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Abstract 

In this work, several 2D extensions of the principal component analysis (PCA) and linear discriminant 

analysis (LDA) techniques were applied in a lossless dimensionality reduction framework for face 

recognition applications. In this framework, the benefits of dimensionality reduction were used to improve 

the performance of its predictive model, which was a support vector machine (SVM) classifier. At the same 

time, the loss of useful information was minimized using the projection penalty idea. The well-known face 

databases were used to train and evaluate the proposed methods. The experimental results obtained indicated 

that the proposed methods had a higher average classification accuracy, in general, compared to the 

classification based on the Euclidean distance, and also compared to the methods that first extracted the 

features based on the dimensionality reduction technics, and then used the SVM classifier as the predictive 

model. 

 

Keywords: Lossless Dimensionality Reduction, Face Recognition, Support Vector Machine, 2DPCA, 

2DLDA, (2D)2PCA, (2D)2LDA, Projection Penalty. 

1. Introduction 

Dimensionality reduction is a key problem in the 

machine learning, pattern recognition, and 

computer vision fields. The learning of a classifier 

in high-dimensional spaces with a limited number 

of training examples is a difficult task. As it 

stands, many real-world problems have been 

defined in high-dimensional input spaces, and a 

lot of classification methods are limited and 

inefficient for high-dimensional data. As a result, 

many researchers have adopted various 

dimensionality reduction techniques to reduce the 

complexity of the problem by reducing the 

dimension of its feature space. This can reduce the 

computational cost of the next steps and enhance 

the overall system performance. Moreover, 

reducing the feature vector size using the 

dimensionality reduction techniques typically 

increases the classification accuracy with 

preventing the curse of dimensionality problem. A 

variety of ways for dimensionality reduction have 

been proposed and the practical importance of 

these methods have been studied extensively [1, 

2].  

The most famous dimensionality reduction 

method is probably the principal component 

analysis (PCA) technique. This is an unsupervised 

method that can find a number of eigenvectors of 

the empirical covariance matrix of data 

corresponding to the largest eigenvalues of this 

matrix. These vectors have been considered as the 

basis vectors of the principal sub-space of the 

data. Since PCA finds a global linear sub-space 

for data, its performance is limited to the data 

distributed on non-linear manifolds. Linear 

manifold topographic map (LMTM) [3] is another 

unsupervised method, trying to remove the above-

mentioned limitations of data representation with 

learning several local linear manifolds. This 

method is a neural model for dimensionality 

reduction through a topology-preserving lattice, 

and a piecewise linear approximation of the data 

principal manifold have been obtained [3]. The 

nonlinear manifold learning methods such as 
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isomap [4], locally linear embedding (LLE) [5], 

Laplacian eigenmap [6], and maximum variance 

unfolding (MVU) [7] are also several other 

dimensionality reduction methods that learn the 

underlying nonlinear manifold of the data directly. 

The above-mentioned techniquess are all 

examples of unsupervised dimensionality 

reduction methods; however, the target values of 

the training samples can be used in the 

dimensionality reduction process for supervised 

problems such as data classification in order to 

improve the final performance of the system (e.g. 

the classification accuracy).  

One of the most famous supervised 

dimensionality reduction methods is the linear 

discriminant analysis (LDA) technique [8]. The 

objective of LDA is to find a sub-space, where the 

projected samples from the same class are close to 

each other, while the projected samples from 

different classes are far from each other. As a 

result, LDA achieves maximum discrimination 

between classes in its lower-dimensional 

representation. LDA is a linear dimensionality 

reduction method, which works well only when 

the sample data is distributed on a linear sub-

space in the original space. The Kernel 

discriminant analysis (KDA) [9] techniques have 

been proposed to dominate this linearly-

distributed limitation. In addition, LDA algorithm 

has been developed with the assumption that each 

class of the samples has the same Gaussian 

distribution, a property that often does not exist in 

real-world applications. In the lack of this 

property, the separability of different classes 

cannot be well-characterized by the LDA 

algorithm. For this reason, the marginal Fisher 

analysis (MFA) method [10] has been proposed to 

overcome the problem corresponding to this data 

distribution assumption of the LDA using the 

graph embedding framework [10]. MFA cannot 

guarantee that the data neighbors after 

dimensionality reduction maintain the original 

structure. Therefore, the neighborhood preserving 

and marginal discriminant embedding (NP-MDE) 

[11] method has been proposed based on linear 

graph embedding (LGE) and MFA. NP-MDE 

minimizes the within-class scatter, while 

maximizes the margin among different classes. 

Moreover, the neighborhood structure with each 

class is preserved [11].  

In [12] a supervised feature extraction method 

called DA-PC1 proposed, based on discriminant 

analysis (DA) which uses the first principal 

component (PC1). This method copes with the 

small sample size problem and has not the 

limitation of linear discriminant analysis (LDA) in 

the number of extracted features [12].   

All the methods discussed above are based upon 

vectors analysis. Transforming the image matrices 

into image vectors should take place first when 

dealing with images. Then the optimal projection 

is obtained based on these vectors. There are 

methods that are directly based on the analysis of 

the original image matrices. For example, 2DPCA 

is based upon 2D matrices rather than 1D vectors 

[13], which means that the image matrix does not 

require to be converted into a vector. Therefore, 

2DPCA has two advantages: 1) easier to evaluate 

the covariance matrix accurately and 2) lower 

time-consumption [14]. The feature fusion 

approach for 2DPCA [15] is another method 

based on the analysis of the original image 

matrices. This model achieves better recognition 

results with combining the features generated 

from the two schemes of 2DPCA. The SI2DPCA 

[16] approach, unlike the conventional 2DPCA, 

divides a whole image into smaller sub-images to 

increase the weights of the features resulting in a 

higher performance feature extraction. 

Meanwhile, the computational cost can also be 

reduced due to the smaller size of sub-images. 

2DLDA is another method based on the analysis 

of the original image matrices instead of their 1D 

vector forms, which extends the original LDA 

idea [17]. The robust 2DPCA method has also 

been introduced for robust dimensionality 

reduction in the classification of 2D data in order 

to minimize the vector variance measure (MVV) 

[18]. The main drawback of the 2DPCA and 

2DLDA methods is the necessity of huge feature 

matrices for the task of face recognition. In order 

to overcome this problem, the 2-directional 

2DPCA [19] and 2-directional 2DLDA [20] 

methods have been developed. 

The adjusted population value decomposition 

(APVD) technique has been proposed as a novel 

dimensionality reduction approach [21]. This 

model has a nice approximation property, and 

computes fast the reduction of high-dimensional 

data and explicitly incorporates the intrinsic 2D 

structure of the matrices. 

Notwithstanding the advantages mentioned in the 

dimensionality reduction process, if this process is 

applied and then learning is performed in the 

reduced-dimensional space, the prediction 

performance can be degraded since any reduction 

loses information. Indeed, it is difficult to tell 

whether the information lost due to a 

dimensionality reduction procedure is relevant to 

a prediction task or not. Thus reducing the 

dimensionality of the feature space can be viewed 
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as the restriction of the model search to a 

parameter sub-space [21]. The basic idea in [21] is 

that instead of restricting the model search to a 

parameter sub-space, still search in the full 

parameter space can go on while the projection 

distance to this sub-space is penalized. As a result, 

dimensionality reduction has been used to guide 

the model search in the parameter space rather 

than restricting it. In [23], a supervised version for 

the probabilistic PCA mixture model (PPCAMM) 

called supervised PPCAMM (SPPCAMM) has 

been proposed. This algorithm that has been used 

in learning a predictive model with projection 

penalties [22] enables the model to gain from the 

dimensionality reduction techniques without 

losing relevant information. 

In this work, the 2DLDA [17], (2D)2LDA [20], 

2DPCA[13], and (2D)2PCA [19] methods were 

applied based on 2D image matrices, and then the 

feature matrices obtained were converted to 

feature vectors to be applied to the learning of a 

predictive model with projection penalties idea, 

enabling the model to gain from dimensionality 

reduction techniques without losing the relevant 

information. As it can be observed in the 

experimental results on the face datasets, the 

proposed methods have the best average 

classification accuracies compared to the other 

relevant dimensionality reduction methods. 

This article has been organized as what follows. 

In Section 2, the 2DPCA, 2DLDA, (2D)2PCA, 

and (2D)2LDA  dimensionality reduction methods 

and dimensionality reduction without loss of 

approach have been reviewed. In Section 3, the 

proposed methods, i.e. using 2D extensions of 

PCA and LDA for dimensionality reduction with 

minimum loss of information using SVM 

classifier as the predictive model have been 

explained. In Section 4, the experimental results 

on the well-known face recognition datasets have 

been reported. The conclusions have been 

presented in Section 5. 

 

2. Related concepts 

2.1. Two-dimensional PCA (2DPCA) and two-

directional two-dimensional PCA ((2D)2PCA) 

Suppose  iX  to be the set of training images, 

where the j 'th sample is denoted by the nm  

matrix jX . Let a to denote an n -dimensional 

unitary column vector. The idea of 2DPCA is to 

project image X, an nm  random matrix, onto a 

by the linear transformation Xay  [13].  

Thus we obtain an m-dimensional projected vector 

y called the projected feature vector of image X . 

Suppose that there are N training image samples 

in total; the j 'th training image is denoted by an 

nm  matrix ),...,2,1(  Njj X , and the average 

image of all training samples is denoted by X . 

The matrix tG , called the image covariance 

matrix, is calculated as follows [13]: 
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The 2DPCA method selects a set of projection 

axes },...,{ 1 daa  to maximize the criterion 

aGaa t
TJ )( . The optimal projection axes, 

subject to the orthonormal constraints, maximizes 

the criterion )(aJ , as follows: 
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The optimal projection axes )( ,...,1 dd aaB   are 

the orthonormal eigenvectors of tG  

corresponding to the first d largest eigenvalues 

used for feature extraction. For a given image 

sample X, we have: 

dkkk 1,...,  , Xay  (3) 
 

Then we obtain a set of projected feature vectors 

dyy ,...,1
 called the principal component vectors of 

the sample image X. It should be noted that each 

principal component of 2DPCA is a vector, 

whereas the principal components of PCA are 

scalars [13].  

2DPCA learns the optimal projection matrix B, 

reflecting information between the rows of the 

image; then projects image X onto B, yielding an 
dm  feature matrix dnnmdm   BXY . . If we 

consider the alternative 2DPCA [18], similarly, 

the optimal projection matrix Z reflecting 

information between columns of image is 

obtained; then X is projected onto Z, yielding a 

nq  feature matrix nm
T

qmnq   XZT . 
 

(2D)2PCA is a way to use the projection matrices 

B and Z simultaneously. This method projects the 
nm  image X onto B and Z simultaneously, 

yielding a dq  feature matrix R as follows [19]: 

XBZR T  (4) 

 

2.2. Two-dimensional LDA (2DLDA) and two-

directional two-dimensional LDA ((2D)2LDA) 

Suppose  ijX  is the set of training images in a 

classification problem that contains c classes. The 

j'th sample of the i'th class is denoted by the nm  
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matrix ijX , and the i'th class has iN  training 

samples. The total number of training samples is






c

i

iNN

1

. The between‐class scatter matrix bS  

and within‐class scatter matrix WS  are defined as 

follow [17, 24]: 

 

 

(5) 

 

In the above equations, and iX  denote the mean 

of all samples and the mean of the i'th class 

samples, respectively. 

The 2DLDA approach attempts to seek a set of 

projecting vectors },...,{ 1 daa  that best 

discriminates different face classes with 

maximizing the criterion function )(aJ  defined as 

follows: 

aSa

aSa
a

W
T

b
T

J )(  (6) 

 

The vector aopt, which maximizes the above 

function, is called the optimal discriminant vector, 

and defined as follows:  

)(maxarg a
a

a Jopt   
(7) 

 

If WS  is non‐singular, the optimal vector of 

2DLDA is the eigenvector corresponding to the 

maximal eigenvalue of the matrix bW SS
1 . 

Generally, the discriminant axes )( ,...,1 dd aaB   

are composed of orthogonal eigenvectors daa ,...,1  

of bW SS
1 , corresponding to the first d largest 

eigenvalues. The feature matrix of ijX  is 

BXY ijij   obtained by projecting ijX  into the sub-

space B , and the size of ijY  is dm [24].  

2DLDA works in the row-wise manner, 

considering the information between rows of the 

image to learn an optimal projection matrix B, and 

then project image X onto B, yielding an dm

feature matrix dnnmdm   BXY . . Similarly, in the 

alternative 2DLDA [20], the optimal projection 

matrix L reflecting information between columns 

of the image is obtained, and then image X is 

projected onto L, yielding a nq  feature matrix 

nm
T

qmnq   XLT . 
 

(2D)2LDA is a way to use the projection matrices 

B and L simultaneously. This method projects the 

nm  image X onto B and L simultaneously, 

yielding a dq  feature matrix Q as follows [20]:  

XBLQ T  (8) 

 

2.3. Dimensionality reduction without loss 

using projection penalty 

Learning predictive models in high-dimensional 

spaces using dimensionality reduction techniques 

is popular; however, the predication performance 

can be degraded. In this section, we explain the 

projection penalties idea [22] that makes the 

predictive modeling to use dimensionality 

reduction without losing useful information. 

Consider the learning process of a linear 

prediction model with parameters w and b in a p-

dimensional space by minimizing an empirical 

loss function L given a set of N training samples

 N
iii t 1),( x : 

                                                         
1 ,R

 )+,( argmin
p



N

i

i
T

i
b

btL xw
w

 (9) 

where, the weight vector pRw  and the bias 

value b are used to represent the prediction model, 

and ix  and it  are the p-dimensional feature 

vector and the response variable of the i'th 

example, respectively. The form of the empirical 

loss L depends on the choice of prediction model, 

e.g. a usual form is the squared error loss, and the 

other forms containing logistic log-likelihood or 

hinge loss. A linear dimensionality reduction in a 

p-dimensional input space can be represented by a 

d × p matrix P, where d is the dimension of 

reduced-dimensional space and d < p. For an input 

example x in the original feature space, Px is its 

representation in the reduced-dimensional space. 

In this sense, performing a linear dimensionality 

reduction and then learning a predictive model in 

reduced-dimensional space can be written as: 




N

i
i

T
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b
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v

 (10) 

 

where, dRv  is the parameter vector learned in 

the reduced-dimensional feature space.  

Comparing (9) and (10) shows that performing a 

linear dimensionality reduction P in the feature 

space corresponds to confining the p-dimensional 

parameter vector w to a sub-space pM defined as 

follows: 

 dp
p RRM T  vvPww ,|  (11) 

 

Thus the model search is restricted to a parameter 

sub-space pM . As a result, dimensionality 

reduction maybe lose information. Moreover, 

there is no guarantee that the optimal model 
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parameters in the reduced-dimensional space is 

the same as the optimal parameters in the original 

space. The basic idea of the projection penalty 

method is that search in the full parameter space 

can go on; however, the distance to the reduced-

dimensional sub-space is penalized [22]. Using 

this idea, the predictive model can be written as 

[22]: 

                                                                                       

)~( )+)~,( argmin
1

 , R,R~
 




N
i i

T
i

T
i

b

JbtL
dp

w(Pxvxw
vw

(12) 

where, vPWW T
~

, J(.) is a penalty function 

such as 
2

2
  or 

1
 , and   is a regularization 

parameter. If we consider that both the predictive 

model and the dimensionality reduction operator 

have been designed to operate on a kernel feature 

space, and each training sample represented as 

)Φ( ix  in the kernel feature space, then this 

prediction model with the projection penalty idea 

can be written as: 
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vw

     

                     (13) 

Since the problem is classification, the hinge loss 

of SVM is used as the empirical loss L(.) and the 

ℓ2-norm penalty is used as J(.) in the above 

equation. Introducing slack variables  N
ii 1ξ  for the 

hinge loss, we have the following quadratic 

programming problem: 
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where, 


1
C . Also using vPww T~ [21]:  
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(15) 

In the above equation, both )Φ(~
i

T xw  and )Φ( ixP

have been computed via the kernel trick.  

 

3. Proposed methods 
In this article, we propose to use the 2D 

dimensionality reduction techniques in 

dimensionality reduction without a loss of 

framework. For this purpose, the 2DPCA, 

(2D)2PCA, 2DLDA, and (2D)2LDA methods  

were applied based on the 2D image matrices. The 

feature matrices obtained in these methods were 

converted into feature vectors ix  to be applied in 

the learning of common classifiers. Then these 

classifiers as predictive models with the projection 

penalty idea were used to reduce information loss. 

As seen in the previous section, the 

dimensionality reduction operator P is assumed to 

be either linear in the input space or at least linear 

in the kernel feature space. However, considering 

(12) and (15), the parts that involve the 

dimensionality reduction operator P are just iPx  

in (12) and )Φ( ixP in (15). Therefore, a simple 

trick is to replace these terms with an arbitrary 

dimensionality reduction function )Ψ( ix  [22]. In 

this work, 2DPCA, (2D)2PCA, 2DLDA, and 

(2D)2LDA were used as the dimensionality 

reduction operator Ψ(.).  Replacing this function 

in (15) we have: 

 

i

ibyts

iC

i

ii

T

i

T

i

Ndp

n

i
iibR





 




0

,1))()(~(..

~
2

1
argmin  

1

2

2,,,R~
1

xvxw

w
vw

     (16) 

In the proposed method, instead of reducing the 

dimensionality of the data by these two methods, 

and then searching for the parameters of 

predictive model in the learned reduced-

dimensional spaces, which causes the loss of 

information, the search process was performed in 

the full parameter space; however, distances to the 

obtained lower-dimensional manifold were 

penalized. 

 

4. Experimental results 

In this section, the effectiveness of the proposed 

methods in face recognition application was 

tested. For this purpose, the Yale, ORL and 

Japanese Female Facial Expression (JAFFE) face 

datasets were used. The ORL database contains 10 

different images from each of 40 distinct subjects. 

The images were the same size of 92×112 pixels, 

and for a number of subjects, the images were 

taken in different lighting conditions, facial 

expressions, and facial details. We considered all 

the 780 binary classification tasks, each 

classifying between two subjects. The average 

classification error over tasks was the 

performance measure, and the aggregated results 

over 10 runs were reported. The Yale face dataset 

contains 165 grayscale images of 15 individuals, 

with size 243×320 pixels. There are 11 images 

per subject, one per each facial configuration such 

as different expressions, emotions, illumination 
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conditions, and wearing glasses (or not). In this 

work, the normalized Yale face database was 

used, which contained rotated, cropped, and 

middle of eyes centered face images [25]. All the 

105 binary classification tasks were considered, 

each classifying between two subjects. The 

average classification error over tasks is the 

performance measure, and the aggregated results 

over 10 runs were reported. 

The JAFFE face dataset contains 213 images of 7 

facial expressions (6 basic facial expressions + 1 

neutral) posed by 10 Japanese female models, 

with size 256×256 pixels. From each subject, 21 

images were used, and all 45 binary classification 

tasks, each classifying between two subjects, was 

considered. The average classification error over 

tasks is the performance measure, and the 

aggregated results over 10 runs were reported. 

In order to evaluate the proposed methods, two 

types of tests using 2DPCA, (2D)2PCA, 2DLDA, 

and (2D)2LDA as feature extraction methods, and 

k nearest neighbor (kNN), SVM, and SVM with 

projection penalties as classifier were performed. 

In the experiments, three different sizes were 

considered for the training set, selecting 3, 5, and 

7 images per subject. It is noteworthy that no 

additional pre-processing on the images of the 

datasets was made. 

The first set of the experiments was performed 

and the average accuracy of the classification for 

each method on ORL, Yale, and JAFFE datasets 

were reported in tables 1, 2, and 3, respectively. 

The six experiments were set as follow: 1) first 

applying 2DPCA and then applying 1NN method 

with Euclidean distance metric for classification 

(the first column of Tables 1, 2, and 3); 2) first 

applying 2DPCA and then applying SVM for 

classification (the second column of Tables 1, 2, 

and 3); 3) first applying 2DPCA and then 

applying SVM with projection penalties for 

classification (the third column of Tables 1, 2, and 

3); 4) first applying (2D)2PCA and then applying 

1NN method with Euclidean distance metric for 

classification (the forth column of Tables 1, 2, and 

3); 5) first applying (2D)2PCA and then applying 

SVM for classification (the fifth column of Tables 

1, 2, and 3); 6) first applying (2D)2PCA and then 

applying SVM with projection penalties for 

classification (the sixth column of Tables 1, 2, and 

3). The proposed methods 2DPCA-ProjSVM and 

(2D)2PCA-ProjSVM (the third and sixth columns 

of Tables 1, 2, and 3) in most of these experiments 

(especially for the ORL and JAFFE datasets) 

show the best accuracies.  

Figures 1 and 2 show the average accuracy versus 

the number of dimensions in the reduced space, 

for the above mentioned six methods with 5 

training images per subject, in 10 random runs on 

the ORL and JAFFE face datasets, respectively.  

The resulting classification accuracies of the 

second set of the experiments on the ORL, Yale, 

and JAFFE datasets are reported in tables 4, 5, 

and 6, respectively. The six conducted 

experiments are set as follows: 1) first applying 

2DLDA and then applying 1NN method with 

Euclidean distance metric for classification (the 

first column of Tables 4, 5, and 6). This is the 

same method introduced in [13]; 2) first applying 

2DLDA and then applying SVM for classification 

(the second column of Tables 4, 5, and 6); 3) first 

applying 2DLDA and then applying SVM with 

projection penalties for classification (the third 

column of Tables 4, 5, and 6). 4) first applying 

(2D)2LDA and then applying 1NN method with 

Euclidean distance metric for classification (the 

forth column of Tables 4, 5, and 6); 5) first 

applying (2D)2LDA and then applying SVM for 

classification (the fifth column of Tables 4, 5, and 

6); 6) first applying (2D)2LDA and then applying 

SVM with projection penalties for classification 

(the sixth column of Tables 4, 5, and 6). The 

proposed methods 2DLDA-ProjSVM and 

(2D)2LDA-ProjSVM (the third and sixth columns 

of Tables 1 and 2) in most of these experiments 

(for all datasets) show the best accuracies.  

 

Table 1. Mean classification accuracy (in percent) over 10 random runs for ORL dataset with reduced dimension of 10 using 

2DPCA and (2D)2PCA as dimensionality reduction methods. 
(2D)2PCA- 

ProjSVM 

 (10×10) 

(2D)2PCA- 

SVM 

 (10×10) 

(2D)2PCA 

(10×10) 

2DPCA- 

ProjSVM 

 (112×10) 

2DPCA-SVM 

(112×10) 

2DPCA 

(112×10) 

Training 

face (#) 

89.89 ± 1.60 83.14 ± 1.7 88.01 ± 1.95 90.25 ± 1.67 85.00 ± 1.81 88.64 ± 1.86 3 

96.10 ± 1.13 92.45 ± 1.92 94.2 ± 1.74 96.10 ± 1.53 94.05 ± 1.86 94.45 ± 1.73 5 

97.93 ± 1.32 96.58 ± 1.14 96.83 ± 1.07 97.75 ± 1.32 97.93 ± 1.37 96.75 ± 1.04 7 
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Table 2. Mean classification accuracy (in percent) over 10 random runs for Yale dataset with reduced dimension of 10 using 

2DPCA and (2D)2PCA as dimensionality reduction methods. 

(2D)2PCA- 

ProjSVM 

 (10×10) 

(2D)2PCA- 

SVM (10×10) 
(2D)2PCA 

(10×10) 
2DPCA- 

ProjSVM 

 (231×10) 

2DPCA-SVM 

(231×10) 
2DPCA 

(231×10) 

Training 

face (#) 

84.58 ± 2.81 90.08 ± 3.15 80.17 ± 1.92 84 ± 2.90 81.67 ± 3.82 79.33 ± 2.25 3 

86 ± 1.90 92.89 ± 1.67 79.44 ± 2.53 86.78 ± 1.39 84.56 ± 3.33 79.44 ± 2.97 5 

89± 3.06 94.33 ± 1.17 81.5 ± 3.64 90.50 ± 2.73 87.83 ± 3.32 86.67 + 3.45 7 

Table 3. Mean classification accuracy (in percent) over 10 random runs for JAFFE dataset with reduced dimension of 10 

using 2DPCA and (2D)2PCA as dimensionality reduction methods. 
(2D)2PCA- 

ProjSVM 

 (10×10) 

(2D)2PCA- 

SVM 

 (10×10) 

(2D)2PCA 

(10×10) 

2DPCA- 

ProjSVM 

 (256×10) 

2DPCA-SVM 

(256×10) 

2DPCA 

(256×10) 

Training 

face (#) 

94.06 ± 1.11   94.11 ± 2.08 91.78 ± 1.94 94.28± 1.34 94.17 ± 1.64        91.83 ± 2.30 3 

98.13 ± 1.56   98.06 ± 1.12 97.38 ± 2.12 97.56 ± 3.38 98.05 ± 1.47        96.81 ± 2.35 5 

98.93 ± 1.31   99.09 ± 1.06 97.93 ± 1.86 99.14 ± 1.30 98.93 ± 1.23        98.35 ± 2.37 7 

 

 

Figure 1. Average accuracy versus reduced dimension for six methods on ORL dataset with PCA-based methods. 

 

Figure 2. Average accuracy versus reduced dimension for six methods on JAFFE dataset with PCA-based methods. 
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Figures 3 and 4 show the average accuracy versus 

the number of dimensions in the reduced space for 

the above mentioned six methods with 5 training 

images per subject in 10 random runs on the ORL 

and JAFFE face datasets, respectively. 

In the experiments, we used the two-dimensional 

(matrix-based) approaches 2DPCA, (2D)2PCA, 

2DLDA, and (2D)2LDA, in dimensionality 

reduction without loss of framework. The main 

difference between two-directional matrix based 

approaches, i.e. (2D)2PCA and (2D)2LDA, and the 

simple matrix-based 2DPCA and 2DLDA 

approaches is that  the latter ones only work in 

one direction of the face image matrices, while the 

former ones work in the row and the column 

directions, simultaneously results in fewer number 

of coefficients. The experimental results show that 

(2D)2PCA and (2D)2LDA with smaller feature 

vectors obtain the same or even higher recognition 

accuracies compared to the 2DPCA and 2DLDA 

methods.  
  

 

Table 4. Mean classification accuracy (in percent) over 10 random runs for ORL dataset with reduced dimension of 10 using 

2DLDA and (2D)2LDA as dimensionality reduction methods. 
(2D)2LDA-

ProjSVM 

(2D)2LDA-SVM (2D)2LDA 2DLDA-

ProjSVM 

2DLDA-SVM 2DLDA Training 

face (#) 

91.04 ± 1.69 82 92.12 ± 2.19 92.32 ± 2.65 86.32 ± 3.19 90.75 ± 1.73 3 
97.25 ± 1.16 93.6 ± 2.05 95.95 ± 1.23 97.25 ± 1.72 94.85 ± 1.33 95.30 ± 1.47 5 
98.75 ± 0.59 97 ± 1.05 97.58 ± 1.49 98.83 ± 0.86 98.08 ± 0.97 97.33 ± 1.17 7 

 

Table 5. Mean classification accuracy (in percent) over 10 random runs for Yale dataset with reduced dimension of 10 using 

2DLDA and (2D)2LDA as dimensionality reduction methods. 

(2D)2LDA-

ProjSVM 

(2D)2LDA-SVM (2D)2LDA 2DLDA-

ProjSVM 

2DLDA-SVM 2DLDA Training 

face (#) 

80.92 ± 2.79 74 ± 4.56 73.50 ± 5.44 87.42 ± 3.02 84.50 ± 3.42 86.00 ± 2.83 3 

91.44 ± 1.58 88.89 ± 2.57 88.77 ± 2.94 91.22 ± 2.31 91.44 ± 2.55 89.56 ± 3.40 5 

97 ± 1.36 92.33 ± 1.97 93.67 ± 2.92 96.17 ± 2.36 93.33 ± 2.99 92.33 ± 3.78 7 

 

Table 6. Mean classification accuracy (in percent) over 10 random runs for JAFFE dataset with reduced dimension of 10 

using 2DLDA and (2D)2LDA as dimensionality reduction methods. 
(2D)2LDA-

ProjSVM 

(2D)2LDA-

SVM 

(2D)2LDA     2DLDA-

ProjSVM 

2DLDA-SVM 2DLDA Training 

face (#) 

93.94 ± 1.32 63.94±7.33 92.50 ± 2.16 94.56 ± 1.49 93.11 ± 2.18 94.11 ± 2.73 3 
98.06 ± 1.39 79.81 ± 7.97 96.93 ± 1.80 98.38 ± 1.18 97.44 ± 1.87 97.18 ± 2.47 5 

98.86 ± 1.39 88.86 ± 3.25 98.5 ± 1.66 98.86 ± 1.39 98.50 ± 1.52 98.78 ± 2.17 7 

  

 
 

Figure 3. Average accuracy versus reduced dimension for six methods on ORL dataset with LDA-based methods. 
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Figure 4. Average accuracy versus reduced dimension for six methods on JAFFE dataset with LDA-based methods. 

 

As observed in the above tables, the accuracies of 

the proposed methods, compared to the other 

relevant methods, are better in most of the 

experiments. According to figures 1, 2, 3, and 4, 

an increase in the reduced dimension initially 

increases the accuracy of the methods, in general, 

and then decreases it. In higher dimensions, where 

the other methods perform poorly due to the curse 

of dimensionality, the proposed methods are 

generally the best ones among the considered 

techniques.  

In addition, the experimental results reported in 

tables 1-6 indicate that increasing the number of 

training data, the classification accuracy increases 

in all the cases, as expected. Finally, the 

accuracies reported in tables 1 and 2 are generally 

lower than the corresponding ones in tables 3 and 

4. This shows the positive role of the supervision 

in the dimensionality reduction approach used. 

The LDA-based methods, due to their supervised 

nature, result in better performances compared to 

the PCA-based ones, which are unsupervised 

dimensionality reduction approaches. 

 

5. Conclusions 

In this paper, several methods were proposed to 

improve the accuracy of face recognition task 

using the projection penalty idea. In these 

methods, the feature vectors were first extracted 

using 2D (matrix-based) extensions of PCA and 

LDA, and then SVM classifier with projection 

penalty was used as a predictive model. The 

projection penalty framework enabled the 

predictive model to gain from dimensionality 

reduction techniques without losing relevant 

information. The experimental results obtained 

indicated that using these matrix-based linear 

dimensionality reduction methods in projection 

penalty framework improved the face recognition 

performance compared to the classification after 

dimensionality reduction based on the Euclidean 

distance or SVM classifier. The superiority of the 

proposed methods in terms of average accuracies 

over the other testing methods on three well-

known face datasets for various dimensions had 

been observed through the experiments.  

The simple matrix-based 2DPCA and 2DLDA 

dimensionality reduction methods extracted the 

features from one dimension of the image matrix 

and the feature vectors obtained that are smaller 

than the feature vectors extracted from the whole 

image matrix. In order to consider both 

dimensions of the image in the feature extraction 

step, two-directional 2DPCA and two-directional 

2DLDA were used in the proposed framework to 

perform dimensionality reduction in both the 

directions of the image matrix generating proper 

lower-dimensional feature vectors. Good 

performances for the proposed methods compared 

to several relevant techniques were observed from 

the experimental results. 

Several new 2D lossless dimensionality reduction 

methods proposed in this paper are applicable to 

any image dataset and more generally on any 2D 

signal samples. In this paper, we chose the face 

recognition problem as a suitable case study, since 

dimensionality reduction in this domain was 

meaningful and had a key role in the final 

accuracy of the classifiers. The proposed methods 

can be used in its current form on general image 

recognition problems such as handwritten 
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character recognition, and object recognition 

without any extension or change. 
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