Journal of Al and Data Mining
Vol 3, No 1, 2015, 11-20.

doi:10.5829/idosi.JAIDM.2015.03.01.02

Impact of linear dimensionality reduction methods on the performance of
anomaly detection algorithms in hyperspectral images

M. Zare-Baghbidi'", S. Homayouni?, K. Jamshidi! and A. R. Naghsh-Nilchi®

1. Computer Architecture Engineering Department, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.
2. Department of Geography, University of Ottawa, Ottawa, Canada.
3. Artificial Intelligent Department, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

Received 5 May 2014; Accepted 13 May 2015
*Corresponding author: mohsen.zare@zoho.com (M. Zare-Baghbidi).

Abstract

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis.
The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison
with their surrounding background. One way to improve the performance and runtime of these algorithms is
to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of three popular linear
dimensionality reduction methods on the performance of three benchmark anomaly detection algorithms.
The Principal Component Analysis (PCA), Fast Fourier Transform (FFT) and Discrete Wavelet Transform
(DWT) as DR methods, act as pre-processing step for AD algorithms. The assessed AD algorithms are Reed-
Xiaoli (RX), Kernel-based versions of the RX (Kernel-RX) and Dual Window-Based Eigen Separation
Transform (DWEST). The AD methods have been applied to two hyperspectral datasets acquired by both the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperspectral Mapper (HyMap) sensors. The
evaluation of experiments has been done using Receiver Operation Characteristic (ROC) curve, visual
investigation and runtime of the algorithms. Experimental results show that the DR methods can significantly
improve the detection performance of the RX method. The detection performance of neither the Kernel-RX
method nor the DWEST method changes when using the proposed methods. Moreover, these DR methods
increase the runtime of the RX and DWEST significantly and make them suitable to be implemented in real
time applications.

Keywords: Hyperspectral Image Processing, Anomaly Detection, Dimensionality Reduction.

1. Introduction

Hyperspectral imaging is a suitable tool for target
detection and recognition in many applications,
including search-and-rescue operations, mine
detection, and military usages. Hyperspectral
sensors are powerful tools for distinguishing
between different materials on the basis of each
object's unique spectral signatures; these sensors
are able to do this because they collect
information about surfaces and objects in
hundreds of narrow contiguous spectral bands in
the visible and infrared regions of the
electromagnetic spectrum [1].

Anomaly Detection (AD) is a special kind of
target detection (TD) techniques with no priori
information about the targets. The main purpose

of these algorithms is to find the objects in a given
image that are anomalous with respect to their
surrounding background [1]. In other words, the
point of anomaly detectors is to find the pixels
whose spectra significantly differ from the
background spectra [2]. The main advantage of
these methods is that they don’t need priori
information about the target signature, nor do they
need any form of atmospheric or radiometric
corrections on data [3].

The Reed-Xialoi (RX) is the most widely used
AD algorithm; it is known as a benchmark
anomaly detector for multi/hyperspectral images.
This algorithm, which is derived from the
generalized likelihood ratio test (GLRT), assumes
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that the background pixels in a local
neighbourhood around the target can be modelled
by the multivariate normal (Gaussian) distribution
[4,5].

The most reported problem for the RX and many
of its modified versions is the ‘“small sample
size”. This problem concerns the estimation of a
local background covariance matrix from a small
number of very high dimensional samples. This
may result in a badly conditioned and unstable
estimate of local background covariance matrix
that strongly affects the detection performance of
the AD algorithm [6]. The first solution to this
problem is enlarging the sample size by
expanding the local window size. This solution
tries to resolve the non-homogeneity of the local
background, which undermines the effectiveness
of the covariance matrix estimation. Another
solution for this problem is using the Dimension
Reduction (DR) [6,7].

The performance of many AD algorithms can be
improved by using a pre-processing DR step. The
reason is that the hypercube is a relatively large
empty space and the most important or interesting
information is represented in a few features [8,9].
The DR step, used as a pre-processing step of the
AD algorithm, can reduce the inter-band spectral
redundancy and ever-present noise. Although the
DR is lossy, it increases the separation between
anomaly and background signatures. Thus, the
detection performance of the anomaly detector is
improved.

Another reason for using DR algorithms is that
AD algorithms, such as RX, involve the inverse
local clutter covariance matrix. This covariance
matrix is usually singular, due to the high
dimensionality of the hyperspectral data [10]. In
addition, in hyperspectral image data, the
correlation between the different bands, i.e.
information redundancy, is high. As a result, by
reducing the number of image bands, the
correlation between them is decreased and
therefore the problem is solved. Furthermore,
since DR brings data from a high order dimension
to a low order dimension, it can overcome the
“curse of dimensionality” problem [11].

DR techniques are divided into two categories:
linear and nonlinear. Although linear techniques
do not exploit the nonlinear properties in
hyperspectral data, they can be fast enough for
real time applications. A popular linear DR
method, which is ideally used for small target
detection is Principle Component Analysis (PCA)
[12]. There are other linear DR methods, such as
the Discrete Wavelet Transform (DWT) and Fast
Fourier Transform (FFT), which can be used to
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improve the performance and runtime of AD
algorithms [13,14].

A general framework of an AD scenario is shown
in figure 1. For the first step, the spectral
dimension of an image cube is reduced through
using a DR method. The AD algorithm is then
used to analyse new image; the result is a two
dimensional matrix named “AD matrix”. To
specify the locations of anomalies or targets in the
image, a post-processing threshold step can be
added to the algorithm.

a dozen
channels

Figure 1. Flowchart of hyperspectral AD using the pre-
processing DR method.

In this study, three linear DR methods PCA, DWT
and FFT are used as a pre-processing step for
three famous AD methods: RX, Kernel-RX and
DWEST and the impact of DR step on the
performance of the AD methods is evaluated. The
Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) and Hyperspectral Mapper (HyMap)
datasets are being used to both apply and evaluate
the performance of methods on real hyperspectral
remotely sensed images using Receiver Operation
Characteristic (ROC) curve [15], area under the
ROC curve (AUC) [7], visual investigation and
runtime of the algorithms.

This paper is organized as follows: Section 2
provides a brief overview of three popular AD
methods: RX, Kernel-RX, and DWEST. In
section 3, the DR methods (PCA, DWT and FFT)
are introduced. The results of the experiments will
be discussed in section 4. Lastly, concluding
remarks are given in section 5.

2. Anomaly detection methods

2.1. RX detector

The RX algorithm is the most famous AD
algorithm, developed by Reed and Yu [16]. RX is
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considered to be a benchmark AD algorithm for
hyperspectral images; it works as follows:
Assume that r is an image pixel vector that has L
elements, where L is the number of image’s
spectral bands. The RX detector is defined by (1).

G (1) =(r=p2) CLL(r = p2) (1)
In this equation, p is the sample mean and C is the
sample data covariance matrix. Finally dw(r) is
the well-known mahalanobis distance that shows
the abnormality amount of pixel under test (PUT).
The result of AD process is a two-dimensional
detection matrix. To determine the exact location
of targets (anomalies), a threshold should be
performed on the detection matrix.

2.2. Kernel-RX detector

The Kernel RX is a nonlinear version of the RX
detector, which was introduced by Kown and
Nasrabadi [5]. This method is based on the kernel
theory. It performs far better than the standard RX
detector. The kernelized version of the RX

detector is defined by (2). In this equation K,
K; and K, are defined as follows:

S (1) = (KT =KT )T Ky (KT =K ) 2
K =k(X,,n)’ —ﬁik(x(i),r) (3)

K, = 3 (D) X)X D)

i=1 i=1 j=1

Ko = (K, -1, K, —K, 1, +1, K,1,,)

(®)

k(Xo,r)" represents a vector whose entries are
M

kernels k(x().n), i=1..M, and =SK(x(i).n)
i=1

represent the scalar mean of k(Xs,r)". In addition,
Ky is the Gram matrix before centering, and the
elements of MxM matrix (1wm)ij=1/M.

2.3. DWEST

Dual Window-based Eigen Separation Transform
(DWEST) is an adaptive anomaly detector,
developed by Kwon et al. [17]. This method uses
two windows, called “inner windows” and “outer
windows”, both of which are designed to
maximize the separation between two-classes of
data: target class data and background class data.
The inner window is used to capture targets in the
window; the outer window is used to model the
local background. This algorithm extracts targets
by projecting the differential mean between two
windows onto the eigenvectors, which are
associated with the first few largest Eigen-Values
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of the difference covariance matrix. If the
covariance matrix of the inner and outer windows
is named Ci, and Coy, the difference covariance
matrix which represents the differential second-
order statistics between the two classes, is defined
in the following way:

Caitt = Cinner — Couter (6)
The eigenvalues of Cgyix are divided into two
groups, negative values and positive values. The
eigenvectors associated with a small number of
large positive eigenvalues of Cirr can successfully
extract the materials in the inner window that are
spectrally distinctive. If the mean of inner and
outer windows represented by mi, and Moy, and
the eigenvectors represented by the positive
eigenvalues in this set are donated by {vi}, the
DWEST detector projects the differential mean of
two windows (which is defined by (7)) onto {vi}
by (8) [18,19].

Maitt = Minner — Mouter (7)
ST (r)= zvuT Meir (1) )

3. Dimensionality reduction methods

3.1.PCA

PCA is the best known technique for data
reduction. The main purpose of PCA is to reduce
a dataset that consists of a large number of
interrelated variables, while retaining the variation
of the dataset as much as possible. This purpose is
achieved by transforming the data into a new set
of variables, the principal components (PCs),
which are both uncorrelated and ordered so that
the first few PCs retain most of the variation
present in all of the original variables [20]. An
important problem in PCA-RX is the number of
PCs that determine the amount of band reduction
for a hyperspectral image.

3.2. DWT

As a different DR method, one can use the DWT
to reduce the dimension of a hyperspectral image;
it was first investigated for AD methods by Zare-
Baghbidi et al. [13]. A pixel within the
hyperspectral image, like a signal, has low
frequency components for its major part, and high
frequency components for its minor part. Thus,
the main behaviour of a signal can be found in
approximation coefficients of the DWT, which are
related to low frequencies of the main signal [21].
As an example, Figure 2 presents the spectral
signature of a given pixel a from a hyperspectral
image with 64 bands (part [a]). The four-level
DWT coefficients of this signal, obtained using
the Daubechies4 wavelet transform [22], are
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presented in part (b) of figure 2. As can be seen,
only four samples, which are related to low
frequencies in the original signal, carry relevant
information about the signal. However, the rest of
samples do not contain any relatively important
information. Therefore, these samples can be
discarded without losing significant information.
As a result, the first four samples are the
approximation coefficients of the main signal and
are used to detect the anomalies.

The DWT DR method first calculates the DWT
coefficients of every pixel in a hyperspectral data
cube using the Daubechies8 wavelet. This wavelet
transformation decomposes the main signal until
eight samples are left. The eight samples provided
in a matrix are called the “approximation matrix”.
The approximation matrix is an image that has
eight bands; this matrix is an abstract of the
original image and can represent the main
behaviour image data. Therefore, the anomaly
detectors can be performed on this matrix.

1.4%10° f

3500 |

% [ Lox10*
2 3000 / =

] = E
= 2500 f E6.0:10° [
z L

30 40 50 60 0 10 20 30 40 50 60
Band Number DWT Coefficients

(a) (b)

Figure 2. (a) A spectrum pixel of a hyperspectral image,
(b) 4-level DWT of the main signal.

3.3.FFT

For the purpose of AD, the DFT can be used in a
three-step framework (see Figure 3) [14]. In the
first step, the Discrete Fourier transform (DFT) of
every image pixel is calculated using the Fast
Fourier Transform (FFT) [23]. The “DFT
amplitude” of the “DFT values” is then
calculated. The results are stored in a matrix
named “amplitude” (Figure 3.b). The last step
uses a few bands of the amplitude matrix, which
are related to low frequencies (and high values) of
the main image. A new matrix is formed by this
process. This new matrix is actually the abstract
of the FFT amplitude matrix (Figure 3.c). The size
of this abstract matrix is related to the amount of
band reduction, and can be selected during the
experiment.
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Figure 3. (a) Hyperspectral image matrix, (b) FFT
Amplitude of hyperspectral matrix, (c) Abstract of FFT
Amplitude matrix [14].
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4. Experimental results

4.1. HyMap data

This hyperspectral data is an image of the Cooke
City in Montana, collected by HyMap
(Hyperspectral Mapper) sensor. This image,
which released for Target Detection Blind Test
project, has 126 spectral bands with wavelengths
from 453 to 2496 nanometers (nm) and an
approximate ground sampling distance (GSD) of
3 meters [24]. During the image acquisition
campaign, 12 real targets were located in an open
grass region. Targets of this image are divided
into two parts: self-test and blind-test. Because
only the real location of the self-test targets is
available, this part of the image cannot be used to
evaluate the performance of the AD algorithms.
Due to this limitation, some self-test targets (red
cotton, blue cotton, yellow nylon, and red nylon)
were selected and implanted in another part of the
image. To implant the targets in this sub-image
(named “Img-1") a target implanted method [25]
has been used. For this method, a synthetic sub-
pixel anomaly, z, is a combination of both the
target and background, as shown in (9). In this
equation, t and b shows (i.e., denotes) the target
and background respectively. Therefore, sub-pixel
(z) consists of the target’s spectrum with fraction
f, and the background’s spectrum with fraction (1-
f) [25].

z=ft+(1-f)b 9)
This implantation method does not include the
adjacency effects of the target spectrum on the
local background pixels. To have a more realistic
condition, the background pixels, which are
neighbours of the targets, can be affected by a
target pixel. This effect can be achieved by using
a Gaussian function with a width of w, as shown
in (10), where p; is the spatial distance between
background pixel (z;) and the target pixel (t) [4].

2 2
Z, = exp[—%}. fit +(1—exp[—%}. f ].bi

To construct the desired image, according to
figure 4, a part of the main image is selected; the
targets are then implanted in the selected sub-
image (Figure 4(a)). To apply the effect of the
background on targets and make sub-pixels,
outlines of targets have been selected and
combined with their adjacent background
according to (9) with the coefficient f=0.6. To
apply the effect of anomalies on the background
pixels (10) is used. The final image with
implanted targets includes sub-pixel and full-pixel
(or multi-pixel) targets. As a result, this image
seems to be a perfect data for testing AD and TD
algorithms.

(10)
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The truth location of the targets that are either
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sub-pixel or full-pixel is shown in figure 4(b).
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Figure 4. A natural color composite of the HyMap data cube, (a) selected sub-image with implanted targets (Img-1), (b) truth
location of targets [26].

4.2. AVIRIS data

Two other sub-images have been extracted from a
hyperspectral image of a naval air station in San
Diego, California, collected by the AVIRIS sensor
[27, 28]. This data cube has 189 useful spectral
bands with wavelengths from 400 to 2500 nm and
a GSD of 3.5 meters (see Figure 5).

Figure 5. A natural color composite of the AVIRIS data

cube, (a) sub-image with real targets (Img-11), (b) truth

locations of targets in Img-11 and (c) sub-image with real
targets (Img-111) [14].

The first sub-image, named Img-I1, is an 80x80
pixel data cube that contains some military targets
as anomalies and is used to evaluate the exact
detection performance of algorithms using
Receiver Operation Characteristic (ROC) curve
(Figure 5(a)). The truth location of targets in this
sub-image is shown in figure 5(b). The second
sub-image, named Img-Ill, is an image window
with 100%100 pixels. This sub-image contains 38
anomalous targets, which may be either
helicopters or helipads, as shown in figure 5(c).
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This sub-image is used in some TD works [29]; it
is also used to evaluate the runtime of anomaly
detectors.

4.3. Implementation

To evaluate the performance of the AD and DR
methods, three AD algorithms, namely, the RX,
Kernel-RX, and DWEST, have been implemented
in the standard mode (without a pre-processing
DR step) and with the three mentioned DR
methods. Algorithms have been addressed
according to table 1.

Table 1. Addressing AD algorithms.

Main Algorithms Algorithms Algorithms
i
. using PCA using DWT using FFT DR
Algorithms

DR method DR method method
RX PCA-RX DWT-RX FFT-RX
Kernel-

PCA-KRX DWT-KRX FFT-KRX
RX(KRX)
DWEST PCA-DWEST  DWT-DWEST  FFT-DWEST

One of the most important decisions for AD
algorithms is the detection window size [4].
Although there is no specific method for choosing
these windows [4], the size of the inner window
should be almost as large as the biggest target in
the scene. In addition, the size of the outer
window should be large enough to provide a
sufficient number of background samples for
simulating the local background [30]. According
to the both above-mentioned rules and the results
of the experiment, the inner and outer window
size for Img-I are selected 3x3 and 11x11 pixels,
respectively. The inner and outer windows for
Img-Il are selected 5x5 and 13x13 pixels and
these values for Img-lll are selected 5x5 and
11x11 pixels, respectively.

An important decision for the DR methods is the
amount of reduction that determines the number
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of image/feature bands after the DR step. This
parameter should be selected according to two
metrics: performance and runtime. In this study,
according to the experiments the band number of
output images is assumed to be 8. Therefore, at
the pre-processing step, the spectral bands of the
main image are reduced to 8 useful bands.

4.4. Detection performance evaluation

The ROC curve is the best way to evaluate the
detection performance of AD algorithms. The
ROC is a curve that shows the true detection rate
(TDR) versus the false alarm rate (FAR) in a
particular scenario. The TDR and FAR can be
computed by varying the detection threshold and
counting both the number of true detection targets
and the corresponding number of false alarms in
every threshold value [1]. To evaluate the
detection of algorithms more accurately, the AUC
is used. This value is an exact criterion; it is
widely used to evaluate the detection performance
of target detection algorithms [7]. Another way to
evaluate the performance of algorithms is the
visual investigation. This evaluation can be a
good criterion using the post-processing threshold
step. In this study, the evaluation of algorithms for
Img-1 and Img-I1 datasets is done using the ROC
curve and the AUC value; in addition, the Img-I11I
data is used to evaluate algorithms visually.

4.4.1. AD results of Img-I

Figure 6 shows the ROC curves of the RX
detector family for Img-1. The ROC curves of the
Kernel-RX and DWEST families shown in figures
7 and 8, respectively. The AUC values of all
algorithms are presented in table 2. According to
these criteria, the following results can be
inferred.

The detection performance of the RX method in
the standard mode is very weak in general;
however, the use of the per-processing DR
methods increases its performance significantly.
According to the AUC values, although the DWT-
RX and FFT-RX methods exhibit the best
performance among the RX family, the
performance of all the methods that use DR as a
pre-processing step are almost superior.

The performance of Kernel-RX method does not
change using PCA or FFT DR methods as a pre-
processing step and DWT does not noticeably
reduce its performance. For the DWEST family,
DWT-DWEST performs best and the performance
of other methods is almost the same. Of all the
methods that are applied to Img-I, the DWT-
DWEST performs best and the RX method
performs worst.  The performance of other

16

methods is acceptable for detection of anomalies.
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Figure 6. ROC curves of the RX AD family for Img-I.
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Figure 8. ROC curves of the DWEST AD family for Img-
1.

Table 2. AUC values of the AD methods applied to Img-1.

. Without PCA DWT FFT
AD Algorithm DR DR DR DR
AUC (RX) 0.427 0.895 0.934 0.933
AUC (KRX) 0.940 0.940 0.904 0.942
AUC
(DWEST) 0.949 0.944 0.962 0.950

4.4.2. AD results of Img-11
The ROC curves of the RX, Kernel-RX and
DWEST families, applied to Img-1l, are shown in
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figures 9, 10, and 11, respectively; the AUC
values of these methods are shown in table 3.
According to these criteria, the following results
can be inferred.

The performance of RX method used without DR
step is very weak; using DR pre-processing step
increases its performance significantly. The
performances of RX family using the DR step are
almost the same. In the Kernel-RX family the
Kernel-RX and PCA-KRX have the best
performance and the performance of DWT-KRX
and FFT-KRX are same. According to the results,
the performance of all methods of this family is
almost the same. The performance of DWEST
family in all cases is almost the same and this
mean DR step does not change the performance of
it. Among all AD algorithms applied to Img-II,
the DWT-DWEST and FFT-DWEST methods
exhibit the best performance; the RX method
performs worst. The performance of the other
methods is good. These results are almost the
same as the results inferred from the evaluation of
the algorithms on Img-l.
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Figure 9. ROC curves of the RX AD family for Img-11.
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Figure 10. ROC curves of the Kernel-RX AD family for
Img-11.
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Table 3. AUC values of the AD methods applied to Img-
1.

. Without PCA DWT FFT
AD Algorithm DR DR DR DR
AUC (RX) 0.511 0.967 0.968 0.976
AUC (KRX) 0.972 0.972 0.967 0.966
AUC
(DWEST) 0.990 0.989 0.991 0.991

4.4.3. AD results of Img-111

Img-I11 is used to evaluate the performance of
anomaly detectors in a real scene. Because the
truth location of the targets in this image is not
available, the detection performance of AD
algorithms is investigated visually. To achieve a
better visual investigation, a threshold step is
added at the end of the AD procedure. To execute
this post-processing step, a cut-off threshold is
needed; this value can be calculated adaptively
using (11) [31]:

Ta =/’ld +Zaxo-d

(1)
Where 7, is the cut-off threshold that declares
whether a pixel is a target or not, x, and o, are

the mean and standard deviation of the output of
the AD algorithm, respectively, and Z, is the z

statistic at the significant level of «, which
controls the number of pixels declared to be
anomalies. Figure 12 shows the output of the
threshold step using the adaptive cut-off threshold
of (11).

According to these results, the performance of RX
is very weak. In addition, DR step increases its
performance significantly. The performance of
Kernel RX family is almost the same. This family
suffers from False Alarm Rate (FAR) that reduces
their performance. The performance of the
DWEST family algorithms is almost the same.

4.5. Runtime evaluation
To evaluate the speed of the AD methods, a
computer system with an “Intel Core 15-2410M,
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2.3GHz” processor and four GB of Random
Access Memory (RAM) is used to measure the
Img-11l,

runtime of algorithms on
conditions.

in equal

DWEST PCA-DWEST DWT-DWEST FFT-DWEST

Figure 12. Detection results of algorithms applied to Img-
1.

The runtime of the DR methods is shown in table
4 and the runtime of the AD methods, which
includes the runtime of related DR pre-processing
methods, is shown in table 5. In addition, figure
13 compares the runtime of the methods using a
column chart.

Table 4. Runtime of DR methods applied to Img-111.

PCA
0.4530

DR method
Runtime (s)

DWT FFT
5.062 0.125

Table 5. Runtime of AD methods applied to Img-111.

. Without PCA DWT FFT
AD Algorithm DR DR DR DR
Runtime (RX) 102.52 2.78 7.44 2.44
Runtime (KRX) 303.36 187.05 192.02 187.13
Runtime
(DWEST) 295.20 3.44 8.02 3.14

According to these results, with using the
dimension reduction techniques, the FFT DR
method has the best runtime. Among the AD
families, the RX family has best runtime;
nevertheless the Kernel RX family has the worst
runtime.

The runtime of the RX and DWEST families that
use the DR step is acceptable; these methods can
be used in real-time applications by using parallel
processing or hardware implementation of
algorithms using field programmable gate array
(FPGA) [32,33]. Of all the methods, the FFT-RX
has the best runtime: its runtime is about 124
times better than the slowest method, the Kernel-
RX.
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Figure 13. Runtime comparison of various anomaly
detectors applied to Img-I11.

5. Conclusion

This paper evaluated the impact of linear
dimensionality reduction methods on the
performance of anomaly detection algorithms. By
reducing the dimensions of the hyperspectral
image as a pre-processing step, the detection
performance and runtime of AD algorithms are
improved. PCA, DWT and FFT as the main DR
methods have been wused to evaluate the
performance of RX, Kernel-RX and DWEST AD
algorithms. The results of the experiment on the
AVIRIS and HyMap datasets were assessed using
the ROC curve, the AUC values, and a visual
investigation. According to these results, these
DR methods increase the detection performance
of RX method significantly and do not diminish
the performance of Kernel-RX and DWEST
methods. In addition, DR methods improve the
runtime of RX and DWEST detectors
significantly but this improvement about Kernel-
RX is not much. FFT has the best runtime among
DR methods and FFT-RX has the best runtime
among AD methods. Based on these results, the
DR methods, as a pre-processing step, can
improve the performance of some AD algorithms
and runtime of all algorithms. This runtime
improvement makes the algorithms suitable for
real-time application of TD in hyperspectral
remotely sensed data.
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