Volume 12 (2024)
Volume 11 (2023)
Volume 10 (2022)
Volume 9 (2021)
Volume 8 (2020)
Volume 7 (2019)
Volume 6 (2018)
Volume 5 (2017)
Volume 4 (2016)
Volume 3 (2015)
Volume 2 (2014)
Volume 1 (2013)
A.1. General
Application of machine learning and metaheuristic optimizer algorithm for crash severity prediction in the urban road network

Morteza Mohammadi Zanjireh; farzad morady

Articles in Press, Accepted Manuscript, Available Online from 21 December 2024

https://doi.org/10.22044/jadm.2024.15103.2614

Abstract
  This paper predicts the severity of crashes based on the analysis of multiple variables and using machine learning methods. For this purpose, data related to the years 2012 to 2024 of Tempe city in the state of Arizona USA was used. Features were selected using the metaheuristic method. Then, by using ...  Read More

H.3. Artificial Intelligence
FinFD-GCN: Using Graph Convolutional Networks for Fraud Detection in Financial Data

Mohamad Mahdi Yadegar; Hossein Rahmani

Articles in Press, Accepted Manuscript, Available Online from 22 December 2024

https://doi.org/10.22044/jadm.2024.14869.2585

Abstract
  In recent years, new technologies have brought new innovations into the financial and commercial world, giving fraudsters many ways to commit fraud and cost companies big time. We can build systems that detect fraudulent patterns and prevent future incidents using advanced technologies. Machine learning ...  Read More

I.3.7. Engineering
Comparative Analysis of Tree-Based Machine Learning Algorithms on Thyroid Disease Prediction Using ROS Technique and Hyperparameter Optimization

Elahe Moradi

Articles in Press, Accepted Manuscript, Available Online from 12 January 2025

https://doi.org/10.22044/jadm.2025.14990.2598

Abstract
  Thyroid disease is common worldwide and early diagnosis plays an important role in effective treatment and management. Utilizing machine learning techniques is vital in thyroid disease diagnosis. This research proposes tree-based machine learning algorithms using hyperparameter optimization techniques ...  Read More

H.3.2.6. Games and infotainment
Harnessing Machine Learning for Procedural Content Generation in Gaming: A Comprehensive Review

Shaqayeq Saffari; Morteza Dorrigiv; Farzin Yaghmaee

Articles in Press, Accepted Manuscript, Available Online from 15 January 2025

https://doi.org/10.22044/jadm.2025.15016.2603

Abstract
  Procedural Content Generation (PCG) through automated and algorithmic content generation is an active research field in the gaming industry. Recently, Machine Learning (ML) approaches have played a pivotal role in advancing this area. While recent studies have primarily focused on examining one or a ...  Read More

H.3. Artificial Intelligence
X-SHAoLIM: Novel Feature Selection Framework for Credit Card Fraud Detection

Sajjad Alizadeh Fard; Hossein Rahmani

Volume 12, Issue 1 , January 2024, , Pages 57-66

https://doi.org/10.22044/jadm.2024.13630.2480

Abstract
  Fraud in financial data is a significant concern for both businesses and individuals. Credit card transactions involve numerous features, some of which may lack relevance for classifiers and could lead to overfitting. A pivotal step in the fraud detection process is feature selection, which profoundly ...  Read More

H.3. Artificial Intelligence
Application of Stacked Ensemble Techniques in Head and Neck Squamous Cell Carcinoma Prognostic Feature Subsets

Damianus Kofi Owusu; Christiana Cynthia Nyarko; Joseph Acquah; Joel Yarney

Volume 12, Issue 1 , January 2024, , Pages 67-81

https://doi.org/10.22044/jadm.2023.12420.2388

Abstract
  Head and neck cancer (HNC) recurrence is ever increasing among Ghanaian men and women. Because not all machine learning classifiers are equally created, even if multiple of them suite very well for a given task, it may be very difficult to find one which performs optimally given different distributions. ...  Read More

H.3. Artificial Intelligence
A New Hybrid Method to Detect Risk of Gastric Cancer using Machine Learning Techniques

Ali Zahmatkesh Zakariaee; Hossein Sadr; Mohamad Reza Yamaghani

Volume 11, Issue 4 , November 2023, , Pages 505-515

https://doi.org/10.22044/jadm.2023.13377.2464

Abstract
  Machine learning (ML) is a popular tool in healthcare while it can help to analyze large amounts of patient data, such as medical records, predict diseases, and identify early signs of cancer. Gastric cancer starts in the cells lining the stomach and is known as the 5th most common cancer worldwide. ...  Read More

H.3. Artificial Intelligence
Fast COVID-19 Infection Prediction with In-House Data Using Machine Learning Classification Algorithms: A Case Study of Iran

Ali Rebwar Shabrandi; Ali Rajabzadeh Ghatari; Nader Tavakoli; Mohammad Dehghan Nayeri; Sahar Mirzaei

Volume 11, Issue 4 , November 2023, , Pages 573-585

https://doi.org/10.22044/jadm.2023.13291.2458

Abstract
  To mitigate COVID-19’s overwhelming burden, a rapid and efficient early screening scheme for COVID-19 in the first-line is required. Much research has utilized laboratory tests, CT scans, and X-ray data, which are obstacles to agile and real-time screening. In this study, we propose a user-friendly ...  Read More

H.3. Artificial Intelligence
Application of Machine Learning Algorithms in Improving Nano-based Solar Cell Technology

Saheb Ghanbari Motlagh; Fateme Razi Astaraei; Mojtaba Hajihosseini; Saeed Madani

Volume 11, Issue 3 , July 2023, , Pages 357-374

https://doi.org/10.22044/jadm.2023.12583.2414

Abstract
  This study explores the potential use of Machine Learning (ML) techniques to enhance three types of nano-based solar cells. Perovskites of methylammonium-free formamidinium (FA) and mixed cation-based cells exhibit a boosted efficiency when employing ML techniques. Moreover, ML methods are utilized to ...  Read More

H.3. Artificial Intelligence
Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

Mohammad Hossein Shayesteh; Behrooz Shahrokhzadeh; Behrooz Masoumi

Volume 11, Issue 2 , April 2023, , Pages 259-289

https://doi.org/10.22044/jadm.2023.12538.2407

Abstract
  This paper provides a comprehensive review of the potential of game theory as a solution for sensor-based human activity recognition (HAR) challenges. Game theory is a mathematical framework that models interactions between multiple entities in various fields, including economics, political science, ...  Read More

Detecting Breast Cancer through Blood Analysis Data using Classification Algorithms

Oladosu Oladimeji; Olayanju Oladimeji

Volume 9, Issue 3 , July 2021, , Pages 351-359

https://doi.org/10.22044/jadm.2021.9839.2116

Abstract
  Breast cancer is the second major cause of death and accounts for 16% of all cancer deaths worldwide. Most of the methods of detecting breast cancer are very expensive and difficult to interpret such as mammography. There are also limitations such as cumulative radiation exposure, over-diagnosis, false ...  Read More