[1] V. Monemizadeh, K. Kiani. “Detecting anomalies using rotated isolation forest.” Data Min Knowl Disc 39, 24 (2025).
[2] Chugh, Bharti, Nitin Malik, Deepak Gupta, and Badr S. Alkahtani. “A probabilistic approach driven credit card anomaly detection with CBLOF and isolation forest models.” Alexandria Engineering Journal 114 (2025).
[3] Buchdadi, A. Dharmawan, and A. Salamh Mujali Al-Rawahna. “Anomaly Detection in Open Metaverse Blockchain Transactions Using Isolation Forest and Autoencoder Neural Networks.” International Journal Research on Metaverse 2, no. 1 (2025).
[4] R. Morshedi, and S. Mojtaba Matinkhah. “Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks.” Journal of AI and Data Mining (2025).
[5] V. Chandola, A. Banerjee, V. Kumar. “Anomaly detection: A survey.” ACM Computing Surveys. 41 (3): 1–58. (2009).
[6] M. Çelik, F, Dadaşer-Çelik, and A, Şakir Dokuz. “Anomaly detection in temperature data using dbscan algorithm.” In 2011 international symposium on innovations in intelligent systems and applications, pages 91–95. IEEE, (2011).
[7] G. Münz, Sa Li, and G. Carle. “Traffic anomaly detection using k-means clustering.” In GI/ITG Workshop MMBnet, volume 7, page 9, (2007).
[8] F. Tony Liu, K. Ming Ting, and Z. Zhou. “Isolation forest.” In 2008 eighth ieee international conference on data mining, pages 413–422. IEEE, (2008).
[9] Liu, F. Tony, K. Ming Ting, and Z. Zhou. “Isolation-based anomaly detection.” ACM Transactions on Knowledge Discovery from Data (TKDD) 6, no. 1 (2012).
[10] S. Hariri, M. Carrasco Kind, and R. J. Brunner. “Extended isolation forest.” IEEE transactions on knowledge and data engineering 33, no. 4 (2019).
[11] A. Maćkiewicz, and W. Ratajczak. “Principal components analysis (PCA).” Computers & Geosciences 19, no. 3 (1993).
[12] B. W. Johnson, and J. Lindenstrauss. "Extensions of Lipschitz mappings into a Hilbert space." Contemporary mathematics 26, no. 189-206 (1984).
[13] R. Chalapathy, A. Krishna Menon, and S. Chawla. “Anomaly detection using one-class neural networks.” arXiv preprint arXiv:1802.06360, (2018).
[14] S. Mascaro, A. E Nicholso, and K. B Korb. “Anomaly detection in vessel tracks using bayesian networks.” International Journal of Approximate Reasoning, 55(1):84–98, (2014).
[15] K. Li, H. Huang, S. Tian, and W. Xu. “Improving one-class svm for anomaly detection.” In Proceedings of the 2003 international conference on machine learning and cybernetics (IEEE Cat. No. 03EX693), volume 5, pages 3077–3081. IEEE, (2003).
[16] N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg. “Rule-based anomaly detection on ip flows.” In IEEE INFOCOM 2009, pages 424–432. IEEE, (2009).
[17] R. Laxhammar. “Anomaly detection for sea surveillance.” In 2008 11th international conference on information fusion, pages 1–8. IEEE, (2008).
[18] O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht. “Anomaly detection in medical wireless sensor networks using svm and linear regression models.” International Journal of E-Health and Medical Communications (IJEHMC), 5(1):20–45, (2014).
[19] M. M. Breunig, H.-Peter Kriegel, R. T. Ng, and J. Sander. “Lof: Identifying density-based local outliers.” SIGMOD , page 93–104, New York, NY, USA, (2000).
[20] J. Tang, Z. Chen, A. Wai-Chee Fu, and D. W Cheung. “Enhancing effectiveness of outlier detections for low density patterns.” In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 535–548. Springer, (2002).
[21] S. Papadimitriou, H. Kitagawa, P. B Gibbons, and C. Faloutsos. “Loci: Fast outlier detection using the local correlation integral.” In Proceedings 19th international conference on data engineering (Cat. No. 03CH37405), pages 315–326. IEEE, (2003).
[22] W. Jin, A. KH Tung, J. Han, and W. Wang. “Ranking outliers using symmetric neighborhood relationship.” In Pacific-Asia conference on knowledge discovery and data mining, pages 577–593. Springer, (2006).
[23] H.-Peter Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Loop: local outlier probabilities.” In Proceedings of the 18th ACM conference on Information and knowledge management, pages 1649–1652, (2009).
[24] V. Chandola, A. Banerjee, and Kumar. “Anomaly detection: A survey.” In Computing Surveys 41, 3, pages 1–58, (2009).
[25] P. N. Tan, M. Steinbach, and V. Kumar. “Introduction to data mining.” Addison-Wesley, (2005).
[26] M. Ester, H.-Peter Kriegel, J. Sander, X. Xu, et al. “A density-based algorithm for discovering clusters in large spatial databases with noise.” In Kdd, volume 96, pages 226–231, (1996).
[27] S. Guha, N. Mishra, G. Roy, and O. Schrijvers. “Robust random cut forest-based anomaly detection on streams.” In International conference on machine learning, pages 2712–2721. PMLR, (2016).
[28] Achlioptas, Dimitris. "Database-friendly random projections." In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 274-281. (2001).
[35] P. Rambaud and et.al. "Binary classification vs. anomaly detection on imbalanced tabular medical datasets." In 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), pp. 01-05. IEEE, (2023).
[36] F. Melo. “Area under the ROC Curve.” Encyclopedia of systems biology, (2013).
[37] Brzezinski, Dariusz. "Random Similarity Isolation Forests." arXiv preprint arXiv:2502.19122 (2025).