
1 

 

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 4, 2023, 639-648. 

 
Shahrood University of 

Technology 

 

Journal of Artificial Intelligence and Data Mining (JAIDM) 
Journal homepage: http://jad.shahroodut.ac.ir 

 

 

   

 
 

    

                               
  

 

  
 

 

Article Info  Abstract 

 

Article History: 
Received 05 May 2023 

Revised 08 August 2023 

Accepted 15 December 2023 
 

DOI:10.22044/jadm.2023.13034.2448 

 Efficient regular-frequent pattern mining from sensors-produced data 

has become a challenge. The large volume of data leads to prolonged 

runtime, thus delaying vital predictions and decision-makings, which 

need an immediate response. Thus, using big data platforms and 

parallel algorithms is an appropriate solution. Additionally, an 

incremental technique is more suitable to mine patterns from big data 

streams than static methods. This study presents an incremental 

parallel approach and compact tree structure for extracting regular-

frequent patterns from the data of wireless sensor networks. 

Furthermore, fewer database scans have been performed in an effort 

to reduce the mining runtime. This study was performed on Intel 5-

day and 10-day datasets with 6, 4, and 2 nodes clusters. The findings 

show that the runtime was improved in all 3 cluster modes by 14, 18, 

and 34% for the 5-day dataset and by 22, 55, and 85% for the 10-day 

dataset, respectively. 

 

Keywords: 
Regular-frequent Pattern, Big 

Streaming Data, Parallel 

Algorithm, Incremental Mining 

 

*Corresponding author: 
sadeghrahmani@shbu.ac.ir (S. 

Rahmaniboldaji). 

1. Introduction 

Pattern mining of big data using traditional 

techniques is not efficient. Some traditional 

methods use static mining and unparalleled 

platforms for mining process, in which streams of 

data or updates to data are not considered. Thus, in 

presence of data stream and dire situations such as 

decision-making in the case of critical patient’s 

conditions, applying incremental pattern mining as 

well as speeding up the pattern mining process are 

necessary. Mining the patterns is performed 

through data mining techniques [1] like the growth-

based methods [2]. For this aim, various growth-

based methods use compact tree structures to 

efficiently extract all the information from 

databases for fast mining of regular or frequent 

patterns. In [3] and this work, a table is built 

alongside the tree to store the information from 

each sensor. Despite using the compact tree and 

table structures, the process is still time-

consuming. This study attempts to reduce the 

runtime and consider the incremental essence of 

data streaming through three approaches: 1) the 

frequency reduction of the database scans to one, 

2) implementation of incremental mining, 3) 

parallelization of process using Apache Storm [4]. 

For the aim of reducing database scan times and 

incremental mining, a compact tree structure 

named SDRF-tree (Sensor Data Regularity and 

Frequency-tree) and SSDRF-growth (Storm 

Sensor Data Regularity and Frequency-growth) 

algorithm are introduced. The outcomes are 

compared with the results in Rashid’s work, which 

used FP-growth [5] algorithm and MapReduce [6] 

in order to mine regular- frequent patterns [7]. The 

rest of the paper is organized in follows. Section 2 

introduces the problem of finding regular-frequent 

patterns on incremental sensor networks. Section 3 

discusses related works. Section 4 introduces big 

data stream mining and our proposed SDRF-tree 

and SSDRF-growth structure. Section 5 discusses 

evaluation results, and Section 6 concludes. 

 

Research paper

Parallel Incremental Mining of Regular-Frequent Patterns from WSNs

  Big Data

Sadegh Rahmaniboldaji1*, Mehdi Bateni2  and  Mahmood Mortazavi  Dehkordi3

1. Computer Engineering, Sheikh Bahaei University, Isfahan, Iran.

2. Computer Science and Computer Engineering,  University of Isfahan, Khansar Campus, Isfahan, Iran
  3.MSE, University  Canada  West, Vancouver, Canada.

mailto:sadeghrahmani@shbu.ac.ir


Rahmaniboldaji et al./ Journal of AI and Data Mining, Vol. 11, No. 4, 2023 
 

640 
 

 

 

2. Problem Formulation 

Same as the problem formulation in [3], the basic 

definitions for frequent-regular pattern mining are 

given, with only new concepts mentioned and 

similar definitions exemplified using table 1 data. 

Based on Table 1, it comprises 6 sensors and 9 

epochs. In this example, epoch 1 is t1 = (1, {s1, s2, 

s6}), and the pattern Z = {s1, s2} has occurred at 

timeslots 1, 3, 6, and 7. Therefore, Tz = 

{𝑡1
𝑧, 𝑡3

𝑧, 𝑡6
𝑧, 𝑡7

𝑧}. 

Definition 1 (a period of pattern X). For 

simplicity, the first epoch, tfirst, is assumed to be 

zero, with no sensor data existence, and the last 

epoch is n, based on Table 1, tlast = 9. Thus, 

according to the period definition in [3] and Table 

1, the pattern S1,S2,S6 has occurred in t1, t3, t6, 

and t7. Thus, the period of the this pattern, with 

tfirst=0 and tlast=9, is, (1 - tfirst), (3 - 1), (6 – 3), (7 – 

6), (tlast - 7) = (1, 2, 3, 1, 2). 

Definition 2 (regularity of pattern X). Based on 

regularity definition in [3], the regularity of the 

pattern Z is 3 as Max(1, 2, 3, 1, 2) = 3. Thus, if the 

user defines 2 non-occurrence timeslots as the 

threshold, Z is not identified as a regular pattern. 

Definition 3 (frequency of pattern X). If a pattern 

occurrences number reaches a specific number 

defined by the user that is called Minimum 

Support, it is considered a frequent pattern. 

Definition 4 (regularity and frequency of 

pattern X). A pattern is regular-frequent if it 

satisfies both definitions 2 and 3. 

Definition 5 (stream period). It refers to the 

number of windows of stream data that is user-

specified. 
 

3. Related Works 

Apriori-based and FP-growth-based are two types 

of regular-frequent patterns mining methods. 

Apriori-based methods generate a large number of 

candidate patterns or increase the frequency of 

database scans [8]. FP-growth-based methods use 

a compact tree structure to mine patterns with 

fewer database scans [3]. Tanbeer et al. proposed 

the RP-tree method, an FP-growth-based approach, 

to extract patterns from static databases with two 

scans [9]. Tanbeer in [10], introduced IncRT, a tree 

structure for mining regular patterns from 

incremental databases. Both [9] and [10] require a 

two-time scan of database which increases the 

runtime. Moreover, Tanbeer et al. developed the 

CP method for mining frequent patterns from 

incremental transactional databases using a prefix 

tree [11]. Also, Tanbeer et al. developed the SDR-

growth method for mining regular patterns from 

incremental transactional databases using an SDR-

tree with a single scan [3]. Goyal et al. developed 

the AnyF1 algorithm for mining frequent patterns 

from transactional databases using a BFI-Forest to 

handle stream data at varying speed ratios [12]. In 

2021, Xun et al. created FPMSIM, an FP-growth-

based algorithm for mining frequent patterns from 

incremental transactional databases [13]. None of 

these methods can mine regular-frequent patterns. 

Rashid et al. introduced the RF-Tree method, 

which mines these patterns with two database scans 

[14]. Rashid's subsequent work, RFSP-Tree, mines 

the regular-frequent patterns with a single database 

scan [7]. Neither of RF-Tree or RFSP-Tree, 

addressed incremental transactional databases. 

Also, RP-Tree [9], RF-Tree [14], and RFSP-Tree 

[7] approaches run on one processor that cause 

prolonged runtime especially in big data domain.  

MapReduce, a distributed computing framework, 

has been successful in analyzing big data [6]. Lin 

et al. [15] proposed three Apriori-based algorithms 

called SPC (single-pass count), FPC (fixed-passes 

combined-counting), and DPC (dynamic-passes 

combined-counting) that use MapReduce to mine 

frequent patterns from transactional data. Riondato 

et al. [16] developed a parallel randomized 

algorithm called PARMA for mining 

approximations to the top-k frequent item-sets and 

association rules from transactional data using 

MapReduce. Aridhi et al. [17] developed a 

MapReduce-based approach for distributed 

frequent subgraph mining. M. Bhuiyan and M. Al 

Hasan proposed an iterative MapReduce-based 

frequent subgraph mining algorithm [18]. C.K.-S. 

Leung, Y. Hayduk proposed a MapReduced-

growth (MR-growth) algorithm to mine accurate 

frequent itemsets from uncertain data using 

MapReduce framework  [19]. In another work [20] 

a new technique, the multi-objective k-means 

algorithm, is used to aggregates medical data. This 

is complemented by a parallel pattern mining 

approach using GPU and MapReduce architectures 

for pattern creation. Also, the work [21] explores 

parallel big data processing techniques for finding 

frequent sequences in large datasets and proposes 

SPARSS, a scalable algorithm for distributed 

systems handling large sequential data. These 

works used MapReduce as a foundation for data 

mining from stored databases.  

Rashid et al. introduced RFSP-H, a parallel method 

using MapReduce on sensor databases to mine 

EPOCH EPOCH EPOCH 

tn OCCURRENCE tn OCCURRENCE tn OCCURRENCE 

1 S1, S2, S6 4 S2, S3, S4, S5 7 S1, S2, S6 

2 S3, S4, S6 5 S4, S5, S6 8 S3, S4, S5 

3 
S1, S2, S4, S5, 

S6 
6 S1, S2, S6 9 S1, S3, S4 

Table 1. Sensor Database (SD) sample. 



Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data 

 

641 

 

regular-frequent patterns in a multiprocessor 

environment [7]. The method embodies a Mapping 

and two Reduce phases. The Mapping phase 

discovers a set of candidate patterns using the 

Balanced FP-growth method [5]. The first Reduce 

phase mines frequent patterns from these 

candidates, while the second mines regular patterns 

from the frequent ones, resulting in regular-

frequent patterns. Balanced FP-growth [5] requires 

two database scans and lacks support for 

incremental databases, crucial for streaming data. 

Furthermore, in RFSP-H [7], middle results 

between Map and Reduce phases are inefficiently 

stored on external storage. 

 

4. Proposed SSDRF-growth Structure and 

Mining Process  

 We proposed SSDRF-growth, an FP-growth-

based method [2], to mine regular-frequent 

patterns. Firstly, we will describe the SDRF-tree 

structure that is used in mining process. 

 

4.1. Proposed SDRF-tree Structure and 

Construction 

Here, we describe the single-pass construction 

process of proposed SDRF-tree and its sensor data 

table based on Table 1. For simplicity, before 

inserting into a tree, epochs sort alphabetically 

rather than arbitrary orders. Figure 1 shows the tree 

and table state after the insertion of epoch 1. 

   

 

 

 

 

 

 

The sensor data table contains five columns D, 

LES, ESS, R, and P, representing the sensor’s data 

value, the last observed epoch for the sensor, all 

observed epochs for it, the regularity measure, and 

the pointer to the corresponding node in the tree, 

respectively. To examine the insertion process 

according to Table 1, the first element of the first 

epoch, S1, is inserted into the tree. As it is the first 

sensor, it is inserted as null’s child and the data 

table for this node is set. Since no S1 has been seen 

previously, a row with a data value of 1 is created 

in the table. As no epoch has been seen before, 

epoch one is currently the last epoch in which S1 is 

seen, so LES becomes 1. For the ESS column, since 

this is the first epoch that S1 has been observed in, 

only {1} is placed in the set of epochs. The 

regularity value is now calculated using ESS. Since 

1 is the only epoch, it is clear that the first 

occurrence of the sensors is epoch 1 and generally, 

the last occurrence of the sensors in a window is 9. 

So, for the simplicity of regularity calculation, by 

considering a null epoch at the beginning of the 

epochs, the largest non-occurrence interval 

indicates the sensor’s regularity, which is equal to 

maximum of 1-0 = 1 and 9-1 = 8. Therefore, the 

regularity of the sensor is 8. Then, a pointer is 

created in the sensor’s data value in the table, 

which points to its first location in the tree. The 

pointer makes it easier to access the node in the tree 

during pattern mining. The table values for S1 are 

completed. S2 and S6 will be inserted in the tree 

and table similar to S1. The second epoch enters 

after the first is fully inserted into the tree and data 

table. The tree and table will then be in the state 

shown in Figure 2. 

  
At the beginning of the second epoch insertion, it 

is checked whether the null root has any children 

of value 3 or not. If not, S3 is inserted into the tree 

same as for the first epoch’s sensors. To insert S3 

into the table, its occurrence in earlier epochs will 

be checked. Since it has not occurred and the table 

has no data for S3, in the table, the value of S3 and 

its associated columns will be inserted. S4 will be 

inserted in the same way and then S6 as well. 

However, since S6 has occurred earlier, it does not 

re-enter it in the table. Instead, its associated 

columns are updated. The LES and ESS columns 

for row 6 will be 2 and {1,2}, respectively. The 

regularity criterion equals to Max(1-0 = 1, 2-1 = 1 

and 9-2 = 7), which is 7. As this sensor has occurred 

in earlier epochs, it takes a different position in the 

SDRF-tree, and a pointer connects the previous S6 

observation to the current node. After inserting all 

epochs into the tree, the sensor data table and the 

SDRF-tree will look like Figure 3. (To simplify the 

node traversal pointers are not shown.) 

 

 
 

Sensor data table 

P R ESS LES D 

 8 {1} 1 1 

 8 {1} 1 2 

 7 {2} 2 3 

 7 {2} 2 4 

 7 {1,2} 2 6 

Sensor data table 

P R ESS LES D 

 8 {1} 1 1 

 8 {1} 1 2 

 8 {1} 1 6 

Sensor data table 

P R ESS LES D 

  3 {1,3,6,7,9} 9 1 

  2 {1,3,4,6,7} 7 2 

  4 {2,4,8,9} 9 3 

  3 {2,3,4,5,8,9} 9 4 

  3 {3,4,5,8} 8 5 

  2 {1,2,3,5,6,7} 7 6 

Figure 2. Insertion of 2nd epoch, according to the Table 1. 

Figure 1. Insertion of first epoch, according to the Table 1. 

null

1

2

6

null

1

2

6

3

4

6



Rahmaniboldaji et al./ Journal of AI and Data Mining, Vol. 11, No. 4, 2023 
 

642 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The leaf nodes have a list called TidList, which 

stores the number of epochs in which that branch 

from root to leaf has occurred. In algorithm 1, the 

SDRF-tree pseudo-code is shown. 

According to Algorithm 1, the function receives 

epoch and root as inputs. The first value of the input 

epoch and the remaining elements of that epoch are 

considered as y and Y, respectively. Then, the root 

of the input, R, is examined to see whether it has a 

child similar to y or not. If so, y is set as the child 

of R, C, which is the current node; otherwise, a new 

node, C, is created using y as the child of R. Here, 

unlike many other methods that build the table 

after the creation of the tree such as [3] the 

table is created simultaneously with the tree. 
For this purpose, initially, the emptiness of the 

table is checked. There are two possible scenarios. 

First, the table is empty when the first element of 

the first epoch is checked at the start of the process. 

Therefore, the current node and its associated 

values such as LES sensor’s regularity, and ESS are 

inserted into the empty table. Secondly, if the table 

is not null, it is first checked to see if the current 

node and its value are in the table (same node, with 

the same position in the tree). If yes, the LES, R, 

and ESS will be updated. If no, the same node’s 

pointers in the table are checked as well. If the 

current node is among the pointers, the sensor’s 

values will be updated. If it is not among the 

pointers, then the current node will be added as a 

new pointer to the list of pointer nodes associated 

with the equivalent node in the table. (Curve s6 

pointer in Figure 2); otherwise, if the table is not 

empty and no similar nodes are found, it will be 

added to the table as a new node. The values will 

be inserted for the current node, similar to other 

sensors in the SD_table. After completing the 

insertion operation in the SD_table, it is checked 

whether the current node is the end node of the 

epoch or not. If yes, the current epoch number will 

be inserted into tid-list, which is the list of epoch 

Input: SD: The sensor database 

Output: A compact tree and it’s information table as SDRF-tree 

1. create the root, R of an SDRF-tree, T, and label it as "null" and also create empty SD_table; 

2. for each epoch ti in SD do 

3.  if ti ≠ NULL then 

4.      sort ti according to given order and call SDRF-tree (ti, R);   

5.function SDRF-tree (ti, R) 

6. Let the sorted sensor list in ti to be [y|Y], where y is the first sensor and Y is the remaining list; 

7. If (R has a child C such that C.sensor = y.sensor) 

8.     select C as the current node; 

9. Else 

10.     create a new node C as child of R ; 

11. If (SD_table is empty) 

12.     insert current node in SD_table and set LES, Reg, ESS columns in SD_table for current node;      
13. Else 

14.     if (current node equal to existing sensor in SD_table) 

15.         update LES, Reg, ESS columns in SD_table for current node; 
16.     Else 

17.         compare current node with pointer node of existing sensor in SD_table; 

18.     If (current node equal to one of pointer node) 

19.         update LES, Reg, ESS columns in SD_table for current node; 

20.     Else 

21.                add current node to pointer node list of existing sensors in SD_table; 

22.               update LES, Reg, ESS columns in SD_table for current node;  
23. If (SD_table ≠ empty and current node not inserted to pointer node list of existing nodes in SD_table) 

24.         Insert current node in SD_table and set LES, Reg, ESS columns in SD_table for current node;     

25. If (end of ti reached) 

26.      add the tid of ti in current node's tid-list; 

27. Else 

28.      call SDRF-tree (Y, current node); 

 
Algorithm 1. SDRF-tree construction algorithm. 

null

1

2

6 4

5

6

3

4

2

3

4

5

3

4

6 5

4

5

6

Figure 3. SDRF-tree structure and sensor data table after 

inserting all epochs according to Table 1. 



Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data 

 

643 

 

numbers that the sensors in the current epoch (or 

tree branch) have occurred in them. If it is not the 

epoch’s last sensor, the same process will be 

recursively done for the next value in Y. When the 

number of epochs inserted in the tree reaches the 

window size, the constructed SD_table, along with 

the current window number and window size, is 

sent to the next step to mine the pattern from 

SD_table. 

As the proposed method is based on Apache Storm 

[4], firstly, its basics will be discussed. 

 

4.2. Stream processing with Apache Storm 

Apache Storm has 3 main parts: spout, bolt, and 

topology. 

The spout receives and pre-processes input data. 

The bolt processes input data and generates output. 

The relationships between spouts and bolts are 

determined in topology. In fact, there is a directed 

graph composed of spouts and bolts. As the 

connection between spout and bolt is provided by 

RAM, there is no need for any external memory for 

their middle results. This has a significant effect on 

reducing the runtime of the operation [4].  

The connection between the spout and the bolt, or 

the two bolts is created via the tuple, which is an 

ordered list of data elements. In the Storm 

framework, it is possible to select and implement 

the type of stream data between the nodes, which is 

called stream grouping [4]. In this work, direct 

grouping method is used, in which the tuple 

producer determines the receiver of the tuples. 

 

4.3 Architecture of Proposed Method 

The proposed method architecture consists of four 

general sections (Figure 4). The first part receives 

the input data and passes it in the form of epochs to 

the next part. In the second part, SDRF-tree and 

SD_table are constructed based on the received 

window of epochs. In the third part, SD_table will 

be mined by constructing the first conditional 

pattern-base (PB) tree and table for each sensor in 

the SD_table. According to the PB-table, the 

conditional tree (CT) in form of table structure will 

be constructed. Then in the pattern mining section, 

the regular-frequent patterns will be mined from 

the local conditional table. The locality of the 

pattern means each part of the dataset is processed 

separately in parallel, and the local results are 

obtained from each one. Finally, the local results 

are transmitted to the final section. 

for aggregation to extract global regular-frequent 

patterns. In the following, the details of these 

components will be described. 

 

 
4.3.1 Receiving and Managing Input Data in 

Parallel  

In this section, stream data reception is performed 

through the spout of Apache storm [4]. The input 

dataset file is read line by line and each line 

represents an epoch of sensors occurrences. By 

performing pre-processing, the input string 

converts to a list of numbers. This list is then sorted 

in accordance with the proposed order, and 

eventually is sent to the next section for the SDRF-

tree construction. It is noteworthy that in the spout, 

the data is manually divided by defining the 

window size as a parameter, then each section of 

the data is sent by the spout to the destination bolt. 

The destination bolt is also selected with the help 

of direct grouping method [4], so that the data is 

distributed purposefully. This method is necessary 

when a node with specific hardware or software is 

required to process the specific data. Here, because 

of the uniformity of the data, as well as the 

equalization of the hardware and software 

capabilities of the bolts, each spout sends its output 

to one of the bolts without considering any orders. 

In addition, in order to simulate the stream of data, 

each epoch is part of a window and when the 

Figure 4. Block diagram of the proposed method. 



Rahmaniboldaji et al./ Journal of AI and Data Mining, Vol. 11, No. 4, 2023 
 

644 
 

number of epochs reaches the size of the window, 

the number of epochs is reset to zero. 

 

4.3.2 Parallel Construction and Algorithm of 

SDRF-tree and SD-table 

The construction of an SDRF-tree is performed in 

parallel through several node instances, regarding 

the division of the data. Each instance is 

responsible for creating the SDRF-tree and the SD-

table for a portion of the data. For this, the SDRF-

tree function is called by each receiving epoch, 

until the window size limit is reached, then it is 

restarted. The process of constructing the tree and 

the table is mentioned in Section 4.1. 

 

4.3.3 Incremental Mining of Regular-Frequent 

Patterns in Parallel 

Similar to the construction of the SDRF-tree, in 

case of having multiple mining instances, each one 

mines the regular-frequent patterns of a local SD-

table. In the following section, the process of 

mining regular-frequent patterns in both local and 

global forms will be discussed. 

After receiving the constructed tree and table, in 

the mining bolt, the SSDRF-growth function is 

called with the SD-table, the current window 

number, and the RFP as inputs. RFP is a variable 

for storing the generated patterns. After mining the 

patterns, when the number of windows reaches the 

stream period threshold, the RFP and window size 

are sent to the next section. 

According to the Figure 3, the SSDRF-growth 

algorithm starts with the last sensor, S6, as the leaf 

node in the SD_table and the last sensor is 

considered as α, temporarily. Also, last node of the 

branch holds the TidList, which stores all the 

epochs that branch occurred in. To construct the 

conditional pattern-base tree, all paths leading to α 

are checked to see if the sensors in that path meet 

the regularity threshold. Sensors that meet this 

threshold are copied to the conditional pattern-base 

tree of α (PB_tree(α)). The table with this tree is 

called PB_table(α). Figure 5 shows the S6’s 

PB_tree and PB_table, which are constructed using 

a regularity measure equal to 3. Note that non-

regular nodes such as S3, and self-mining node, S6, 

are not copied to the desired branch. 

 

 

 

 

 

 

 

PB_table(S6) 

P R ESS LES D 

  3 {1,3,6,7} 7 1 

  3 {1,3,6,7} 7 2 

  4 {2,3,5} 5 4 

  4 {3,5} 5 5 

Figure 5. PB_table(S6) and PB_tree(S6) of S6. 

 

Input: SD_table, current window number as win_ num, RFP, window Size as win_size 

Output: local RFP 

1. Function SSDRF-growth (SD_table, win_ num, RFP, win_size) 

2.     while SD_table not empty do 

3.         call BuildPB (sensor α); 

4.         call Mine (PB_table(α), sensor α) and then remove sensor α; 

5. Function BuildPB (sensor α) 

6.     for each node of α do 

7.         project path that ends to node from its parent to root in new tree & table called PB_tree(α) and PB_table(α); 

8.     return PB_table(α); 

9. Function Mine (PB_table(α), sensor α) 

10.     call BuildCT(PB_table(α)); 

11.     if CT_table(α) ≠ null then 

12.         for each sensor β in CT_table(α) from bottom do 

13.             generate pattern β = β U α; 

14.             if (β although is regular) 

15.                 if (β exist in RFP) 

16.                     update β's last occurrence and β's number of occurrences in RFP; 

17.                     if (number occurrence of β >= Minimum Support) 

18.                          mark β as frequent Pattern; 

19.                 else 

20.                     add β in RFP with its last occurrence and number of occurrences; 

21.                     if (number occurrence of β >= Minimum Support) 

22.                         mark β as frequent Pattern; 

23.             returnedPB = BuildPB(β); 

24.             call Mine (returnedPB, β) and remove sensor from bottom of CT_table(α); 

25. Function BuildCT (PB_table(α)) 

26.     for each sensor β in PB_table(α) do 

27.         if regularity of β > λ then 

28.             for each node Nβ in PB_table(α) do 

29.                   project the path ended with Nβ from its parent up to root in a new tree & table called CT_tree(α) and CT_table(α) 

30.     return CT_table(α) 

 

 Algorithm 2. SSDRF-growth Algorithm. 

null

1

2 4

5

4

5



Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data 

 

645 

 

 

After constructing the PB_tree(α) and PB_table(α), 

they will be mined. As some paths were not 

transferred to the mentioned tree and table, sensor 

values, such as their regularity in the PB_table(α) 

have been changed. To re-check the regularity, the 

conditional tree is constructed by removing 

irregular sensors from the PB_table(α) to generate 

another table called CT_table(α). The CT_table(α) 

can be seen in Figure 6.  

 

 

 

 

 

For mining, CT_table(α) is checked to determine 

whether it is null or not. If not, sensors are chosen 

from the bottom of the CT_table(α) and become a 

union with α as a two-element pattern known as β. 

β is considered as a local regular pattern, and then 

is stored with its last occurrence and the number of 

its occurrences. If the number of pattern 

occurrences is equal to or greater than the 

Minimum Support, this pattern also is known as a 

local frequent pattern. For mining three- or more 

element patterns, if existed, the algorithm tries to 

treat β as a new sensor and build PB_table(β), 

PB_tree(β), and CT_table(β) recursively. For 

example, if the Minimum Support measure is also 

considered as 3, according to the CT_table(S6) and 

based on S6 occurrences, 3 patterns {S1, S6}, {S2, 

S6} and {S1, S2, S6} are regular-frequent pattern. 

All of the patterns in RFP, obtained from the 

evaluation of all sensors in SD-table, belong to the 

current window. When these operations are done  

on the subsequent windows, their last occurrence 

and the number of occurrences is updated if the 

generated patterns from those windows are in the 

RFP; otherwise, the pattern will be inserted in the 

RFP with its last occurrence and the number of 

occurrences. In contrast to the RFSP-H method [7], 

which uses a static mining approach to mine 

regular-frequent patterns only in one window, the 

proposed method considers incremental mining. 

Thus, the regularity and frequency of the pattern 

can be tracked in the sequence of windows. To 

calculate the regularity of a pattern in sequence of 

windows, the difference between pattern’s 

occurrence in the previous window (if exists) and 

the current window is firstly calculated. If the 

pattern’s regularity measure does not exceed λ, the 

pattern is still regular locally. The pattern is locally 

frequent if its occurrence’s number reaches the 

local Minimum Support threshold. If it wasn't 

frequent in the current window, the pattern is kept 

until the next windows are received. Afterward, if 

the pattern is seen and its total occurrences in both 

current and previous windows reached the local 

Minimum Support, it is marked as a local frequent 

pattern; otherwise, this process will continue until 

the end of the current stream period. After mining 

the patterns of a window, constructed SDRF-tree 

and SD_table will be eliminated. But their 

generated result in the RFP will still be available. 

Because of this, the regular-frequent patterns can 

be detected across multiple windows in a stream 

period. After the stream period is completed, the 

RFP is sent to the results aggregation bolt. 

 

4.3.4 Mining global regular-frequent patterns 

The results aggregation node consists of one bolt 

instance in which all the patterns that were 

generated in different bolts will be integrated. In 

some conditions, there may be sensor networks in 

different areas that are processed locally or it 

becomes necessary to aggregate the data of 

different areas. For aggregation, all of the patterns 

in the received RPF are checked with the 

final_RFP (stored data of previous window RFPs). 

In the case of pattern existence in the final_RFP, its 

regularity is calculated by subtraction of the 

sensor’s first occurrence in the current RFP from 

its last occurrence in the Final_RFP. If its 

regularity is lower than λ, the pattern is still regular.  

CT_table(S6) 

P R ESS LES D 

  3 {1,3,6,7} 7 1 

  3 {1,3,6,7} 7 2 

null

1

2

Figure 6. CT_table and CT_tree of S6 (CT_tree(α) is not 

constructed but is shown just for better understanding.) 

Algorithm 3. Mining global regular-frequent patterns. 

Input: bolts RFPs, window size as win_size 

Output: final_RFP 

1. Function execute() 

2.     receive RFP and win_size from pervious bolt 

3.     for each item in received RFP 

4.         compare with items in final_RFP 

5.         if item exists in final_RFP and item is frequent in bolt RFP 

6.                 calculate global frequency of item 

7.                 if item global frequency > global frequency threshold as glob_freq_threshold 

8.                     let p_last(item) be the timeslot id of the last epoch containing item in pervious RFP 

9.                     let p_first(item) be the timeslot id of the first epoch containing item in current RFP 

10.                   if (p_first(item) - p_last(item)) < λ 

11.                       item still is regular and update item in final_RFP with new frequency and occurrence information 

 



Rahmaniboldaji et al./ Journal of AI and Data Mining, Vol. 11, No. 4, 2023 
 

646 
 

If it is regular, then its frequency is set by summing  

its occurrences’ number in the current RFP and the 

final_RFP. Also, the new occurrence information 

of pattern will be updated. Therefore, its frequency 

and regularity can be tracked during the next RFPs. 

The mentioned process is defined in Algorithm 3. 

 

5. Experimental Result 

This section presents the datasets [22]  [23], the test 

environment, and evaluation criteria. Also, the 

performance of the proposed SDRF-tree and 

mining method using SSDRF-growth is discussed. 

A seven-node Linux cluster is used for evaluation, 

with each node having two 2.00 GHz processor 

cores and 2 GB of memory. One storm node is 

Master for Nimbus Ghost and the other six are 

Workers for Supervisor Ghost implementation. 

 

5.1. Evaluation metrics 

This study considers the runtime of mining regular-

frequent patterns from WSN big data as an 

evaluation criterion. To reduce it by considering 

the incremental mining process, the SDRF-tree and 

SSDRF-growth algorithms are used on the Apache 

Storm platform [4] parallelly. The runtime of 

SDRF-tree has been compared with one of the 

successful tree structures called SDR-tree [3] and 

also the whole mining runtime has been compared 

to the results of the Rashid et al. study [7], which 

used the Hadoop platform [24] with MapReduce 

[6] and the two-pass mining Algorithm [5]. 

 

5.1.1 SDRF-tree runtime 

The SDRF-tree algorithm's runtime was evaluated 

on different datasets [23], the results of which can 

be seen in Figure 7. 

 

 
In Figure 7, the runtime of the SDRF-tree based on 

the size of the dataset, shows the proposed method 

performs very well in dealing with large volume 

data and increasing the size of dataset does not 

impair that. The Kosarak dataset is 9.9 times bigger 

than the T10I4D100K dataset but the runtime just 

increased 10 seconds that is four times bigger than 

T10I4D100K runtime. This indicates the SDRF-

tree optimum runtime given the big volume of data. 

Figure 8 shows the single node runtime of the 

SDRF-tree compared with the SDR-tree [3] with 

two nodes on the T10I4D100K dataset with 

100000 records that indicates the better 

performance of SDRF-tree even with the fewer 

number of processors. 

 
 

5.1.2 Proposed method runtime 

The proposed method’s runtime (the total time of 

reading data and processing it), is evaluated by 

changing the number of cluster nodes. The applied 

conditions were: the local Minimum Support of 

0.7%, the global Minimum Support was set based 

on the number of data divisions, the local and 

global λ were equal to 20%, and the number of 

cluster’s Worker nodes was considered as 2, 4, and 

6 and in all experiments, the Master node was 

considered as a separate node.  

 
0
3
6
9

12
15

Chess T10I4D100K Kosarak

R
u

n
ti

m
e 

(S
ec

)

Dataset

0

20

40

60

SDRF Tree SDR Tree

R
u

n
ti

m
e 

(s
ec

)

0

5

10

15

20

2 4 6

R
u

n
ti

m
e 

(S
ec

)

Node Number

a

Datasets Sensors number Epochs number Days number Gap between epochs Dataset type 

Intel data (5-day) [22] 54 14400 5-days 31 sec Real 

Intel data (10-day) [22] 54 28800 10-days 31 sec Real 

T10I4D100K [23] 870 100000 - - Artificial 

Chess [23] 75 3196 - - Artificial 

Kosarak [23] 41270 990002 - - Artificial 

Figure 7. SDRF-tree runtime on datasets in [23] 

 

Figure 8. Comparison of SDRF-tree runtime with 

SDR-tree on T10I4D100K dataset. 

 

Table 2. Characters of tested datasets. 

 



Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data 

 

647 

 

 

As it is shown in figures 9-a and 9-b, the runtime 

on these data sets is very low and it declines with 

increasing the number of nodes in the cluster for 

the two introduced datasets. 

 

5.1.3 Effect of Regularity Measure on Runtime 
Increasing the regularity measure leads to 

increasing the patterns because the patterns with 

less occurrence can also be considered as regular 

patterns. The effect of this measure is shown in 

Figures 10-a and 10-b. 

 

 

 
5.1.4 Comparison of the proposed method with 

RFSP-H method 

RFSP-H method [7] mined the regular-frequent 

patterns of WSN data using Hadoop platform [24] 

and the two-pass algorithm called Balanced FP-

growth [5]. The figures 11-a and 11-b shows the 

performance comparison of RFSP-H and proposed 

method. 

 

 

 
As shown in figure 11, comparing with the RFSP-

H [7], our method reduced runtime by 14%, 18%, 

and 34% on the Intel 5-day dataset and by 22%, 

55%, and 85% on the Intel 10-day dataset in 6, 4, 

and 2 node clusters respectively.  

 

5.1.5 Effect of Dataset Size 

Experiments show that our method outperforms the 

RFSP-H [7] more significantly with larger datasets. 

On average, our method’s runtime on the 5-day 

dataset is 24% (4.3 seconds) lower across all 2, 4, 

and 6 node clusters. This difference increases 

dramatically to 61% (19.5 seconds) on the 10-day 

dataset. 

 

6 Conclusion 

This study aimed to reduce the runtime of mining 

regular-frequent patterns while considering data 

flow. This was achieved through three measures: 1) 

reducing database scans to one, 2) implementing 

incremental pattern mining, and 3) parallelizing the 

mining process using SDRF-tree and SSDRF-

Growth parallel algorithms on the Apache Storm 

platform [4]. This study’s results were obtained 

using 6, 4, and 2 Linux clusters and two Intel lab 

datasets (5-day and 10-day) [22]. With respect to 

the order of the mentioned clusters, the proposed 

method was compared to the RFSP-H method [7] 

and exhibited an improved runtime of 14, 18 and 

34 percent in the 5-day dataset, and 22, 55 and 85 

percent in the 10-day dataset. It was observed that 

the proposed method has superior performance 

than the RFSP-H method [7], especially in a larger 

dataset.  In future research, we will try to detect the 

noise of the data and neutralize their destructive 

effects, before the pattern mining process. This will 

be carried out with the help of non-deterministic 

methods such as machine learning algorithms 

which cause better accuracy in addition to the fast-

mining runtime. 

 

References 
[1] W. Gan, J. C.-W. Lin, P. Fournier-Vige, H.-C. Chao, 

and P. S. Yu, "A survey of parallel sequential pattern 

18

20

22

24

26

2 4 6

R
u

n
ti

m
e 

(S
ec

)

Node Number

b

0

5

10

15

20

0.2 0.3 0.4 0.5

R
u

n
ti

m
e 

(S
ec

)

Regularity Measure

a

15

20

25

0.2 0.3 0.4 0.5

R
u

n
ti

m
e 

(S
ec

)

Regularity Measure

b

0

10

20

30

2 4 6

R
u

n
ti

m
e 

(S
ec

)

Node Number

a

Proposed Method RFSP-H

0

25

50

75

2 4 6R
u
n
ti

m
e 

(S
ec

)

Node Number

b

Proposed Method RFSP-H
Figure 9. Runtime of the proposed method in a) intel 5-

day data, b) intel 10-day data [22]. 

Figure 10. Regularity measure effect on the proposed 

method runtime in a) intel 5-day, b) intel 10-day data [22]. 

Figure 11. Proposed method’s and RFSP-H’s [7] runtime 

comparison in a) intel 5-day data, b) intel 10-day data 

[22]. 



Rahmaniboldaji et al./ Journal of AI and Data Mining, Vol. 11, No. 4, 2023 
 

648 
 

mining," ACM Transactions on Knowledge Discovery 

from Data (TKDD), Vol. 13, No. 3, pp. 1-34, 2019. 
 

[2] J. Han, M. Kamber, and J. Pei, Data mining: concepts 

and techniques, 3 ed., Morgan Kaufmann, 2012. 
 

[3] S. K. Tanbeer, M. M. Hassan, A. Almogren, M. 

Zuair, and B.-S. Jeong, "Scalable regular pattern mining 

in evolving body sensor data," Future Generation 

Computer Systems, vol. 75, pp. 172-186, 2017. 
 

[4] "Apache Storm," [Online]. Available: 

http://storm.apache.org/. [Accessed 26 1 2023]. 
 

[5] K.-M. Yu, J. Zhou, and W. C. Hsiao, "Load 

balancing approach parallel algorithm for frequent 

pattern mining," in International Conference on 

Parallel Computing Technologies, Berlin, Heidelberg, 

2007. 
 

[6] J. Dean and S. Ghemawat, "MapReduce: simplified 

data processing on large clusters," Communications of 

the ACM,  vol. 55, no. 1, p. 2008, 107-113. 
 

[7] M. Rashid, I. Gondal,, and J. Kamruzzaman, 

"Dependable large scale behavioral patterns mining 

from sensor data using Hadoop platform," Information 

Sciences, vol. 379, pp. 128-145, 2017.  
 

[8] V. M. Nofong, "Discovering productive periodic 

frequent patterns in transactional databases," Annals of 

Data Science, pp. 235-249, 2016. 
 

[9] S. K. Tanbeer, C. Farhan Ahmed, B.-S. Jeong, and 

Y.-K. Lee, "Rp-tree: A tree structure to discover regular 

patterns in transactional database," in Conference on 

Intelligent Data Engineering and Automated Learning, 

Berlin, Heidelberg, 2008.  
 

[10] S. K. Tanbeer, C. Farhan Ahmed, and B.-S. Jeong, 

"Mining regular patterns in incremental transactional 

databases," in Web Conference (APWEB), 2010 12th 

International Asia-Pacific, Busan, Korea (South), 2010.  
 

[11] S. K. Tanbeer, C. Farhan Ahmed, B.-S. Jeong and 

Y.-K. Lee, "Efficient single-pass frequent pattern 

mining using a prefix-tree," Information Sciences, vol. 

179, no. 5, pp. 559-583, 2009. 
 

[12] P. Goyal, J. S. Challa, S. Shrivastava, and N. Goyal, 

"Anytime Frequent Itemset Mining of Transactional 

Data Streams," Big Data Research, vol. 21, 2020.  
 

[13] Y. Xun, X. Cui, J. Zhang, and Q. Yin, "Incremental 

frequent itemsets mining based on frequent pattern tree 

and multi-scale," Expert Systems With Applications, vol. 

163, 2021.  
 

[14] M. Rashid, R. Karim, B.-S. Jeong, and H.-J. Choi, 

"Efficient mining regularly frequent patterns in 

transactional databases," in International Conference on 

Database Systems for Advanced Applications, 2012. 
 

[15] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, "Apriori-

based frequent itemset mining algorithms on 

MapReduce," in Proceedings of the 6th international 

conference on ubiquitous information management and 

communication, 2012. 
 

[16] M. Riondato, J. A. DeBrabant, R. L. C. Fonseca, 

and E. Upfal, "PARMA: a parallel randomized 

algorithm for approximate association rules mining in 

MapReduce," in Proceedings of the 21st ACM 

international conference on Information and knowledge 

management, 2012. 
 

[17] S. Aridhi, L. d'Orazio, M. Maddouri, and E. Mephu, 

"A novel MapReduce-based approach for distributed 

frequent subgraph mining," in Reconnaissance de 

Formes et Intelligence Artificielle (RFIA) , 2014. 
 

[18] M. A. Bhuiyan and M. Al Hasan, "An iterative 

MapReduce based frequent subgraph mining 

algorithm," IEEE Transactions on Knowledge and Data 

Engineering, vol. 27, no. 3, p. 2014, 608-620. 
 

[19] C. K.-S. Leung and Y. Hayduk , "Mining frequent 

patterns from uncertain data with MapReduce for big 

data analytics," in International Conference on 

Database Systems for Advanced Applications, 2013. 
 

[20] Y. Djenouri, A. Belhadi, G. Srivastava, and J. 

Chun-Wei Lin, "A Secure Parallel Pattern Mining 

System for Medical Internet of Things," IEEE/ACM 

Transactions on Computational Biology and 

Bioinformatics, pp. 1-12, 2023.  
 

[21] A. B. Can, M. Zaval, M. Uzun-Per, and M. Aktas 

S., "On the big data processing algorithms for finding 

frequent sequences," Concurrency and Computation: 

Practice and Experience, 2023. 
 

[22] "Intel Lab Data," [Online]. Available: 

http://db.csail.mit.edu/labdata/labdata.html. [Accessed 

26 1 2023]. 
 

[23] "Frequent Itemset Mining Dataset Repository.," 

[Online]. Available: http://fimi.ua.ac.be/data/. 

[Accessed 26 1 2023]. 
 

[24] "Apache Hadoop," [Online]. Available: 

https://hadoop.apache.org/. [Accessed 26 1 2023]. 

 



 .1402دوره یازدهم، شماره چهارم، سال ،کاوینوعی و دادهمجله هوش مص                                                  و همکاران                                           بلداجی

 

 های سنسوری به صورت موازیمکرر از کلان داده-گوهای باقاعدهکاوش افزایشی ال

 

 3محمود مرتضوی دهکردی و 2مهدی باطنی، *.1صادق رحمانی بلداجی

 . ایران، اصفهان، بهارستان، گروه مهندسی کامپیوتر، دانشگاه شیخ بهایی 1

 . ایران، اصفهان، دانشگاه اصفهان، خوانسار وتریو کامپ یاضیر دانشکده وتر،یگروه علوم کامپ 2

 . کانادابریتیش کلمبیا، ، ونکوور، (UCW) دانشگاه کانادا وِست، MSEگروه  3

 15/12/2023 پذیرش؛ 08/08/2023 بازنگری؛ 05/05/2023 ارسال

 چکیده:

ها منجر به داده ادیهجم ز شتتده استت   لیچاوش تبد کیکارآمد به به صتتور  شتتده توستتگ هاتتگرها  دیتوو یهامکرر از داده-باقاعده یاستتراراا اوگو

صمینیبشیپ نیشود، بنابرایشدن زمان اجرا م یطولان سخ فور ازیرا که ن یاتیه یهایریگمیها و ت سرفاده از  نیبنابرا اندازد یم ریدارند به تاخ یبه پا ا

کلان داده  یهاانیاستتراراا اوگوها از جر یبرا یشتتیافزا هایکیتکن ن،یاستت   علاوه بر ا یهل مناستتبراه یمواز یهارمیکلان داده و اوگور یهاپلرفرم

 یهااز داده مکرر-باقاعده یاسراراا اوگوها یفشرده را برا یو ساخرار درخر یشیافزا یمواز کردیرو کیمطاوعه  نیا اس   ارایا یهامناسب تر از روش

سکن پا ،همچنین  کندیارائه م میسیهاگر ب یهاشبکه س   یبرابه منظور کاوش اوگوها  یداده کمرر گاهیا شده ا مطاوعه  نیا کاهش زمان اجرا انجام 

به  یاهاو  خوشتته 3که زمان اجرا در هر  دهدیها نشتتان مافرهیگره انجام شتتد   2و  4، 6 یهابا خوشتته نرلیروزه ا 10و  5 یهامجموعه داده یبر رو

 اس   افرهیروزه بهبود  10مجموعه داده  یدرصد برا 85و  55، 22روزه و  5مجموعه داده  یدرصد برا 34و  18، 14 بیترت

  مکرر، جریان کلان داده، اوگوریرم موازی، کاوش افزایشی-اوگوی باقاعده :کلمات کلیدی


