H.6. Pattern Recognition
Sadegh Rahmani Rahmani-Boldaji; Mehdi Bateni; Mahmood Mortazavi Dehkordi
Abstract
Efficient regular-frequent pattern mining from sensors-produced data has become a challenge. The large volume of data leads to prolonged runtime, thus delaying vital predictions and decision makings which need an immediate response. So, using big data platforms and parallel algorithms is an appropriate ...
Read More
Efficient regular-frequent pattern mining from sensors-produced data has become a challenge. The large volume of data leads to prolonged runtime, thus delaying vital predictions and decision makings which need an immediate response. So, using big data platforms and parallel algorithms is an appropriate solution. Additionally, an incremental technique is more suitable to mine patterns from big data streams than static methods. This study presents an incremental parallel approach and compact tree structure for extracting regular-frequent patterns from the data of wireless sensor networks. Furthermore, fewer database scans have been performed in an effort to reduce the mining runtime. This study was performed on Intel 5-day and 10-day datasets with 6, 4, and 2 nodes clusters. The findings show the runtime was improved in all 3 cluster modes by 14, 18, and 34% for the 5-day dataset and by 22, 55, and 85% for the 10-day dataset, respectively.
H.6. Pattern Recognition
A. Noruzi; M. Mahlouji; A. Shahidinejad
Abstract
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation ...
Read More
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS in unconstrained environments. Through this method, first a photo is taken from the iris, then edge detection is done, later on a contrast adjustment is persecuted in pre-processing stage. Circular HT is subsequently utilized for localizing circular area of iris inner and outer boundaries. The purpose of this last stage is to find circles in imperfect image inputs. Also, through applying parabolic HT, boundaries are localized between upper and lower eyelids. The proposed method, in comparison with available IRSs, not only enjoys higher accuracy, but also competes with them in terms of processing time. Experimental results on images available in UBIRIS, CASIA and MMUI database show that the proposed method has an accuracy rate of 99.12%, 98.80% and 98.34%, respectively.
H.6. Pattern Recognition
S. Ahmadkhani; P. Adibi; A. ahmadkhani
Abstract
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were ...
Read More
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (SVM) classifier. At the same time, the loss of the useful information was minimized using the projection penalty idea. The well-known face databases were used to train and evaluate the proposed methods. The experimental results indicated that the proposed methods had a higher average classification accuracy in general compared to the classification based on Euclidean distance, and also compared to the methods which first extracted features based on dimensionality reduction technics, and then used SVM classifier as the predictive model.
H.6. Pattern Recognition
Kh. Sadatnejad; S. Shiry Ghidari; M. Rahmati
Abstract
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data ...
Read More
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. Projection to tangent spaces truly preserves topology along radial geodesics. In this paper, we propose a method for extrinsic inference on Riemannian manifold using kernel approach while topology of the entire dataset is preserved. We show that computing the Gramian matrix using geodesic distances, on a complete Riemannian manifold with unique minimizing geodesic between each pair of points, provides a feature mapping which preserves the topology of data points in the feature space. The proposed approach is evaluated on real datasets composed of EEG signals of patients with two different mental disorders, texture, visual object classes, and tracking datasets. To assess the effectiveness of our scheme, the extracted features are examined by other state-of-the-art techniques for extrinsic inference over symmetric positive definite (SPD) Riemannian manifold. Experimental results show the superior accuracy of the proposed approach over approaches which use kernel trick to compute similarity on SPD manifolds without considering the topology of dataset or partially preserving topology.
H.6. Pattern Recognition
Z. Imani; Z. Ahmadyfard; A. Zohrevand
Abstract
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using ...
Read More
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidden Markov Model (HMM). To evaluate the performance of the proposed method, FARSA dataset has been used. The experimental results show that the proposed system, applying directional gradient features, has achieved the recognition rate of 69.07% and outperformed all other existing methods.
H.6. Pattern Recognition
A. Ebrahimzadeh; M. Ahmadi; M. Safarnejad
Abstract
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. ...
Read More
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of the ECG signals. The feature extraction module extracts a balanced combination of the Hermit features and three timing interval feature. Then a number of multi-layer perceptron (MLP) neural networks with different number of layers and eight training algorithms are designed. Seven files from the MIT/BIH arrhythmia database are selected as test data and the performances of the networks, for speed of convergence and accuracy classifications, are evaluated. Generally all of the proposed algorisms have good training time, however, the resilient back propagation (RP) algorithm illustrated the best overall training time among the different training algorithms. The Conjugate gradient back propagation (CGP) algorithm shows the best recognition accuracy about 98.02% using a little amount of features.
H.6. Pattern Recognition
J. Hamidzadeh
Abstract
In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, ...
Read More
In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classification or training could be reduced. Instance-based learning methods are often confronted with the difficulty of choosing the instances which must be stored to be used during an actual test. Storing too many instances may result in large memory requirements and slow execution speed. In this paper, first, a Distance-based Decision Surface (DDS) is proposed which is used as a separating surface between the classes, then an instance reduction method, which is based on the DDS surface is proposed, namely IRDDS (Instance Reduction based on Distance-based Decision Surface). Using the DDS surface with Genetic algorithm selects a reference set for classification. IRDDS selects the most representative instances, satisfying both following objectives: high accuracy and reduction rates. The performance of IRDDS has been evaluated on real world data sets from UCI repository by the 10-fold cross-validation method. The results of the experiments are compared with some state-of-the-art methods, which show the superiority of the proposed method over the surveyed literature, in terms of both classification accuracy and reduction percentage.