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Abstract 

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of 

individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. 

These modules are: denoising module, feature extraction module and a classification module. In the first 

module the stationary wavelet transform (SWF) is used for noise reduction of the ECG signals. The feature 

extraction module extracts a balanced combination of the Hermit features and three timing interval feature. 

Then a number of multi-layer perceptron (MLP) neural networks with different number of layers and eight 

training algorithms are designed. Seven files from the MIT/BIH arrhythmia database are selected as test data 

and the performances of the networks, for speed of convergence and accuracy classifications, are evaluated.  

Generally all of the proposed algorisms have good training time, however, the resilient back propagation 

(RP) algorithm illustrated the best overall training time among the different training algorithms. The 

Conjugate gradient back propagation (CGP) algorithm shows the best recognition accuracy about 98.02% 

using a little amount of features. 

 

Keywords: ECGbeat Classification, Premature Ventricular Contraction, MLP Neural Network, Training 

Algorithms, Wavelet Transform, Hermit Features. 

1. Introduction

Development of accurate and quick methods for 

automatic ECG classification is vital for clinical 

diagnosis of heart disease [1]. An arrhythmia is 

any abnormal cardiac rhythm [2]. Heart 

arrhythmias result from any disturbance in the 

rate, regularity, and site of origin or conduction of 

the cardiac electric impulse [1]. Among the 

various abnormalities related with functioning of 

the human heart, Premature Ventricular 

Contraction (PVC) is one the most important 

arrhythmias.  PVC is the contraction of the lower 

chambers of the heart (the ventricles) that occur 

earlier than usual, because of abnormal electrical 

activity of the ventricles [2]. This paper 

investigates the detection and classification of 

PVC arrhythmias. 

In the literature, several methods have been 

proposed for the automatic classification of ECG 

signals. The recently published papers are 

presented in [3–20]. In [3], the authors used the 

discrete wavelet transform as the feature extractor 

and linear discriminants as the classifier for PVC 

beat classification and achieved the recognition 

accuracy (RA) about 95.6%. In [5] the authors 

used a feed forward neural network as classifier. 

They derived five features including the QRS 

width and offset, amplitude of R segment, the T 

segment slope and the R-R interval duration for 

PVC beat classification. In their work RA is about 

96.85%. In [6], the authors used wavelet feature 

extraction in tandem with fuzzy neural network 

classification for PVC beat classification with RA 

about 98.20%.  In [7], the authors used a 

multilayer perceptron (MLP) neural network 

classifier and achieved an accuracy of 88.3% in 

their testing set. In [8], the authors used 

morphological information as the features and a 

neural network classifier for differentiating the 

ECG beats including PVC beats. They achieved 

RA about 97%. The method presented in [15] is 

based on a hybrid fuzzy neural network that 

consists of a fuzzy self-organizing sub-network 
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connected in a cascade with a multilayer 

perceptron. The authors proposed to use high-

order statistics as input features for feeding their 

classifier for recognition of PVC beat from the 

others. They achieved RA about 98.20%.  In [18], 

an automatic online beat segmentation and 

classification system based on a Markovian 

approach is proposed.  

According to these works, some important issues 

of designing an ECG classification system 

become clear. Addressing these factors suitably 

lead to development of more robust and efficient 

recognizers. One of these issues is related to the 

preprocessing module. Another issue is selection 

of the classification approach. In particular, the 

training algorithms of the neural network 

classifiers.  Also, selection of the proper features 

plays an important role. Here, we present an 

efficient system for classification of the normal 

heartbeats, PVC and other abnormalities. In the 

preprocessing module, an un-decimated wavelet 

transform is used to provide an informative 

representation that is both robust to noise and 

tuned to the morphological characteristics of the 

waveform features. For the feature extraction 

module we have used the Hermite functions to 

represent ECG signals. Then we investigated 

several Multi-Layer Perceptron     neural networks 

by varying number of hidden layers and neurons 

of each layer. Multiple algorithms were employed 

for training these neural networks. 

The performance of these algorithms was 

compared in several experiments. Figure 1 shows 

a general scheme of the proposed method. The 

paper is organized as follows. Section 2 describes 

the preprocessing module. Section 3 explains the 

feature extraction module. Section 4 presents the 

classifier. Section 5 describes the database and 

performance metrics. Section 6 shows some 

simulation results. Section 7 discusses the results 

and concludes the paper. 

 

2. Signal preprocessing 

Noise reduction is an important problem for 

analysis of ECG signals. The most troublesome 

noise sources are the electrical activity of muscles 

(EMG) and instability of electrode-skin contact 

[21]. For removal of such noise, an advanced 

signal processing method, such as discrete 

wavelet transform (DWT) denoising technique 

[22], should be used. However, DWT is a time-

variant transform. To overcome this problem, we 

used the stationary wavelet transform (SWT) 

which is also known as the undecimated wavelet 

transform (UWT) or translation-invariant wavelet 

transform. SWT uses the average of several 

denoised signals that are obtained from the 

coefficients of ε-decimated DWT [23]. 

Preprocessing
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Figure 1. General scheme of the proposed method. 

 

Suppose the signal  2s L R . The SWT is given 

by:  
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where, 2 , , ,kv k     and *  is the 

complex conjugate of the mother wavelet.  

Figure 2 shows the block diagram of SWT. In this 

figure, the blocks of H(z) and Hr(z) are the 

decomposition and reconstruction high pass 

filters, respectively and the blocks of G(z) and 

Gr(z) are low pass filters. d(·, ·) denotes the 

decomposition coefficients and a(·, ·) denotes the 

approximation coefficients. This figure shows a 

three level decomposition. For denoising, we have 

used the Daubechies wavelet functions (db1) with 

decomposition level of five, based on our 

extensive experiments. Figure 3 shows ECG 

signals before and after denoising. 

For smoothing the ECG signals, we have used the 

Savitsky-Golay (SG) filtering method [23].The 

filter coefficients are achieved by the un-weighted 

linear least-squares fitting method using a 

polynomial function. For this reason, the 

Savitzky-Golay filter is also called a digital 

smoothing polynomial filter or a least-squares 

smoothing filter. A higher degree of polynomial 

makes it possible to achieve a high level of 

smoothing without attenuation of the data 

features. The Savitzky-Golay filtering method is 

often used for frequency information or 

spectroscopic information. For the first type, it 
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preserves the high-frequency components of the 

signal and for the second type it preserves higher 

moments of the Peak. In this paper we have used 

the first type of SCG. 
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Figure 2. Block diagram of SWT. H(z) and Hr(z) are the decomposition and reconstruction high pass filters. G(z) and Gr(z) 

are low pass filters. Term d(·, ·)denotes the decomposition coefficients and a(·, ·)denotes the approximation coefficients.

 

Figure3. Part of ECG signal from MIT-BIH database 

before and after denoising. 

 

3. Feature extraction 

Feature extraction plays an important role in any 

classification task. It is clear that there is a great 

variety of morphologies among the heartbeats 
which belongs to one class, even for the same 

patient. Moreover, beats belonging to different 

classes are morphologically similar to each other. 

They occupy a similar range of values and 

frequencies; thus, it is difficult to recognize one 

from the other on the basis of only time or 

frequency representations. 

Different feature extraction techniques have been 

applied. Traditional representations include 

features describing the morphology of the QRS 

complex, such as RR intervals, width of the QRS  

 

 

complex [3,14,15,16,2], wave interval and wave 

shape features [15]. Some authors have processed 

features resulting from Fourier [25] or wavelet 

transformations [3] of the ECG. Clustering of the 

ECG data, using methods such as self-organizing 
maps [16] or learning vector quantization [4], as 

well as internal features resulting from the neural 

preprocessing stages [4] have been also exploited. 

Other important feature extraction methods 

generate statistical descriptors [24] or orthogonal 

polynomial representations [16,25]. None of these 

methods is of course perfect and fully satisfactory. 

In this paper we will illustrate supervised 

classification applications that rely on the 

processing of features originating from the 

description of the QRS complex by using the 

higher-order statistics and Hermite basis functions 

expansion. The HOS description exploits the fact 

that the variance of cumulant functions is usually 

lower than the variance of the original signals. 

On the other hand, the Hermite expansion takes 

advantage of the similarity of the individual 

Hermite functions and different fragments of QRS 

complex of the ECG waveform. Coefficients of 

the Hermit function can describe the ECG signals. 

In the Hermite basis function expansion method, 

the QRS complex is represented by a series of 

Hermite functions. This approach successfully 

exploits existing similarities between the shapes 

of Hermite basis functions and QRS complexes of 

the ECG waveforms under analysis. Moreover, 

this characterization includes a width parameter, 

which provides good representation of beats with 

large differences in QRS duration. Let us denote 

the QRS complex of the ECG curve by x(t). Its 

expansion into Hermite series may be written in 

the following way: 
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where, cn shows the expansion coefficients, σ is 

the width parameter, and φn(t, σ) shows the 

Hermite basis functions of the nth order defined as 

follows [16]: 
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And  /nH t   is the Hermite polynomial of the 

nth order. The Hermite polynomials satisfy the 

following recurrence relation: 
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               (4-1) 

The higher order of the Hermite polynomials 

shows better quick changes in the time. The 
coefficients of Hermite basis functions expansion, 

cn, may be treated as the features used in the 

recognition process. They may be obtained by 

minimizing the sum square error, defined as:         
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This error function represents the set of linear 

equations with respect to the coefficients cn. They 

have been solved by using singular value 

decomposition (SVD) and the pseudo-inverse 

technique [26]. In numerical calculations, we have 

represented the QRS segment of the ECG signal 

by 181 data points around the R peak (90 points 

before and 90 points after). A data sampling rate 

equal to 360 Hz generates a window of 250 ms, 

which is long enough to cover a typical QRS 

complex. The data have been additionally 

expanded by adding 45 zeros to the end of each 

QRS segment. This additional information is 

added to reinforce the idea that the beats do not 

exist outside the QRS complex. Subtracting the 

mean level of the first and the last points 

normalizes the ECG signals. The width σ was 

chosen proportional to the width of the QRS 

complex. These modified QRS complexes of the 

ECG have been decomposed onto a linear 

combination of Hermite basis functions. We can 

solve the (2) with this matrix: 

A x   (6) 
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(7) 

S is number of data which are selected from one 

signal. it  (i=1,2,..s) shows the ith datum of one 

signal. Because the above matrix is not squared, 

we have used the pseudo-inverse technique. 

 

4. Neural network classifier 

We have used MLP neural networks as classifiers. 

An MLP neural network has several layers. One 

input layer of source nodes and one or more 

hidden layers of computation nodes (neurons) and 

one output layer. The problem of learning 

algorithm is very crucial for MLP neural network. 

Back-propagation (BP) learning algorithm is still 

one of the most popular algorithms [27]. In BP the 

weight values are updated by a simple gradient 

descent algorithm: 

k 1 k k kw w a g    (8) 
 

where, kg is the current gradient, ka  is the 

learning rate and   kw  is a vector of current 

weights and biases. With standard steepest 

descent, the learning rate is held constant 

throughout training, that causes the algorithm be 

very sensitive to the correct setting of the learning 

rate. If the learning rate is set too high, the 

algorithm may oscillate and we may have an 

unstable algorithm. On the other hand, if the 

learning rate is set too small, it may take a long 

time to converge. However, by allowing changes 

in learning rate change during the training 

process, the performance of the algorithm can be 

improved. An adaptive learning rate will attempt 

to keep the learning step size as high as possible 

while keeping the learning stable [28]. In Variable 

Learning Rate Back-propagation (GDX) 

algorithm the adaptive learning rate with 

momentum training is used. Gradient descent with 

momentum is one of the versions of gradient 

descent that not only allows a network to respond 

to the local gradient, but also allows it to response 

to the recent trends in the error surface. Multilayer 

networks usually use sigmoid transfer functions in 

the hidden layers. These functions can compress 

an infinite input range into a finite output range. 
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Using the steepest descent training method causes 

a big problem, because the gradient may have a 

very small magnitude and, therefore, cause small 

changes in the weights and biases.  To solve these 

problems, the resilient back-propagation (RP) 

algorithm is proposed [27]. The training phase of 

the BP algorithm network is usually time-

consuming. The conjugate gradient algorithms are 

proposed to overcome this issue. In the conjugate 

gradient algorithms, in order to determining the 

step size, search is made along the conjugate 

gradient path, which will minimize the 

performance function along that line. This will 

make generally faster convergence than steepest 

descent directions. The conjugate gradient 

algorithms start out by searching in the steepest 

descent direction (negative of the gradient) on the 

first iteration: 

0 0p g   (9) 
 

Then, a line search is performed to determine the 

optimal distance to move along the current search 

direction: 

k 1 k k kw w a p    (10)      
 

The next search direction is then determined so 

that it is conjugate of the previous search 

directions. The global method for determining the 

new search direction is to combine the new 

steepest descent direction with the previous search 

direction: 

k k k k 1p g β p     (11)     
 

The way in which the 
k constant is computed and 

distinguishes the various versions of conjugate 

gradient. For the Fletcher-Reeves update the 

method is: 
T

k k
k T

k 1 k 1

g g
β

g g 

  
(12) 

 

Equation (12), shows the ratio of the norm 

squared of the current gradient to the norm 

squared of the previous gradient. Another version 

of the conjugate gradient algorithm was 

introduced by Polak and Ribiére [29]. As with the 

Fletcher-Reeves algorithm, the search direction at 

iteration is determined by: 

k k k k 1p g β p     (13)   
 

For the Polak-Ribiére update, the constant k is 

caculated by: 
T

k 1 k
k T

k 1 k 1

g g
β

g g



 

  
(14) 

 

For all conjugate gradient algorithms, the search 

direction is periodically reset to the negative of 

the gradient. The standard reset point occurs when 

the number of iterations is equal to the number of 

network parameters (weights and biases), but 

there are other reset methods that can improve the 

efficiency of training. One such reset method was 

proposed in [30], the line search requires that the 

network response to all training inputs be 

computed several times for each search so that it 

is computationally expensive. The scaled 

conjugate gradient algorithm (SCG) was 

developed by Moller [29]. Newton's method is an 

alternative to the conjugate gradient methods for 

fast optimization. The basic step of Newton's 

method is: 
1

k 1 k k kw w A g

    (15)    
 

where, A is the Hessian matrix (second 

derivatives) of the performance index at the 

current values of the weights and biases. Because 

of the expensive calculation of the Hessian matrix, 

usually some of algorithms which don’t require 

the calculation of second derivatives are 

introduced. These are called quasi-Newton (or 

secant) methods. The quasi-Newton method, 

which has been most successful in published 

studies, is the Broyden, Fletcher, Goldfarb, and 

Shanno (BFGS) update [29].The one step secant 

(OSS) method is an attempt to bridge the gap 

between the conjugate gradient algorithms and the 

quasi-Newton (secant) algorithms. This algorithm 

does not store the complete Hessian matrix. The 

Levenberg-Marquardt (LM) algorithm [31] uses 

the approximation to the Hessian matrix in the 

following Newton-like update: 
1

T T

k 1 kw w J J µI J e 



      

(16) 

 

where, J is the Jacobian matrix, e is a vector of 

network errors, and  µ  is a constant. 

 

5. Database and performance metrics 

5.1. Performance metrics 

One of the significant issues in ECG beat 

classification is how to appropriately evaluate the 

performance of a proposed method. In this study, 

we have considered three statistical indices: 

Accuracy (Acc), Sensitivity (Se) and positive 

Predictivity (PP) which are computed in (17)-(19), 

respectively. Accuracy is the most important 

metric for determining overall system 

performance. We defined the overall accuracy of 

the classifier as follows: 

T E

T

N N
Acc   100

N


   

(17) 

where,   EN is the total number of errors in 

classification and TN  is the total number of beats 
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in classification. Equation (18), represents the 

ratio of the number of correctly detected events, 

TP (true positives), to the total number of events: 

 
TP

Se   100
TP FN

 


 (18) 

 

Pp, is the ratio of the number of correctly detected 

events, TP, to the total number of events detected 

by the analyzer and is given by: 

 
TP

Pp   100
TP FP

 


  (19) 

 

Sensitivity measures how successfully a classifier 

recognises beats of a certain class without missing 

them, whereas positive predictivity measures how 

exclusively it classifies beats of a certain type 

[32]. 

 

5.2. MIT-BIH arrhythmia database 

The MIT-BIH arrhythmia database [33] was 

used as the data source in this study. The 

database contains 48 recordings. Each record has 

a duration of 30 minutes and includes two leads; 

the modified limb lead II and one of the 

modified leads V1, V2, V4 or V5.  The sampling 

frequency is 360 Hz, the data are bandpass 

filtered at 0.1–100 Hz and the resolution is 200 

samples per mV. Twenty-three of the recordings 

are intended to serve as a representative sample 

of routine clinical recordings and 25 recordings 

contain complex ventricular, junctional, and 

supraventricular arrhythmias. There are over 

109,000 labelled ventricular beats from 15 

different heartbeat types. There is a large 

difference in the number of examples in each 

heart beat type. The largest class is “Normal 

beat” with about 75,000 examples and the 

smallest class is “Supraventricular premature 

beat” (SP) with just two examples.    The 

database is indexed both in timing information 

and beat classification. For more details about 

MIT-BIH Arrhythmia database see [34].We used 

a total of seven records marked as: 100, 101, 

102, 104, 105, 106, and 107 in the database. We 

extracted a total of 15,506 beats; 8,405 normal 

beats, 625 abnormal PVC arrhythmia beats, and 

6,476 other arrhythmic beats. We used the 

database index files from database to locate 

beats in ECG signals. 

 

6. Results 

6.1. MLP neural network architectures and 

training algorithms 

Various network architectures were evaluated to 

find an optimum solution for ECG signal 

diagnosis problem. In order to evaluate system 

performance, the number of hidden layers as well 

as the number of neurons in the hidden layers was 

varied in different experiments.  

The output (target) vector is defined with a 

combination of 1s or 0 s to represent each of the 

classes being recognized. To assign the ECG 

waveforms into one of three different classes, the 

number of neurons in the output layer is set to be 

three. Table 1 shows the ECG classes and 

representation of the desired neural network 

outputs. We have investigated four architectures 

of neural networks. Two architectures, NET1 and 

NET2 have a single hidden layer with X neurons 

which was set to 35 and 45 respectively. 

A tan-sigmoid transfer function was selected for 

hidden layers. The output layer transfer functions 

for fitting problems are generally selected to be 

linear, whereas for pattern recognition problems it 

may be a sigmoid function. However, we propose 

two other network architectures NET3 and NET4 

with two hidden layer. NET3 and NET4 also have 

three neurons in output layer.  

Hidden layers of NET3 have 30 and five neurons 

respectively and these values for NET4 are 20 and 

five neurons. Other parameters for these four 

architectures are the same. In order to facilitate the 

performance comparison of different training 

algorithms, we have used their acronyms. Table 2 

shows these training algorithms and their 

acronyms. 

 

Table 1. ECG classes and representation of desired neural 

network outputs. 

Classes ECG Description Neural Network 

Outputs 

1 Normal 1 0 0 

2 Premature Ventricular 

Contraction Arrhythmia 

0 1 0 

3 Other Arrhythmias 0 0 1 

 

Table 2. Eight different training algorithms used for 

training of MLP neural networks. 

Algorithm Acronym 

Resilient  RP 

Scaled Conjugate Gradient SCG 

Polak-Ribiére Conjugate Gradient CGP 

Conjugate Gradient with 

Powell/Beale Restarts 

CGB 

Fletcher-Powell Conjugate Gradient CGF 

Broyden, Fletcher, Goldfarb, and 

Shanno (BFGS) Quasi-Newton 

BFGS 

One Step Secant Quasi-Newton OSS 

Variable Learning Rate  GDX 
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We randomly selected 200 beats from each class, 

and used these beats for training of neural 

networks. Total number of beats in our database 

was 15,506. Clearly, the number of our training 

set is less than 3.8% of all beats. Thus, our study 

is well generalized. 

 

6.2. Experiments 

To select the last layer’s transfer function (output 

layer), and to comprise hermit features with shape 

features we performed a set of simulations whose 

results are shown in table 3. We trained four 

neural network architectures using two training 

algorithms: SCG and CGB. Respective 

recognition accuracies were then achieved. The 

training dataset included 200 beats from each 

class and the testing data set included remain 

beats. Bold numbers shows the higher accuracies 

in table 3. It can be seen that neural networks 

with linear transfer functions in their outputs 

perform better than for the sigmoid transfer 

functions. Hence, we chose a linear transfer 

function in output layers.  In order to compare the 

convergence speed of different training 

algorithms, the classifiers were trained for a 

predetermined value of mean-squared error 

(MSE). The number of training iterations and the 

time required to achieve the mentioned value of 

error were recorded. MSE was set to 0.001.  

The results are shown in table 4. In order to 

simplify the comparison among the different 

results in table 4, we have highlighted in bold 

type the best results for each of the network 

structures. In order to evaluate the recognition 

accuracies (Acc) of the classifiers with different 

training algorithms and structures, the classifiers 

were trained for a pre-defined number of 

iterations set at 1000. In order to improve the 

generalization ability, validation sets was also 

used. Two previously defined performance 

metrics were used for each neural network.  

Table 3. Comparative results for networks with linear or sigmoid transfer function in the output layer. 

 

 

 

 

 

 

 

 

Table 5 shows the results. We have compared the 
performance of MLP NN with PNN neural 
network. Comparative results of PNN and MLP 
are shown in table 6. 
 

7. Conclusion 

We have proposed a number of efficient methods 

to accurately classify ECG beats for a relatively 

large set of data. These methods include three 

modules: an efficient preprocessing module, a 

feature extraction module and a classifier. We 

used a stationary wavelet transform for denoising 

and a Savitsky-Golay filter for smoothing and 

normalization in the preprocessing module. The 

feature extraction module extracts a balanced 

combination of the Hermit features and three 

timing interval feature. Then a number of multi-

layer perceptron (MLP) neural networks with 

different number of layers and eight training 

algorithms are designed. Classification abilities of 

these algorithms were compared for three 

different classes of ECG signals. Four 

architectures with one hidden or two hidden layers 

were chosen for this investigation. As our 

experimental results indicate the neural network 

with linear transfer function at its output layer 

performs better than a sigmoid one. At the same 

time, other layers have sigmoid transfer functions. 

Generally, it is a difficult problem to determine 

which training algorithm is the fastest for a given 

task. To compare the speed of the training 

methods, consider table 4. As shown, most of the 

algorithms have good accuracies of test and they 

have good time for training but the RP algorithm 

shows the best time for training stage. The SCG 

algorithm offers a slightly better. It can be seen 

from the table 4 that for the NET3, with CGP 

algorithm has recognition accuracy about 98.02%. 

The Savitsky-Golay filter has important role. We 

                                         Accuracy with hermit features                                   Accuracy with hermit features 

  Output layer 

with Linear TF 

Output  layer with  

sigmoid TF 

Output layer with 

Linear TF 

Output layer with 

sigmoid TF 

30*5  97.23 95.37  94.22 93.1 

20*5 SCG 97.4 94.35 93.84 92.72 

35  97.31 95.19 93.87 91.68 

45  97.37 95.10 94.08 91.56 

30*5  97.94 92.69 93.93 92.38 

20*5 CGB 97.24 93.63 93.9 92.05 

35  96.99 94.71 93.8 93.7 

45  97.1 93.53 93.7 91.27 
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have tested the system without it. For example for 

SCG algorithm the RA decrease to 93.50%. We 

have used another set of features for comparison 

with Hermitian features. These are shape features. 

Simulation results show that the NET3 with CGB 

algorithm has highest RA about 97.94%. We have 

compared the performance of MLP NN with PNN 

neural network. The performance of PNN is about 

97.1%.

Table 4. Comparison among the speed of convergence of different training algorithms for detection of PVC arrhythmia. 

Hidden Layers  Training Function Accuracy in Train Accuracy in Test Training Time(s) No of Epochs 

30*5   96.63 96.26 1.7 80 

20*5  RP 96.93 96.15 1.8 86 

35   97.07 95.8 1.62 100 

45   96.96 96.28 1.69 95 

30*5   97.45 97.23 3.19 80 

20*5  SCG 96.87 97.4 2.8 74 

35   97.45 97.31 2.6 78 

45   97.8 97.37 3.4 61 

30*5   98.1 98.02 3.9 71 

20*5  CGP 97.29 97.03 3.02 62 

35   96.96 96.18 3.9 70 

45   97.06 96.68 4.64 78 

30*5   97.83 97.94 4.19 65 

20*5  CGB 97.75 97.24 3.8 61 

35   97.45 96.99 2.9 51 

45   97.62 97.1 4.3 68 

30*5   97.06 96.98 4.05 65 

20*5  CGF 96.15 95.91 3.31 60 

35   97.70 97.34 4.12 55 

45   97.57 97.09 2.98 65 

30*5   97.42 95.25 270 54 

20*5  BFGS 97.12 94.7 245 52 

35   96.21 94.73 32 60 

45   97.47 95.66 49 62 

30*5   97.26 97.01 4.3 89 

20*5  OSS 96.61 96.48 3.9 111 

35   96.48 95.05 3.7 114 

45   96.89 95.79 4.7 103 

30*5   93.54 90.6 3.5 89 

20*5  GDX 93.39 90.45 3.375 93 

35   92.82 88.78 4.5 114 

45   90.72 86.77 4 150 
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Table 5. Comparative results of two performance metrics Se and Pp. 

  Normal             PVC  

Hidden Layers Training Algorithm Se Pp Se Pp 

30*5  94.16 97.17 96.6 63.55 

20*5 RP 94.25 96.45 95.48 62.04 

35  93.33 95.63 96.67 59.43 

45  92.73 95.9 99.65 55.78 

30*5  93.59 97.74 97.16 67.62 

20*5 SCG 94.78 97.53 97.27 68.66 

35  94.26 98.34 99.85 71.52 

45  94.5 98.5 99.86 72.05 

30*5  94.58 97.94 97.04 66.34 

20*5 CGP 94.52 97.79 97.66 67.34 

35  94.21 98.34 99.88 70.79 

45  94.41 98.43 99.84 73.46 

30*5  94.54 97.83 97.7 67.13 

20*5 CGB 94.41 97.79 97.65 67.34 

35  94.32 98.72        99.91 72.63 

45  94.31 98.6 99.89 72.91 

30*5  94.07 97.42 96.24 65.48 

20*5 CGF 94.49 98.2 96.17 65.8 

35  94.19 98.48 99.9 71.27 

45  94.4 98.29 99.88 72.9 

30*5  94.52 98.07 97.86 67.61 

20*5 OSS 94.46 97.52 96.41 65.44 

35  94.26 98.34 99.87 72.61 

45  94.42 98.23 99.84 72.86 

30*5  94.17 98.29 96.58 57.59 

20*5 BFGS  94.78 97.37 96.44 59.74 

35  94.96 98.10 95.32 61.89 

45  94.50 97.68 95.26 64.09 

30*5  93.09 93.8 90.36 71.6 

20*5 GDX 94.78 94 90.82 68.78 

35  90.7 92.97 96.46 68.52 

45  93.43 94.83 99.38 69.31 
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Table 6. Comparative results of PNN and MLP neural network. 
    Normal  PVC  

Classifier Parameters Accuracy Test  Se Pp Se Pp 

PNN Spread=1 96.71  95.27 99.01 96.71 79.6 

PNN Spread=0.

7 

97.1  95.94 99.1 98.35 80.2 

MLP(CG

P) 

NET3 98.02  94.58 97.94 97.04 66.34 

MLP 

(CGB) 

NET3 97.94  94.54 97.83 97.7 67.13 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 MLPهای قلب به کمک توابع هرمیت و شبکه عصبی بندی سیگنالطبقه

 

 ، ملیحه احمدی و مونا صفرنژاد*عطاالله ابراهیم زاده

 .ایران .بابل .دانشگاه صنعتی نوشیروانی بابل

 40/10/4100 ؛ پذیرش01/10/4102 ارسال

 چکیده:

 برای ماژول سه سیستمی متشکل از  مقاله این. است افراد سلامت بر نظارت برای توسعه حال در هایدستگاه در مهمی گام قلبی آریتمای بندیکلاسه

 موجک تبدیل اول بخش در. باشدمی بندیکلاسه و ویژگی استخراج نویز، رفع ماژول شامل ماژول سه این. کندمی پیشنهاد قلب هایضربان بندیکلاسه

 اندشده گرفته بکار زمانی ویژگی سه و هرمیت هایویژگی ویژگی، استخراج بخش در. است شده استفاده قلب هایسیگنال نویز کاهش جهت ایستا

 پایگاه از فایل هفت. شدند استفاده بندیکلاسه جهت متفاوت آموزش هایالگوریتم و مختلف هایلایه تعداد با چندلایه پرسپترون عصبی شبکه سپس

 این با داشتند خوبی آموزش زمان شده گرفته بکار هایالگوریتم یهمه کلی حالت در. شدند گرفته بکار شبکه عملکرد ارزیابی جهت MIT/BIH یداده

 دادند. نشان هاالگوریتم سایر به نسبت بالاتری دقت CGP الگوریتم و بهتر زمان RP الگوریتم وجود

 .های هرمیتهای آموزش، تبدیل ویولت، ویژگی، الگوریتمMLPهای قلب، شبکه عصبی بندی ضربانکلاسه :کلیدیکلمات 

 


