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 Anomaly detection is critical in domains such as cybersecurity, 

financial risk management, and health monitoring, yet remains 

challenging due to the complexity of large-scale, high-dimensional, 

and unlabeled datasets. This paper investigates decision tree-based 

approaches for their scalability, interpretability, and robustness in 

such settings. While widely adopted, methods like Isolation Forest 

(iForest) and Extended Isolation Forest (EIF) often fail to reliably 

separate anomalies from normal data, occasionally generating 

undesirable "ghost clusters." To address these shortcomings, we 

previously introduced the Rotated Isolation Forest (RIF) [1], which 

improved detection accuracy by applying random rotations to the 

feature space. Expanding on this, we propose the “Discrete Rotated 

Isolation Forest (DRIF)”, which integrates an autoencoder for non-

linear dimensionality reduction and employs a discrete probability 

distribution to model random projections more efficiently. The use of 

an autoencoder improves representation learning by capturing 

complex structures in the data, while the discrete distribution reduces 

computational cost and randomness without compromising 

theoretical soundness. Experimental results on synthetic and real-

world datasets show that DRIF consistently outperforms iForest, EIF, 

and RIF in terms of both ROC-AUC and execution speed. These 

findings position DRIF as a scalable, efficient, and accurate 

framework for unsupervised anomaly detection in high-dimensional 

environments. 
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1. Introduction

Anomaly detection, the identification of 

observations that significantly deviate from the 

norm, is a critical task across diverse fields, 

including machine learning, data mining, 

economics, and medicine. Its broad applications 

span areas such as fraudulent bank transaction 

detection [2,3], network intrusion detection, 

cybersecurity of IoT systems [4], machine vision, 

statistics, and neuroscience. 

Categories of Anomaly Detection Techniques 

Numerous techniques have been proposed for 

anomaly detection, generally categorized into three 

main types based on their reliance on labeled data 

[5]: 

A. Supervised Anomaly Detection 

Supervised techniques classify data into "normal" 

and "abnormal" categories using labeled datasets. 

They learn the characteristics of both normal and 

anomalous data to predict the label of new 

observations. However, this approach faces 

significant challenges. Firstly, acquiring sufficient 

labeled data for both normal and, especially, novel 

anomalies (e.g., in new financial fraud schemes) is 

often difficult. Secondly, these methods 

frequently rely on complex deep learning models 

with millions of parameters, demanding 

substantial computational resources. 

B. Semi-Supervised Anomaly Detection 

Semi-supervised methods assume that some 

portion of the data is labeled, typically focusing on 

normal instances. They construct a model that fits 
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the distribution of the labeled normal data. New, 

unlabeled data points are then evaluated based on 

their probability of being generated by this model; 

a low probability suggests an anomaly. Despite 

their utility, these techniques present three primary 

challenges: (1) the need for adequate labeled 

normal data, which may not always be available; 

(2) the potential for labeled data to be inconsistent 

with the true normal data distribution; and (3) the 

inherent complexity and difficulty in explicitly 

defining models for normal data. 

C. Unsupervised Anomaly Detection 

Unsupervised techniques are the most general 

approach as they operate without any prior 

assumptions about data labels. These methods are 

particularly valuable when labeled anomaly data is 

rare or unavailable. 

Unsupervised anomaly detection generally 

involves two main strategies: 

Normal Data Modeling: This approach constructs 

a model or pattern representing normal data. We 

then identify points that significantly deviate from 

this model as anomalies. Examples of algorithms 

that follow this approach are DBScan[6] and K-

Nearest Neighbor[7]. However, modelling normal 

data has certain limitations that we mention two of 

them next.  

✴ Firstly, the generated model is optimized for 

normal data, not for anomaly detection, which 

can lead to high false alarm rates (normal data 

being misclassified as anomalies) or, 

conversely, anomalous data being missed 

(when the normal data model is overly broad). 

For instance, as shown in Fig. 1, iForest can 

misclassify points in the tails of normal 

distributions as anomalies as well as the 

anomalous points in the middle are classified 

as normal points. 

 
Figure 1. Execution of iForest on the two moons dataset 

and incorrect identification of the end of the distribution 

as anomalies. 

✴ Secondly, normal data often do not conform to 

a simple model, making the generation of an 

accurate normal data model highly complex. 

Isolation of Anomalies: Decision Tree-Based 

Methods The second primary method for 

unsupervised anomaly detection focuses on the 

isolation of anomalous samples rather than finding 

a model or pattern representing normal data. A 

popular and highly effective approach within this 

category are methods based on decision tree 

learning techniques. These methods, instead of 

attempting to build an accurate model of normal 

observations, directly work to separate anomalous 

points within the dataset from the normal data. 

The advantages of decision tree-based anomaly 

detection methods are significant: 

✴ Speed: They are remarkably fast, 

especially for high-dimensional data. 

✴ No Labeled Data Required: These 

techniques function effectively without the 

need for labeled data, though incorporating 

labels can further refine their performance. 

✴ Interpretability: Decision trees offer a 

high degree of interpretability, allowing 

for insights into why certain observations 

are flagged as anomalies. 

The most prominent method in the class of decision 

tree algorithms for anomaly detection is the 

Isolation Forest (iForest) algorithm. Its core idea 

is based on the common fact that anomalous data 

points are inherently more "isolated" and thus 

require fewer splits to be separated from the rest of 

the data compared to normal points. iForest was 

initially introduced by Liu, Ting, and Zhou at 

ICDM’08 [8] and later published in the highly 

regarded ACM Transactions on Knowledge 

Discovery from Data (TKDD) journal in 2012. See 

reference [9]. Having gained over 8000 citations 

since 2008, this fundamental paper highlights the 

important role of iForest in anomaly detection. 

Liu et al. [8] conducted a comprehensive empirical 

analysis of the Isolation Forest (iForest) algorithm. 

Their experiments demonstrated that iForest is 

highly efficient in both computation time and 

memory usage. This efficiency stems from its use 

of random sampling and tree-based partitioning, 

which allow the algorithm to operate with linear 

time complexity and minimal memory 

requirements. They also found that iForest 

performs well on high-dimensional datasets, 

making it a strong choice for practical anomaly 

detection tasks. 

While Isolation Forest (iForest) is a powerful and 

widely used anomaly detection technique, it has 

known limitations. Hariri et al. [10] identified some 
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of these drawbacks—most importantly the "ghost 

clusters" phenomenon—and proposed an enhanced 

variant called the Extended Isolation Forest (EIF) 

to address them. However, in our recent work [1], 

we showed that EIF also suffers from ghost 

clusters, albeit in a different form. Specifically, 

while ghost clusters in iForest tend to appear 

outside the regions of normal data, EIF tends to 

exhibit them in the areas between normal clusters. 

Limitations of IForest and EIF 

The main issue with iForest is that iForest has 

inherent limitations due to its axis-aligned 

partitioning strategy. Specifically, this bias arises 

from the way isolation trees’ branch—using 

hyperplanes that are always perpendicular to one of 

the feature axes. As demonstrated by Hariri et al. 

[10], this constraint can lead to unintended 

consequences in high-dimensional spaces which is 

known as the formation of "ghost clusters”:  

regions where anomalous points are assigned low 

anomaly scores, falsely categorizing them as 

normal.  

This issue typically emerges at the intersections of 

axis-aligned hyperplanes, as indicated by the black 

circles in Fig. 2, leading to inaccurate scoring and 

potentially erroneous predictions. 

 
Figure 2. Anomaly score map of iForest and the presence 

of two ghost clusters, indicated by black circles. 

To address this limitation, Hariri et al. proposed the 

Extended Isolation Forest (EIF) [10], which 

modifies the tree-splitting mechanism to reduce 

this directional bias. Instead of selecting a random 

paxis-aligned split, EIF selects a random point  

nand a random direction vector , and uses them to 

define a hyperplane that partitions the space in a 

more flexible and general way. This approach 

enables splits in arbitrary orientations, not just 

those aligned with coordinate axes. 

As illustrated in Fig. 3, EIF successfully eliminates 

some of the ghost clusters observed in iForest. 

However, a new ghost cluster appears near the 

center of the figure, where anomaly points are 

again misclassified as normal. This suggests that 

while EIF improves upon iForest's partitioning 

bias, it does not fully resolve the ghost cluster 

phenomenon.  

 
Figure 3. Anomaly score map of EIF showing a ghost 

cluster at the center, indicated by the black circle. 

Our Contribution: To address these issues, we 

recently introduced the Rotated Isolation Forest 

(RIF) [1], which improves anomaly detection by 

applying random rotations to the feature space.  

Our proposed algorithm builds upon the Rotated 

Isolation Forest (RIF) framework. However, we 

introduce several key innovations aimed at both 

improving detection performance and significantly 

reducing computation time. First, we use 

autoencoders to perform dimensionality reduction 

on the input data. This not only accelerates the 

anomaly detection process by reducing the number 

of dimensions but also helps identify latent features 

that capture the essential structure of normal data. 

By focusing on these informative dimensions, our 

model becomes more effective at distinguishing 

anomalies from normal patterns. 

We call our new anomaly detection method the 

Discrete Rotated Isolation Forest (DRIF). One of 

the core enhancements in DRIF is the replacement 

of Gaussian-based random matrix generation—

used in RIF—with discrete probability 

distributions. While traditional techniques such as 

Principal Component Analysis (PCA) [11] and the 

Johnson-Lindenstrauss (JL) [12] Lemma often rely 

on Gaussian distributions, more recent and 

efficient variants of these methods employ discrete 

distributions for faster and more scalable 

computation. Discrete distributions not only reduce 

computational overhead but also produce sparser 

transformations, which further accelerate 

dimensionality reduction and improve overall 

algorithm performance. 

Experimental results on both synthetic and real-

world datasets show that DRIF outperforms 
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iForest, EIF, and RIF—achieving higher Receiver 

Operating Characteristic–Area Under the Curve 

(ROC-AUC) scores and at the same time, DRIF has 

significantly faster execution times than these 

techniques. 

2. Further Related Work 

Anomaly detection algorithms generally fall into 

several categories: 

A. Classification-Based Methods 

These methods learn parameters from training data 

to build classification models for anomaly 

detection. Examples include neural networks [13], 

Bayesian networks [14], support vector machines 

[15], and rule-based models [16].  

While these models can offer good and efficient 

detection performance, their effectiveness is often 

limited by the availability of high-quality, relevant 

training data. 

B. Distance-Based Methods 

Distance-based methods identify anomalies based 

on the proximity of data points to each other. A key 

advantage of these techniques is their unsupervised 

nature, eliminating the need for labeled data. This 

category can be further divided: 

Nearest Neighbor Techniques: These techniques 

quantify the (ab)normality of a point using its 

k thdistance to the  nearest neighbor or other 

local neighborhood metrics. For instance, the Local 

kOutlier Factor (LOF) uses -nearest neighbors to 

compute a relative density value for a point (similar 

to DBSCAN concepts) to address density 

variations across different data clusters. 

Clustering: These methods group data into 

clusters, with points that do not belong to any 

cluster, or are far from any cluster centroid, being 

identified as anomalies. Popular clustering 

kalgorithms used here include -means [7] and 

DBSCAN [6], both of which rely on distance 

criteria. 

C. Statistics-Based Methods 

These techniques employ statistical distributions, 

such as Gaussian models [17] or regression [18], to 

identify anomalies. Observations that deviate 

significantly from the learned statistical model are 

flagged as anomalous. 

D. Isolation-Based Methods 

Isolation-based anomaly detection algorithms 

work by directly isolating anomalies from normal 

data, often through a series of "cuts" or partitions. 

Experimental evidence, including studies by Liu et 

al. [8], suggests that isolation-based algorithms, 

particularly those leveraging randomization 

techniques, often outperform other types of 

anomaly detection, such as distance-based 

[19,20,21,22,23] and density-based methods 

[24,25,26].  

Forest (iForest) [8] is the seminal algorithm in this 

class. Recently, several variations of iForest have 

been proposed, including Extended Isolation Forest 

(EIF) [10] and Robust Random Pruning Forest 

(RRCF) [27]. 

3. Proposed Model 

In the following sections, we first provide a brief 

overview of the iForest and RIF algorithms to 

establish the necessary background. We then 

introduce autoencoders and explain how they 

contribute to both dimensionality reduction and 

feature extraction in DRIF. Next, we discuss the 

role of discrete probability distributions in our 

approach and why they offer advantages over 

Gaussian-based methods.  

Finally, we present the complete DRIF algorithm, 

where we explain the details of its construction and 

integration of the proposed techniques. 

3.1 Rotated Isolation Forest (RIF) 

Isolation Forest (iForest) is a popular algorithm for 

unsupervised anomaly detection that isolates 

anomalies instead of profiling normal points. It 

operates by constructing a set of binary trees, 

known as isolation trees (iTrees), where each split 

randomly selects a feature and a split value. Since 

anomalies tend to be rare and different, they are 

easier to isolate and usually appear closer to the 

root of the tree.  

The average path length from the root to a point 

across all trees is used as an anomaly score, with 

shorter paths indicating higher anomaly likelihood. 

The iForest is computationally efficient and works 

well on low- to moderate-dimensional data, but its 

effectiveness can degrade in high-dimensional 

settings where axis-aligned splits fail to capture 

complex data structure. 

The Rotated Isolation Forest (RIF) extends iForest 

by addressing this limitation through random 

feature space rotations. In high-dimensional 

spaces, data often lies along correlated or skewed 

directions that axis-aligned splits in iForest cannot 

effectively isolate. RIF introduces a preprocessing 

step that rotates the data using randomly generated 

orthogonal matrices before building each isolation 

tree. By rotating the feature space, RIF enhances 

the diversity of tree structures and improves the 

algorithm’s ability to distinguish anomalies that 

may otherwise be aligned with dominant directions 

in the original feature space. 
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The generation of these random rotation matrices is 

a key part of RIF. It involves two main steps: first, 

a random square matrix is created by drawing each 

element independently from a standard normal 

distribution. Then, this matrix is decomposed using 

QRa mathematical technique called  

decomposition, which yields an orthogonal matrix 

that serves as a rotation matrix. This orthogonal 

transformation preserves the geometric structure of 

the data—maintaining distances and angles 

between points—while changing the orientation of 

the feature space. By applying a different random 

rotation before building each tree, RIF produces a 

more expressive ensemble that can better isolate 

subtle or hidden anomalies. 

During inference, a test point is rotated using the 

same set of matrices used during training and 

passed through each corresponding isolation tree. 

The anomaly scores from each tree are then 

aggregated to compute the final anomaly score for 

the point. This consistent use of rotation during 

both training and scoring ensures that the benefits 

of the transformed space are fully realized. Overall, 

RIF retains the efficiency and scalability of iForest 

while significantly enhancing its ability to detect 

anomalies in complex, high-dimensional datasets. 

3.2 Dimensionality Reduction Using 

Autoencoders 

An autoencoder is a deep neural network 

commonly used for unsupervised dimensionality 

reduction, especially in high-dimensional datasets. 

It learns an efficient compression of the input data 

by training to reconstruct the original input from a 

compressed representation. The network consists 

of two parts: an encoder, which maps the input data 

into a lower-dimensional latent space, and a 

decoder, which reconstructs the original data from 

this compressed form. 

In our approach, we employ autoencoders to reduce 

the dimensionality of datasets, as illustrated in 

Table 3 and will be explained later, which includes 

the size, number of dimensions, and the 

distribution of normal and anomalous samples. 

This dimensionality reduction accelerates anomaly 

detection and helps extract meaningful features that 

better characterize normal data behavior. 

Setup autoencoder hyperparameters: The 

hyperparameters for the autoencoder were selected 

based on standard practices commonly used in 

unsupervised feature learning, especially for 

anomaly detection. Our goal was to balance 

expressive power, training stability, and 

computational efficiency across various datasets, 

especially those with high dimensionality. Below 

are the specific choices and justifications: 

• Encoding dimension = 10: We selected a 

10-dimensional bottleneck layer as a 

simple yet effective choice to compress the 

original high-dimensional data into a 

lower-dimensional representation. This 

dimensionality was chosen empirically, 

and we found it to preserve important 

structure in the data while improving 

downstream anomaly detection. 

• Epochs = 20 and Batch size = 32: These 

are typical default values for training 

autoencoders on medium-sized datasets. 

They provide sufficient convergence while 

avoiding overfitting. 

• Activation = 'ReLU': ReLU activation is 

widely used in deep learning due to its 

simplicity and ability to alleviate the 

vanishing gradient problem. 

• Optimizer = 'Adam': The Adam optimizer 

is chosen for its adaptive learning rate 

capabilities, which generally lead to faster 

and more stable convergence. 

• Loss = 'Mean Squared Error': Since our 

goal is to reconstruct the input as closely as 

possible, MSE is an appropriate choice for 

continuous-valued inputs. 

• Architecture: We used a single dense layer 

for the encoder and decoder, keeping the 

architecture shallow to reduce training 

complexity and avoid overfitting given our 

limited number of epochs. 

While we acknowledge that more complex 

architectures and hyperparameter optimization 

could further improve performance, our focus in 

this work was to evaluate the core contribution of 

DRIF.  

3.3 Discrete Probability Distributions for 

Rotation Matrices 

A key innovation in our model is the use of discrete 

probability distributions to generate random 

rotation matrices, instead of traditional continuous 

Gaussian distributions. For the discrete probability 

distribution used to generate the rotation matrix, 

our settings are based on the result that Achlioptas 

[2] obtained for Johnson-Lindenstrauss Lemma 

[12]. In particular, he showed that random 

projections satisfying the Johnson–Lindenstrauss 

Lemma (JL-Lemma) [12] can be constructed using 

a simple sparse distribution where in the random 

matrix that we generate each matrix entry is set to 

+1 with probability 1/6, is set to −1 with probability 

1/6, and to 0 with probability 2/3. The 

configuration that he devised for JL-Lemma  

ensures two key benefits: 
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1. Variance preservation: The sparse random 

matrix still preserves pairwise distances 

between data points with high probability. 

2. Sparsity: With 2/3  of the entries being zero, the 

resulting matrix of dataset is computationally 

efficient for matrix multiplications, which is 

particularly valuable for high-dimensional data. 

In light of the theoretical support established in his 

work, we adopt the discrete probability distribution 

he introduced.” Indeed, to create a random matrix 

𝐴 d d of size (where d is the reduced dimension 

[ , ]a i jafter autoencoding), each element  is 

independently sampled according to the following 

discrete distribution: 

✴ 
1

2x
With probability , the element is set to -1. 

✴ 
1

2x
With probability , the element is set to +1. 

✴ 
1

1
x

With probability , the element is set to 0. 

6x
1

12
For example, when , each element has a   

chance to be –1
1

12
, a  chance to be +1

5

6
, and a 

 chance to be 0 [28]. This creates a sparse matrix 

where approximately 83% of the elements are zero, 

which significantly speeds up matrix 

multiplications. 
AAfter generating this sparse random matrix , we 

QRperform  decomposition to factorize it into an 

Qorthogonal matrix  and an upper triangular 

R Qmatrix . The orthogonal matrix  is then used as 

the random rotation matrix in our algorithm. 

QBecause is derived from a sparse random matrix, 

it retains the orthogonality properties necessary to 

preserve distances and angles, while enabling 

faster computations compared to dense Gaussian-

based rotations. 

3.4 Discrete Rotated Isolation Forest (DRIF) 

The proposed Discrete Rotated Isolation Forest 

(DRIF) algorithm combines the advantages of 

autoencoder-based dimensionality reduction with 

efficient discrete random rotations. The algorithm 

consists of two main stages: 

1. Dimensionality Reduction: The input data is 

compressed into a lower-dimensional space 

using an autoencoder. This step extracts 

important features that characterize normal 

data, which facilitates faster and more accurate 

anomaly detection. 

2. Discrete Rotated Isolation Forest: Using the 

reduced-dimension data, an isolation forest is 

constructed where each tree is trained on data 

rotated by an orthogonal matrix generated from 

the discrete probability distribution described 

above. This approach improves computational 

efficiency and enhances anomaly detection by 

introducing diverse data orientations. 

Figure 4 illustrates the DRIF architecture, showing 

how the autoencoder reduces dimensions before 

the discrete rotation and isolation forest stages. The 

combination of sparse rotations and dimensionality 

reduction allows DRIF to scale efficiently to high-

dimensional datasets without sacrificing detection 

performance.

 

Figure 4. Diagram of the Proposed Model (DRIF). 
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4. Experimental Results 

In this section, we present the experiments that we 

have conducted to evaluate the performance and 

runtime of DRIF in comparison with iForest, EIF, 

and RIF. We begin by describing the datasets used 

in our study, which include both synthetic as well 

as real-world data, spanning a range of 

dimensionalities from low to high. We then discuss 

the results obtained from the synthetic datasets.  

A key advantage of using synthetic data is that, 

since we generate the normal instances and inject 

anomalies in two dimensions, it becomes easy to 

visualize the separation between normal data and 

anomalies. This also allows us to precisely measure 

and analyze the performance of each algorithm. 

Finally, we evaluate the performance and 

efficiency of DRIF, iForest, EIF, and RIF on real-

world datasets, many of which are high-

dimensional. This enables us to assess and compare 

the scalability and speed of these algorithms in 

more complex scenarios. 

4.1 Datasets 

We categorize the datasets that we have used in our 

experiments into two groups: synthetic datasets and 

real-world datasets. Below, we introduce and 

describe each category in more detail. All 

experiments involving synthetic and real datasets 

were executed on the Google Colab platform. 

Synthetic Datasets: The synthetic datasets were 

generated using the scikit-learn1 library and include 

well-known dataset types such as blobs, Aniso, and 

Sine (Sinusoid). Each dataset comprises 10,000 

normal data points and 1,000 anomalous data 

points, randomly mixed. These synthetic datasets 

are two-dimensional, which makes them ideal for 

visualization and detailed analysis of how each 

algorithm identifies normal and anomalous 

patterns. The characteristics of the synthetic 

datasets, including their structure and data 

distribution, are summarized in Table 1. 

Table 1. Features of the synthetic datasets. 

Datasets Size Dimensions Anomaly Numbers 

blobs 11000 2 1000 

Aniso 11000 2 1000 

Sinuside 11000 2 1000 

Real-World Datasets: We used 13 real-world 

datasets to evaluate the algorithms under more 

                                                      

1 https://scikit-learn.org/stable/api/sklearn.datasets.html 

practical and diverse conditions. These datasets 

include: Http [29], Mammography [29], Shuttle 

[29], Pima [29], Cardio [29], Satellite [29], Smtp 

[29], Oil-Spill [30], SpamBase [31], Backdoor 

[32], Scene [33], Census [32], and Madelon [34]. 

We further group these datasets based on their 

dimensionality: The first seven datasets (Http 

through Smtp) have dimensions ranging from 3 to 

38, which we classify as low to moderate 

dimensional. The remaining six datasets (Oil-Spill 

through Madelon) are high-dimensional, with 

feature dimensions ranging from 50 up to 501. 

We conducted a comprehensive set of experiments 

using these real-world datasets to evaluate the 

performance and runtime of four algorithms: 

iForest, EIF, RIF [1], and DRIF. These 

experiments help us understand how the algorithms 

behave under both low and high-dimensional 

scenarios. 

Detailed information about each real-world dataset 

is presented in Tables 2 and 3. These tables 

includes: the dataset name (first column), the 

number of instances (second column), the 

dimensionality of the data (third column), as well 

as the number of normal and anomalous samples, 

shown in the fifth and sixth columns respectively. 

Table 2. Features of the real datasets. 

Data

sets S
iz

e 

D
im

e
n

si
o

n
s 

A
n

o
m

a
ly

 

N
u

m
b

er
s 

A
n

o
m

a
ly

 

L
a

b
e
l 

N
o

r
m

a
l 

L
a

b
e
l 

Http 567497 3 2213 1 0 

Mammograp

hy 
11183 6 259 1 -1 

Shuttle 57990 9 3501 1 0 

Pima 1832 21 641 1 0 

Cardio 1831 21 190 1 0 

Satellite 6435 36 2059 Anomaly Normal 

Smtp 96554 38 1183 1 0 

This setup allows for a thorough comparison of 

algorithm performance across a diverse set of 

conditions and data complexities. 
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Table 3. Features of the high dimensional real datasets. 

 

C
o

n
ta

m
in

a
ti

o
n
 

A
n

o
m

a
ly

 L
a

b
e
l 

N
o

r
m

a
l 

L
a

b
el

 

D
im

e
n

si
o

n
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Dataset 

42 

(0.04) 
1 -1 50 937 Oil-Spill 

1814 

(0.39) 1 0 58 4601 SpamBase 

2330 

(0.02) 1 0 196 95329 backdoor 

432 

(0.18) 
0 1 300 2407 scene 

18569 

(0.06) 1 0 500 299285 census 

1301 

(0.50) 1 0 501 2600 madelon 

4.2. Results on Synthetic Datasets 

As outlined previously, we first benchmarked the 

performance of DRIF against iForest, EIF, and RIF 

using a set of synthetic datasets. These datasets 

include One Blob, Two Blobs, Aniso, and 

Sinusoid, all generated using the scikit-learn 

library. Each dataset contains 10,000 normal data 

points and 1,000 injected anomalies. These two-

dimensional datasets allow for straightforward 

visualization of anomaly detection behavior, 

making them well-suited for qualitative analysis. 

The results, illustrated through heatmaps in Figures 

5 to 8, highlight the superiority of DRIF in handling 

various synthetic data distributions. Interestingly, 

RIF and DRIF produced almost identical detection 

patterns, indicating that our model closely matches 

or surpasses the performance of RIF, which is itself 

an improvement over traditional isolation-based 

methods. 

One Blob Dataset (Figure 5): This dataset 

contains a single Gaussien cluster of normal data 

points with anomalies scattered around it. The 

iForest algorithm exhibits a well-documented 

artifact—formation of vertical and horizontal 

decision boundaries due to axis-parallel splits—

which results in ghost clusters appearing along the 

x and y axes. These ghost clusters incorrectly mark 

regions of normal data as anomalous. While EIF 

reduces this effect through the use of random 

hyperplanes, it still misclassifies boundary points 

and shows less accurate anomaly localization than 

DRIF. DRIF demonstrates more coherent and 

compact anomaly regions, with no evidence of 

ghost clusters. 

Two Blobs Dataset (Figure 6): In this dataset, two 

separate clusters of normal points are placed 

symmetrically, with anomalies surrounding them. 

Here, iForest again produces ghost clusters, 

particularly in the northeast and southwest 

quadrants, far from any true normal data. EIF 

partially mitigates these artifacts but introduces a 

new ghost cluster in the center of the plot, where 

no normal data exists. In contrast, DRIF accurately 

preserves the separation between the two normal 

clusters and avoids creating any artificial anomaly 

zones, demonstrating its improved spatial 

representation and anomaly boundary modeling. 

Aniso Dataset (Figure 7): This dataset includes a 

single cluster of normal points with an anisotropic 

(skewed) covariance structure, introducing 

directional variance. Both iForest and EIF struggle 

to adapt to the elongated shape of the data, once 

again forming ghost clusters and misclassifying 

large areas as anomalies. DRIF, by contrast, 

effectively adapts to the skewed distribution and 

correctly identifies the boundaries of the anomaly 

regions without introducing spurious detection 

zones. 

Sinusoid Dataset (Figure 8): The final synthetic 

dataset features a sinusoidal wave pattern, where 

normal data follows a nonlinear curve. This 

complex structure poses a challenge for algorithms 

that rely on axis-aligned or linear partitioning. Both 

iForest and EIF fail to trace the underlying 

structure of the data, resulting in ghost clusters and 

poor detection accuracy. DRIF stands out in this 

scenario, successfully identifying the shape of the 

sinusoid and accurately separating normal and 

anomalous regions. 

This section demonstrates that DRIF consistently 

outperforms iForest and EIF across various 

synthetic settings by avoiding ghost clusters and 

providing more precise anomaly boundaries. The 

visual comparisons in Figures 5 through 8 support 

this conclusion and highlight DRIF’s robustness to 

different data distributions.
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One Gaussian iForest EIF RIF Our Model 

Figure 5. Anomaly score map of iForest, EIF, RIF and our model on one Gaussian distribution. 

 

     
Two Gaussian iForest EIF RIF Our Model 

Figure 6. Anomaly score map of iForest, EIF, RIF and our model on two Gaussian distribution. 

 

     

Aniso iForest EIF RIF Our Model 

Figure 7. Anomaly score map of iForest, EIF, RIF and our model on Aniso distribution. 

 

     
Sinuside iForest EIF RIF Our Model 

Figure 8. Anomaly score map of iForest, EIF, RIF and our model on Sinuside distribution.

4.3. Results on real datasets 

An anomaly detection algorithm operates similarly 

to a binary classifier [35], as it attempts to 

distinguish between normal and anomalous 

instances within a dataset. Let us consider an 

arbitrary dataset D that contains n total entries, of 

which a subset is labeled as anomalies based on 

ground truth. The remaining entries represent 

normal data. The contamination ratio, denoted as ν, 

is defined as the proportion of anomalies to the 

total number of entries. This value reflects the level 

of class imbalance typically found in anomaly 

detection tasks. 

To evaluate the effectiveness of anomaly detection 

algorithms, we use the “Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC)” 

[36]. AUC is a widely used metric in binary 

classification [35] that quantifies the model’s 

ability to separate positive (anomalous) and 

negative (normal) instances across all possible 

decision thresholds. Specifically, the AUC score 

represents the probability that a randomly selected 

anomalous instance is ranked higher (i.e., assigned 

a higher anomaly score) than a randomly selected 

normal instance. An AUC score of 1.0 indicates 

perfect classification, while a score of 0.5 reflects 

random guessing. 
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AUC is particularly advantageous over metrics 

such as accuracy, especially for imbalanced 

datasets, as it considers both true positive and false 

positive rates across thresholds. This makes AUC 

a robust and threshold-independent evaluation 

metric that provides a comprehensive view of an 

algorithm’s predictive performance. 

Our implementation consists of two main 

components:  

A. Comparison of Discrete Distribution in DRIF 

vs. Continuous Distribution in RIF. In the first 

set of experiments, we compare the performance of 

the Random Isolation Forest (RIF) algorithm 

proposed in [1], which generates random rotation 

matrices using a continuous normal distribution, 

with our proposed Discrete Random Isolation 

Forest (DRIF), which uses a discrete probability 

distribution. As discussed in Section 3.3, we 

hypothesize that discrete sampling leads to faster 

execution while maintaining high detection 

accuracy. Table 4 presents the comparative results 

in terms of AUC scores across multiple datasets. 

The DRIF model consistently outperforms iForest, 

EIF, and the original RIF in most cases. For 

instance, in the Cardio dataset: 

✦ iForest achieves an average AUC of 0.84, 

✦ EIF scores 0.84, 

✦ RIF scores 0.89, 

✦ DRIF achieves the highest score of 0.90. 

These results confirm that DRIF not only maintains 

high anomaly detection performance but also 

offers significant improvements in computational 

efficiency. Runtime comparisons in Table 4 further 

validate our claim from Section 3.3 that using a 

discrete distribution results in faster execution 

times. 

B. Dimensionality Reduction with Autoencoder 

and DRIF. In the second part of our evaluation, we 

integrate autoencoders for dimensionality 

reduction prior to applying the anomaly detection 

algorithms. This approach is particularly useful for 

high-dimensional datasets, as it compresses the 

data while preserving its essential structure. 

We apply the iForest, EIF, RIF, and DRIF 

algorithms on the encoded representations, with 

DRIF utilizing the discrete probability distribution 

for generating rotation matrices. The results of 

these experiments are summarized in Table 5. For 

each dataset and algorithm combination, we 

repeated the experiments five times and report the 

average AUC score to ensure robustness and 

reliability. 

Execution time was also recorded to evaluate 

computational efficiency. As shown in Table 5, 

DRIF significantly outperforms iForest, EIF, and 

RIF in terms of speed across all six high-

dimensional datasets. These results demonstrate 

the combined benefits of autoencoder-based 

dimensionality reduction and discrete rotation 

matrix generation, leading to improved 

performance and reduced execution time.

Table 4. The results of real datasets for iForest, EIF, RIF, and Discrete RIF Distribution. In this table, Cont" is abbreviation 

for "Contamination". Bold numbers correspond to the best result.

Discrete RIF Distribution RIF EIF iForest  Dataset 

Cont 
Time 

(s) 

AUC  

ROC 

Time 

(s) 

AUC 

ROC 

Time 

(s) 

AUC 

ROC 

Time 

(s) 

AUC 

ROC 
Dim  

0.05 1412 0.97 1445 0.98 1384 0.91 1379 0.89 3 Http 

0.23 30.0 0.82 30.3 0.80 30.3 0.79 30.1 0.79 6 Mammography 

0.08 137 0.99 139 0.98 160 0.97 158 0.97 9 Shuttle 

0.23 4.6 0.90 4.8 0.89 4.7 0.84 4.7 0.84 21 Cardio 

0.40 2.2 0.66 2.5 0.65 2.3 0.63 2.3 0.64 21 Pima 

0.23 17 0.74 20 0.73 21 0.71 21 0.70 36 Satellite 

0.05 253 0.83 259 0.82 247 0.81 242 0.82 38 Smtp 

0.25 2.6 0.77 3 0.76 3 0.68 4 0.64 50 Oil-Spill 

0.35 11.9 0.59 13 0.65 12 0.57 12 0.56 58 SpamBase 

0.45 270 0.77 325 0.76 326 0.75 329 0.74 196 Backdoor 

0.40 18 0.61 29 0.61 13 0.55 13 0.54 300 scene 

0.45 860 0.61 948 0.58 1323 0.56 1370 0.58 500 census 

0.10 33 0.52 52 0.51 18 0.50 20 0.49 501 madelon 

 



Discrete Rotated Isolation Forest in high dimensions 

357 

 

Table 5. The results of real datasets for iForest, EIF, RIF, and DRIF. In this table, "Red-Dim", and "Cont" are abbreviations 

for "Reduced Dimensions", and "Contamination", respectively. Bold numbers correspond to the best result. 

DRIF RIF EIF iForest   

Cont 
Red- 

Dim 

Time 

(s) 

AUC 

ROC 

Time 

(s) 

AUC 

ROC 

Time 

(s) 

AUC 

ROC 

Time 

(s) 

AUC 

ROC 
Dim Dataset 

0.25 10 3 0.77 3 0.76 3 0.68 4 0.64 50 Oil-Spill 

0.35 10 9 0.68 13 0.65 12 0.57 12 0.56 58 SpamBase 

0.45 5 151 0.77 325 0.76 326 0.75 329 0.74 196 Backdoor 

0.40 10 8 0.62 29 0.61 13 0.55 13 0.54 300 scene 

0.45 20 759 0.64 948 0.58 1323 0.56 1370 0.58 500 census 

0.10 10 8 0.52 52 0.51 18 0.50 20 0.49 501 madelon 

 

5. Conclusion 

This paper introduced DRIF, a novel extension of 

the Random Isolation Forest (RIF) [37] framework 

for unsupervised anomaly detection, particularly 

effective in high-dimensional and complex 

datasets. The proposed model addresses several 

key limitations observed in existing algorithms, 

such as iForest and EIF, including the formation of 

ghost clusters and reduced detection accuracy in 

the presence of non-linear or skewed data 

distributions. 

DRIF enhances the anomaly detection pipeline in 

two major ways. First, it employs a discrete 

probability distribution to generate random rotation 

matrices, replacing the continuous Gaussian 

sampling used in RIF. This substitution 

significantly reduces computational overhead 

while maintaining or improving detection 

performance. Second, DRIF incorporates 

dimensionality reduction via autoencoders, 

enabling it to handle high-dimensional datasets 

more efficiently without compromising the 

integrity of the data's underlying structure. 

Extensive experiments on both synthetic and real-

world datasets validate the effectiveness of DRIF. 

On synthetic datasets, DRIF avoids ghost clusters 

and consistently provides more accurate anomaly 

boundaries. On real-world datasets, DRIF 

outperforms iForest, EIF, and RIF in terms of 

ROC-AUC scores and demonstrates superior 

execution speed, making it scalable and robust 

across a wide range of data complexities. Overall, 

DRIF offers a practical, high-performance solution 

for real-world anomaly detection tasks. Its 

improved accuracy, efficiency, and adaptability 

make it a compelling alternative to existing 

isolation-based methods in diverse application 

domains. 

Future Work. There are several promising 

directions for future research. First, exploring 

sparser and structured random rotation matrices 

could further improve the efficiency of the 

approach. Second, incorporating k-wise 

independent random variables may help reduce the 

amount of randomness required while maintaining 

theoretical guarantees. Third, extending DRIF to 

semi-supervised settings, where only partial labels 

are available, could broaden its applicability. 

Finally, investigating more advanced autoencoder 

architectures along with systematic 

hyperparameter tuning may lead to further 

improvements in representation learning. 
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 چکیده:

 ، اما به دلیل پیچیدگی مجموعههباشدمی و کاربردی هایی مانند امنیت سایبری، مدیریت ریسک مالی و پایش سلامت حیاتیتشخیص ناهنجاری در حوزه

برانگیز باقی مانده است. این مقاله به بررسهی رویرردههای مبینهی بدون برچسب، همچنان چالش هایداده و های با ابعاد بالادادهبزرگ، با اندازه های داده

و جنگهل  (iForest) هایی مانند جنگل جداسازیپردازد. اگرچه روشمی شرایط با اینپذیری، تفسیرپذیری و اسیحرام آنها بر درخت تصمیم برای مقیاس

ههای عهادی از دادههها ناهنجهاریجداسهازی و هها ناهنجاری تشخیصگیرند، اغلب در مورد اسیفاده قرار می طور گسیردهبه (EIF) یافیهجداسازی توسعه

در مطالعهه پیشهین ها، . برای رفع ایهن کاسهییباشدکه این امر نامطلوب می شوندمی« های شبحخوشه»خورند و گاهی اوقات منجر به ایجاد شرست می

ها، دقت تشخیص را بهبود بخشید. در ادامهه های تصادفی در فضای ویژگیکه با اعمال چرخش  را معرفی کردیم (RIF) جنگل جداسازی چرخشی ،[1]

از توزیهع احیمهال  همچنهین دهیم که یک رمزگذار خودکار برای کهاهش ابعهاد ورا پیشنهاد می (DRIF) «نگل جداسازی چرخشی گسسیهج»ن کار، ای

نماید. اسیفاده از رمزگذار خودکار، یادگیری بازنمایی را بها اسهیخراس سهاخیارهای تصادفی اسیفاده می چرخش ماتریسسازی کارآمدتر گسسیه برای مدل

هها روی دههد. نیهایآ آزمایشرا کهاهش می زمهان اجهرا، ROC-AUCمعیهار  بها حفه کهه توزیهع گسسهیه بخشد، در حالیها بهبود میپیچیده در داده

 و سهرعت اجهرا، عملرهرد بهیهری نسهبت بهه ROC-AUC طور مداوم از نظر هر دو معیاربه DRIF دهد کهان میهای مصنوعی و واقعی نشدادهمجموعه

iForest،EIF  و RIF ها،دارد. این یافیهDRIF  ههای در محیط ناهنجهاری بهدون نها رپذیر، کارآمد و دقیق برای تشهخیص عنوان چارچوبی مقیاسرا به

  .کنندچندبُعدی معرفی می

های با ابعهاد بهالا در مقیهاس بهزرگ، یهادگیری بهدون های ایزوله چرخشی، دادهگیری، جنگلهای تصمیمتشخیص ناهنجاری، درخت :کلیدیکلمات 

 .نظارت، رمزگذار خودکار

 


