 

118-bus test systems 

Control 

variable 

Control variable 

limits 

Step 

Min (p.u.) Max 

(p.u.) 

VG 0.9 1.1 - 

T 0.9 1.1 0.01 

QC 0 0.5 0.01 

5.1. Simulation of the IEEE 30-bus test system 

The proposed POPSO method was tested on the 

standard IEEE 30-bus system shown in Figure 3. It 

consists of six generator buses (bus 1 being the 

slack bus, while buses number 2, 5, 8, 11 and 13 

are PV buses with continuous operating values), 24 

load buses and 41 branches in which four branches 

(4–12, 6–9, 6–10 and 27–28) are tap changing 

transformers with discrete operating values. In 

addition, buses 10, 15, 19 and 24 are taken as shunt 

compensation buses with discrete operating values. 

Therefore, in total, 14 control variables are taken 

for MORPD in this test system. Table 3 illustrates 

the simulation results for the IEEE 30-bus test 

system, where Pareto optimal front and Pareto 

optimal set are listed for 36 rows of non-dominated 

solutions. Table 4 shows the best compromise 

solution (BCS) and 3 solutions in Pareto optimal 

front that have minimum value for each objective 

function individually and are similar to single 

objective functions (Min Ploss, Min ∑ ∆V and Min 

L-index). The diversity of the Pareto optimal front 

over the trade-off surface is also shown in Figure 

4. 

Start

input power system data and 

PSO parameters

initialize xi,d(1)  and

vi,d(1)  randomly

compute initial Ploss , ∑ ∆V 

and L by power flow 

archive

check Pareto optimality

and store non-dominated 

particles in archive

updating particle’s velocity 

and position by (13) and (14)

compute the pbesti,d(t+1)

evaluate Ploss , ∑ ∆V and L

by power flow 

check Pareto optimality and 

update archive

last iteration?

End

Yes

No
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The variation of best compromise solution power 

loss, voltage deviation and voltage stability index 

versus the number of iterations are presented in 

Figures. 5-7, respectively. As can be seen, the 

convergence characteristics are not monotonic 

most likely due to the existence of best compromise 

solution (BCS). In the each iteration, there are 

several non-dominated solutions and one of them 

has been selected as BCS considering Eqs. (18-19). 

In the following iteration, however, one other 

solutions might be selected as BCS, therefore a 

non-monotonic convergence may occur. Pre and 

post optimization for bus voltage profiles are 

shown in Figure 8. As can be seen after 

optimization, the voltage profiles are greatly 

improved, and voltage deviations are reduced. 
 

 
Figure 3. IEEE 30-bus test system 

 

 
Table 3.The results of IEEE 30-bus test system 

Pareto optimal front  Pareto optimal set 

Ploss ∑ ∆V L  VG1 VG2 VG5 VG8 VG11 VG13 T4-12 T6-9 T6-10 
T27-

28 
QC10 QC15 QC19 QC24 

5.1542  0.1080  0.1281  1.0446  1.0262  1.0190  1.0000  1.0293  0.9983  1.00 0.98 1.02 0.97 0.13 0.08 0.09 0.16 

5.3292  0.0888  0.1296  1.0325  1.0400  1.0117  0.9855  1.0302  1.0024  0.99 0.98 1.04 0.95 0.10 0.09 0.09  0.20 

4.5374  0.4512  0.1237  1.0974  1.0682  1.0784  1.0890  1.0154  1.0198  1.02 1.02 1.01 1.02 0.16 0.07  0.00 0.10 

4.6244  0.3048  0.1207  1.0783  1.0683  1.0511  1.0502  1.0307  1.0252  1.04 1.00 1.03 1.00 0.15 0.07 0.04 0.07 

4.6654  0.4320  0.1185  1.0819  1.0617  1.0757  1.0481  1.0433  1.0179  1.03 0.99 1.03 0.99 0.16 0.15 0.07 0.06 

4.5190  0.7968  0.1161  1.1000  1.0772  1.0712  1.0761  1.0499  1.0322  1.01 1.01 1.05 0.98 0.23 0.12  0.12  0.04 

4.9474  0.1776  0.1225  1.0542  1.0459  1.0365  1.0214  1.0283  1.0002  1.04 0.98 1.01 0.97 0.14 0.12 0.07  0.09 

4.7983  0.2472  0.1216  1.0671  1.0414  1.0702  1.0545  1.0297  1.0012  1.01 1.00 1.00 0.98 0.17 0.05 0.06  0.08 

5.2205  0.0768  0.1339  1.0227  1.0339  1.0130  0.9977  1.0007  1.0021  1.02 1.00 1.00 0.95 0.21 0.13 0.07  0.13 

4.9473  0.1608  0.1237  1.0557  1.0304  1.0342  1.0166  1.0177  0.9889  1.00 0.99 1.02 0.97 0.12 0.10 0.09  0.15 

5.1051  0.1056  0.1348  1.0430  1.0260  1.0410  1.0016  1.0257  0.9806  1.00 1.01 1.02 0.96  0.16 0.08 0.10  0.16 

4.9142  0.1608  0.1247  1.0501  1.0382  1.0537  1.0197  1.0156  0.9846  1.00 1.01 1.01 0.97 0.15 0.12  0.05  0.16 

4.8736  0.2472  0.1201  1.0756  1.0603  1.0543  1.0490  1.0347  1.0009  1.02 0.97 1.05 0.97  0.10 0.01 0.09  0.07 

4.8666  0.1824  0.1247  1.0579  1.0360  1.0648  1.0368  1.0134  1.0027  1.02 1.00 1.02 0.99 0.16  0.14 0.01  0.12 

4.8522  0.1968  0.1234  1.0541  1.0520  1.0382  1.0306  1.0217  1.0035  1.02 1.00 1.03 0.99 0.18 0.10 0.07  0.09 

4.6820  0.3000  0.1210  1.0800  1.0462  1.0741  1.0494  1.0292  1.0114  1.03 1.00 1.05 1.00 0.21 0.04 0.05 0.10 

4.5216  0.6048  0.1173  1.0966  1.0754  1.0952  1.0819  1.0381  1.0272  1.03 0.99 1.04 1.01 0.17 0.05 0.06  0.10 

4.9216  0.1848  0.1222  1.0594  1.0522  1.0532  1.0259  1.0239  0.9950  1.03 0.98 1.03 0.98 0.12 0.11 0.08  0.10 

4.6692  0.3696  0.1185  1.0779  1.0723  1.0409  1.0485  1.0474  1.0150  1.02 0.99 1.03 0.99 0.18 0.05 0.05  0.09 

4.6820  0.3336  0.1207  1.0884  1.0632  1.0736  1.0517  1.0321  1.0067  1.03 1.01 1.04 1.02 0.21 0.11 0.03  0.07 

4.6423  0.3888  0.1201  1.0813  1.0763  1.0448  1.0631  1.0367  1.0124  1.02 1.01 1.04 1.01 0.20 0.14 0.03  0.04 

4.6362  0.3576  0.1207  1.0771  1.0536  1.0480  1.0579  1.0325  1.0391  1.00 1.00 1.03 1.00 0.13 0.07 0.03  0.08 

4.7256  0.3168  0.1191  1.0854  1.0475  1.0742  1.0576  1.0505  1.0114  1.00 0.98 1.04 1.00 0.14 0.08  0.00 0.06 

4.6664  0.2808  0.1225  1.0783  1.0726  1.0711  1.0498  1.0291  1.0147  1.01 1.02 1.06 1.00 0.19 0.07 0.01 0.07 

4.6828  0.4200  0.1179  1.0830  1.0807  1.0668  1.0500  1.0422  1.0195  1.02 0.99 1.05 1.01 0.20 0.13 0.02  0.06 

4.6703 0.2458 0.1192  1.0713  1.0372  1.0386  1.0433  1.0318  1.0301  1.04 0.99  1.01 1.00 0.10 0.04 0.05 0.08 

4.6917  0.4416  0.1164  1.0808  1.0756  1.0913  1.0694  1.0557  1.0223  1.02 0.97 1.04 0.97 0.11 0.06 0.07 0.03 

4.6995  0.2400  0.1250  1.0712  1.0609  1.0445  1.0482  1.0140  1.0121  1.02 1.01 1.03 0.99 0.18  0.09  0.04 0.07 

4.6090  0.5208  0.1151  1.0864  1.0542  1.0698  1.0695  1.0587  1.0016  1.02 0.98 1.04 1.02 0.14 0.09 0.07 0.11 

4.7586  0.2520  0.1207  1.0784  1.0632  1.0459  1.0513  1.0327  0.9987  1.04 0.99 1.02 0.99 0.14 0.10 0.07 0.09 

4.6423  0.3888  0.1201  1.0813  1.0763  1.0448  1.0631  1.0367  1.0124  1.01 1.01 1.04 1.01  0.20 0.14 0.03 0.04 

4.7006  0.3288  0.1179  1.0868  1.0700  1.0652  1.0430  1.0452  1.0200  1.04 0.98  1.05 1.00 0.16 0.07 0.03 0.09 

4.6882  0.2880  0.1222  1.0902  1.0726  1.0711  1.0498  1.0291  1.0147  1.01 1.01  1.06 1.00 0.19 0.07 0.01 0.06 

4.7531  0.3048  0.1194  1.0800  1.0740  1.0692  1.0404  1.0363  1.0095  1.03 0.99 1.05 0.99  0.21 0.05 0.01 0.12 

4.7257  0.2184  0.1247  1.0677  1.0568  1.0629  1.0329  1.0157  1.0226  1.02  1.02 1.04 1.00 0.20 0.05 0.04  0.11 

4.6669  0.3648  0.1191  1.0800  1.0722  1.0750  1.0743  1.0272  1.0163  1.03 0.99 1.03 1.01 0.17 0.10 0.03 0.08 

 
 

Table 4. Best compromise solution (BCS) and minimum value for each objective function 
 Ploss (MW) ∑ ∆V L 

BCS 4.6703 0.2458 0.1192 
Min Ploss 4.5190 0.7968 0.1161 

Min ∑ ∆V 5.2205 0.0768 0.1339 

Min L 4.6090 0.5208 0.1151 
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Figure 4. Pareto optimal front of the proposed approach 

 

 
Figure 5. Convergence of best compromise solution power 

loss 

 

 
Figure 6. Convergence of best compromise solution 

voltage deviation 

 

 
Figure 7. Convergence of best compromise solution 

voltage stability index 

 
Figure 8. Bus voltage profiles 

 

 

To evaluate the performance of proposed POPSO 

approach, the simulation results are compared with 

other listed algorithms in Table 5 as discussed 

below: 

Comparing POPSO with initial case  

The following points are noted: a) Active power 

losses before and after proposed POPSO 

optimization are 5.7213 (column 2 Table 5) and 

4.6703 (column 11 Table 5), respectively, 

indicating a power loss reduction of 18.37%. b) 

Voltage deviation is also reduced from 0.7656 in 

the initial case to 0.2458, i.e. a reduction of 

67.89%. c) Voltage stability index, too is reduced 

from 0.1563 to 0.1192 (i.e. 23.74%, improvement). 

Comparing POPSO with PSO and FAPSO  

The numerical results from Table 5 indicate that in 

the same test system, the BCS determined by 

POPSO is better than both PSO and FAPSO [18]. 

Here, the least improvement (reduction) achieved 

in power loss, voltage deviation and voltage 

stability index are 5.65%, 6.89% and 3.72%, 

respectively.  

Comparing POPSO with CLPSO  

In CLPSO technique, three cases with different 

objectives are considered [19]: Case 1, a single 

objective is defined to minimize the real power 

loss; Case 2, two objectives are defined in order to 

minimize the power loss and voltage deviation; and 

Case 3, where two objectives of minimizing the 

power loss and voltage stability index are defined. 

The best candidate in Pareto optimal front for 

comparing POPSO with CLPSO-Case 1 is Min 

Ploss in Table 4, where the solution for Ploss is 4.519 

which compared to the latter (i.e. 4.5615) indicates 

slight improvement in working with POPSO. BCS 

is chosen in this study for comparing POPSO and 

CLPSO-Case 2 and CLPSO-Case 3. Only voltage 
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deviation in CLPSO-Case 2 is slightly less than 

POPSO, but POPSO still illustrates better results 

with respect to other specification. Comparing 

CLPSO-Case 3 with POPSO, Ploss and voltage 

deviation are still inferior for the former.  It is worth 

mentioning that in [19], the number of shunt 

compensations employed in CLPSO's is 9, while in 

this paper we have used 4. This may cause L index 

to be less than the case considered for POPSO 

comparisons (in CLPSO-Case 3, L index is 0.0866 

against 0.1192 for POPSO).  

Comparing POPSO with DE  

In DE algorithm  [22], three cases (Case 1: 

minimization of system power loss, Case 2: 

improvement of voltage profile and Case 3: 

enhancement of voltage stability) with different 

objectives are considered as follows: for 

minimizing real power loss, the best candidate at 

Pareto optimal front for comparison is for Min PLoss 

in POPSO is 4.519 (column 2, Table 4) against 

4.555 for DE (0.036 MW loss reduction) and as can 

be seen POPSO shows improvement over DE in all 

other specs, too (at least 78.38% improvement in ∑ 

∆V and L). Also, the best candidate at Pareto 

optimal front for comparison with DE-Case 2 and 

DE-Case 3 (Min ∑ ∆V and Min L) are 0.0768 

(column 3, Table 4) against 0.0911 for voltage 

deviation, and 0.1151 (column 4, Table 4) against 

0.1246 for voltage stability, respectively (at least 

15.69% and 7.62% improvement are observed in 

voltage profile and voltage stability index, 

respectively).  

Comparing POPSO with NSGA-II and 

MNSGA-II 

 NSGA-II and MNSGA-II are algorithms that use 

Pareto optimality for MOO. Minimizing the power 

loss and voltage stability index could be defined as 

the two objectives of ORPD [25]. Best PLoss and 

best L are Pareto optimal front solutions, each 

representing a minimum objective function for 

power loss and voltage stability index. The best 

candidates at Pareto optimal front for comparing 

POPSO with NSGA-II and MNSGA-II are Min 

Ploss for Best PLoss and Min L for Best L. Advantage 

of POPSO with respect to NSGA-II and MNSGA-

II are expressed in Table 5, where BCS indicate 

improvement in power loss and voltage stability 

index of at least 5.69% and 13.75%, respectively. 

Figures 9-11, clearly compares the results of 

proposed POPSO with other methods for IEEE 30-

bus test system. Therefore, as can be seen, the 

proposed POPSO method yields nearer global 

optimal solution for both single and multi-

objectives.  

5.2. Simulation of the IEEE 118-bus test system 

In order to evaluate the applicability of the 

proposed method to bigger systems, IEEE 118-bus 

power system is employed which consists of 54 

generator buses, 64 load buses and 186 branches in 

which 14 branches are tap changing transformers 

with discrete operating values. In addition, 9 buses 

are taken as shunt compensation buses with 

discrete operating values. In this system, a total of 

77 control variables are taken for MORPD. 

    Table 6 and Figures 12-15 show the results 

obtained by the proposed POPSO when compared 

with other methods [18, 19, 25, 43] where 

improvement in power loss, voltage deviation and 

voltage stability index are at least 1.26%, 3.3% and 

8.27%, respectively, and can therefore be 

efficiently used for the MORPD problem. Again, it 

is worth noting that in [19], the number of shunt 

compensations employed in CLPSO's is 14, and in 

this paper we have used 9. The same argument for 

L index as outlined above applies here too (in 

CLPSO-Case 3, L index is 0.0965 against 0.1087 

for POPSO).  

6. Conclusion 

In this paper, a new approach based on POPSO has 

been proposed and applied to MORPD problem. 

The problem has been formulated as MOO 

problem with competing power loss, bus voltage 

deviation and voltage stability index. A 

hierarchical clustering technique is implemented to 

provide the operator with a representative and 

manageable Pareto optimal set without destroying 

the characteristics of the trade-off front. Moreover, 

a proposed mechanism is employed to extract the 

best compromise solution over the trade-off curve. 

The Pareto multi-objective algorithms here 

implemented have the advantage of including 

multiple criteria without the need for introducing 

weights in a simple aggregating function. The 

results show that the proposed approach is efficient 

for solving MORPD problem where multiple 

Pareto optimal solutions can be found in one 

simulation run. The algorithms have been tested for 

standard IEEE 30-bus and 118-bus test systems and 

results are compared with others commonly used 

algorithms in the literature. Comparison shows that 

the proposed approach performed better than the 

other algorithms and can be efficiently used for the 

MORPD problem as near global optimum solutions 

reached in this study. The comparison seems to 

dominate other algorithms results. 
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Table 5. Comparison of POPSO with other techniques on IEEE 30-bus test system 

  

Initial 

[43] 

 

PSO 

[18] 

 

FAPSO 

[18] 

 

CLPSO [19] 

                        

DE [22]  

                        

NSGA-II [25] 

  

MNSGA-II [25] 

 

 POPSO 

Case 1 Case 2 Case 3   Case 1 Case 2 Case 3    Best Ploss Best L    Best Ploss Best L (BCS) 

Ploss(MW) 5.7213 5.1600a 4.9500a 4.5615 4.6969 4.6760 4.555 6.4755 7.0733 4.952 5.128 4.9454 5.102 4.6703 

∑ ∆V 0.7656 0.3840b 0.2640b 0.4773 0.2450 0.5171 1.9589 0.0911 1.4191 - - - - 0.2458 

L 0.1563 0.1307 0.1238 0.1230 0.1247 0.0866 0.5513 0.5734 0.1246 0.1393 0.1382 0.13940 0.1382 0.1192 

a Ploss(p.u.) 100=Ploss (MW) 
b ∆V(p.u.)  NL=∑ ∆V 

 

Table 6.The results of POPSO and comparison with other methods on IEEE 118-bus test system 
  

Initial 
[43] 

 

PSO 
[18] 

 

FAPSO 
[18] 

 

CLPSO [19] 

  

NSGA-II [25] 

 

MNSGA-II [25] 
 

POPSO 

Case 1 Case 2 Case 3     Best Ploss Best L Best Ploss Best L (BCS) 

Ploss(MW) 133.14 117.81 115.37 130.96 132.06 132.08 119.57 132.21 119.279 132.17 113.92 

∑ ∆V 2.0150 0.7488 0.7744 1.8525 1.6177 2.8863 - - - - 0.7241 

L 0.1497 0.1295 0.1185 0.1461 0.1210 0.0965 0.4553 0.4113 0.4553 0.4074 0.1087 

 

 
Figure 9. Comparison results of power loss in IEEE 30-bus test system 

 

 
Figure 10. Comparison results of voltage deviation in IEEE 30-bus test system 
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Figure 11. Comparison results of L-index in IEEE 30-bus test system 
 

 
Figure 12. Comparison results of power loss in IEEE 118-bus test system 

 

 
Figure 13. Comparison results of voltage deviation in IEEE 118-bus test system 

 

L-Index

100
105
110
115
120
125
130
135

Ploss(MW)

0

0.5

1

1.5

2

2.5

3

∑ ∆V



Taher & Pakdel/ Journal of AI and Data Mining, Vol. 2, No .1, 2014 

51 

 

 
Figure 14. Comparison results of L-index in IEEE 118-bus test system 
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