[1] S. W. Azumah, N. Elsayed, V. Adewopo, Z. S. Zaghloul, and C. Li, "A deep LSTM based approach for intrusion Detector IoT devices network in smart home," in Proc. IEEE 7th World Forum Internet Things (WF-IoT), Jun. 2021, pp. 836–841.
[2] M. Ahsan, N. Rifat, M. Chowdhury, and R. Gomes, "Intrusion Detector for IoT network security with deep neural network," in Proc. IEEE Int. Conf. Electro Inf. Technol. (eIT), May 2022, pp. 467–472.
[3] N. Yadav, S. Pande, A. Khamparia, and D. Gupta, "Intrusion Detector system on IoT with 5G network using deep learning," Wireless Commun. Mobile Comput., vol. 2022, pp. 1–13, Mar. 2022.
[4] R. Morshedi, S. M. Matinkhah, and M. T. Sadeghi, "Intrusion detection for IoT network security with deep learning," Journal of Artificial Intelligence and Data Mining 12, no. 1 (2024): 37–55.
[5] S. M. Matinkhah, R. Morshedi, and Seyed Akbar Mostafavi, "Exploring Impact of Data Noise on IoT Security: a Study using Decision Tree Classification in Intrusion Detection Systems," Journal of Artificial Intelligence and Data Mining (JAIDM), vol. 11, no. 4, pp. 609-626, 2023.
[6] D. Musleh, M. Alotaibi, F. Alhaidari, A. Rahman, and R. M. Mohammad, "Intrusion Detector system using feature extraction with machine learning algorithms in IoT," J. Sensor Actuator Netw., vol. 12, no. 2, p. 29, Mar. 2023.
[7] G. Logeswari, S. Bose, and T. Anitha, "An intrusion Detector system for SDN using machine learning," Intell. Autom. Soft Comput., vol. 35, no. 1, pp. 867–880, 2023.
[8] A. Abdelkhalek and M. Mashaly, "Addressing the class imbalance problem in network intrusion Detector systems using data resampling and deep learning," J. Supercomput., vol. 79, no. 10, pp. 10611–10644, Jul. 2023.
[9] R. A. Elsayed, R. A. Hamada, M. I. Abdalla, and S. A. Elsaid, "Securing IoT and SDN systems using deep-learning based automatic intrusion Detector," Ain Shams Eng. J., vol. 14, no. 10, Oct. 2023, Art. no. 102211.
[10] P. Kumar, G. P. Gupta, and R. Tripathi, "TP2SF: A trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning," J. Syst. Archit., vol. 115, May 2021, Art. no. 101954.
[11] M. Saied, S. Guirguis, and M. Madbouly, "Review of artificial intelligence for enhancing intrusion Detector in the Internet of Things," Eng. Appl. Artif. Intell., vol. 127, Jan. 2024, Art. no. 107231.
[12] H. C. Altunay and Z. Albayrak, "A hybrid CNN+LSTM-based intrusion Detector system for industrial IoT networks," Eng. Sci. Technol., Int. J., vol. 38, Feb. 2023, Art. no. 101322.
[13] S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S. Alshehri, H. Ali, and J. Ahmad, "Enhancing IoT network security through deep learning-powered intrusion Detector system," Internet Things, vol. 24, Dec. 2023, Art. no. 100936.
[14] R. Chaganti, W. Suliman, V. Ravi, and A. Dua, "Deep learning approach for SDN-enabled intrusion Detector system in IoT networks," Information, vol. 14, no. 1, p. 41, 2023.
[15] O. H. Abdulganiyu, T. Ait Tchakoucht, and Y. K. Saheed, "A systematic literature review for network intrusion Detector system (IDS)," Int. J. Inf. Secur., vol. 22, no. 5, pp. 1125–1162, Oct. 2023.
[16] S. Racherla, P. Sripathi, N. Faruqui, M. A. Kabir, M. Whaiduzzaman, and S. A. Shah, "Deep-IDS: A Real-Time Intrusion Detector for IoT Nodes Using Deep Learning," IEEE Access, 2024.