F. Kaveh-Yazdy; S. Zarifzadeh
Abstract
Due to their structure and usage condition, water meters face degradation, breaking, freezing, and leakage problems. There are various studies intended to determine the appropriate time to replace degraded ones. Earlier studies have used several features, such as user meteorological parameters, usage ...
Read More
Due to their structure and usage condition, water meters face degradation, breaking, freezing, and leakage problems. There are various studies intended to determine the appropriate time to replace degraded ones. Earlier studies have used several features, such as user meteorological parameters, usage conditions, water network pressure, and structure of meters to detect failed water meters. This article proposes a recommendation framework that uses registered water consumption values as input data and provides meter replacement recommendations. This framework takes time series of registered consumption values and preprocesses them in two rounds to extract effective features. Then, multiple un-/semi-supervised outlier detection methods are applied to the processed data and assigns outlier/normal labels to them. At the final stage, a hypergraph-based ensemble method receives the labels and combines them to discover the suitable label. Due to the unavailability of ground truth labeled data for meter replacement, we compare our method with respect to its FPR and two internal metrics: Dunn index and Davies-Bouldin Index. Results of our comparative experiments show that the proposed framework detects more compact clusters with smaller variance.
H.6.5.10. Remote sensing
M. Imani
Abstract
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector ...
Read More
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local structures extracted by the morphological filters. The obtained spectral-spatial hypercube has high dimensionality. So, accurate estimates of the background statistics in small local windows may not be obtained. Applying conventional detectors such as Local Reed Xiaoli (RX) to the high dimensional data is not possible. To deal with this difficulty, a nonparametric distance, without any need to estimate the data statistics, is used instead of the Mahalanobis distance. According to the experimental results, the detection accuracy improvement of the proposed NSSD method compared to Global RX, Local RX, weighted RX, linear filtering based RX (LF-RX), background joint sparse representation detection (BJSRD), Kernel RX, subspace RX (SSRX) and RX and uniform target detector (RX-UTD) in average is 47.68%, 27.86%, 13.23%, 29.26%, 3.33%, 17.07%, 15.88%, and 44.25%, respectively.
B.3. Communication/Networking and Information Technology
Z. Shaeiri; J. Kazemitabar; Sh. Bijani; M. Talebi
Abstract
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. ...
Read More
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. These usage data are modeled to profiles by which users can be identified. A statistical model is proposed that allocate a risk number to each upcoming record which reveals deviation from the normal behavior stored in profiles. Based on the amount of this deviation a decision is made to flag the record as normal or anomaly. If the activity is normal the associated profile is updated; otherwise the record is flagged as anomaly and it will be considered for further investigation. For handling the big data set and implementing the methodology we have used the Apache Spark engine which is an open source, fast and general-purpose cluster computing system for big data handling and analyzes. Experimental results show that the proposed approach can perfectly detect deviations from the normal behavior and can be exploited for detecting anomaly patterns.
Mohsen Zare-Baghbidi; Saeid Homayouni; Kamal Jamshidi; A. R. Naghsh-Nilchi
Abstract
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms ...
Read More
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of three popular linear dimensionality reduction methods on the performance of three benchmark anomaly detection algorithms. The Principal Component Analysis (PCA), Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) as DR methods, act as pre-processing step for AD algorithms. The assessed AD algorithms are Reed-Xiaoli (RX), Kernel-based versions of the RX (Kernel-RX) and Dual Window-Based Eigen Separation Transform (DWEST). The AD methods have been applied to two hyperspectral datasets acquired by both the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperspectral Mapper (HyMap) sensors. The evaluation of experiments has been done using Receiver Operation Characteristic (ROC) curve, visual investigation and runtime of the algorithms. Experimental results show that the DR methods can significantly improve the detection performance of the RX method. The detection performance of neither the Kernel-RX method nor the DWEST method changes when using the proposed methods. Moreover, these DR methods increase the runtime of the RX and DWEST significantly and make them suitable to be implemented in real time applications.