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Head and neck cancer (HNC) recurrence is ever increasing among
Ghanaian men and women. Because not all machine learning
classifiers are equally created, even if multiple of them suite very well
for a given task, it may be very difficult to find one which performs
optimally given different distributions. The stacking learns how to
best combine weak classifier models to form a strong model. As a
prognostic model for classifying HNSCC recurrence patterns, this
study tried to identify the best stacked ensemble classifier model
when the same ML classifiers for feature selection and stacked
ensemble learning are used. Four stacked ensemble models; in which
first one uses two base classifiers: gradient boosting machine (GBM)
and distributed random forest (DRF); second one uses three base
classifiers: GBM, DRF, and deep neural network (DNN); third one
uses four base classifiers: GBM, DRF, DNN, and generalized linear
model (GLM); and fourth one uses five base classifiers: GBM, DRF,
DNN, GLM, and Naive bayes (NB) were developed, using GBM
meta-classifier in each case. The results show that implementing
stacked ensemble technique consisting of five base classifiers on
gradient boosted features achieves better performance than achieves
on other feature subsets, and implementing this stacked ensemble
technique on gradient boosted features achieves better performance
compared to other stacked ensemble techniques implemented on
gradient boosted features and other feature subsets used. Learning
stacked ensemble technique having five base classifiers on GBM
features is clinically appropriate as a prognostic model for classifying
and predicting HNSCC patients’ recurrence data.

1. Introduction

Treatment of recurrent Head and Neck Cancer
(HNC) requires accurate prognosis associated with
it in order to determine the type and extent of
therapy for effective and to fully destroy cancerous
cells in the human body. The recurrence rate of
HNSCC is ever increasing, which decreases the
survival rate, and yet there are few studies on the
applications of Machine Learning (ML) techniques
in the prognosis of recurrent Head and Neck
Squamous Cell Carcinoma (HNSCC). Previous
studies have shown that there is an increase in
survival rates of patients with HNSCC as a result

of advances in treatments as well as modification
of lifestyle [9,21]. The increase in survival rates
might be associated with secondary aftermaths:
recurrent HNSCC (local recurrence, regional
recurrence, and distant recurrence) or second
primary tumor [10,46]. In spite of the significant
improvement in treatment modalities to increase
overall survival (OS) of patients with HNSCC, they
still experience relapse which affects their survival
rates [6,22,43]. The 5-year OS rate was 83% and
48% for patients with HNSCC relapse in the
primary stage and advanced stage respectively
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[20]. With treatment options like chemotherapy,
radiotherapy, surgery, or a combination of these for
patients with HNSCC, 40%-50% of them
experience recurrences; and presently, the majority
of HNCs diagnosed are regionally advanced with
lymph node metastases [21,42]. Even with the
advances in the treatment modalities of HNSCCs,
nearly 650,000 patients with new cases of the
disease are diagnosed each year globally, and one
third of these patients experience relapse or
recurrence [2,4,34,45]. A recently published global
cancer statistics also reported that each year, new
HNSCC cases of more than 800,000 are diagnosed
[6]. Also, during the follow-up tests, 10% to 20%
of patients with early-stage cancer experience
recurrent HNSCC, while a recurrence rate of
approximately 50% was experienced by those with
locally advanced stage of the disease, particularly
in locoregional pattern [1]. These HNCs have
annual incidence worldwide of more than 550,000
cases accounting for 300,000 deaths each year [22].
It is the sixth most common cancer worldwide, and
more than half a million of new cases emerge
[17,43]. Approximately 375,000 number of deaths
from HNC worldwide was recorded in 2012, of
which 4.6% was total cancer mortality [17]. The
major cause of morbidity is recurrent HNSCC, and
is reducing long-term survival of patients with
HNSCC. HNC-related death is mostly contributed
by locoregional recurrences, which is 15% - 50%
of patients with HNSCC [5,7,34]. Over the
decades, various ML techniques have been applied
in the cancer diagnosis and prognosis. Medically,
the disease is identified in a patient by its signs and
symptoms (called diagnosis) and the prediction of
its outcome on the patient is studied (called
prognosis). Different subtypes of cancer have been
identified and categorized as a heterogeneous
disease. The application of ML technigues has been
the aim to define a model for the progression and
treatment of cancer subtypes. Various standalone
ML techniques, including but not limited to
Acrtificial Neural Network (ANNSs), Naive Bayes
(NB), Support Vector Machines (SVMs), and
Decision Trees (DTs); and homogeneous ensemble
ML techniques including Gradient Boosting
Machine (GBM) and Random Forest (RF), have
been applied in a wide range of various cancer
research to build prognostic models from complex
datasets, known to offer effective and high
accuracy in decision making; thus, revealing their
importance [26]. Based on the latest PubMed
statistics, over 1,500 published articles on cancer
with ML techniques application have been
recorded. Nonetheless, majority of these papers
focused on the applications of ML techniques to
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identify, classify, detect, and/or distinguish tumors
and other malignancies. Primarily, ML techniques
have been applied to cancer diagnosis and
detection [32]. According to [12,26], the
applications of ML techniques for cancer
prediction and prognosis have only been relatively
recently used by cancer researchers. As a result, the
number of published papers in this field is
relatively less studied; thus, less than 120 papers
published. Studies by [3,13-15,19,25,29,30,35] had
proved that ML techniques are powerful to
generate more accurate diagnosis or prognosis
outcomes that conventional statistical methods
could not otherwise generate. Given less published
papers on application of ML techniques in HNSCC
prognosis, most researchers focused on HNSCC
susceptibility and/or survivability, with very few of
them focusing on HNSCC recurrence. Examples of
published articles on ML applications in recurrent
HNSCC subtypes are; [3,8,11,16,23,31,37,39-
41,48].

[3] applied a feed-forward ANN, where LR was the
benchmark, to identify the prognosis of
locoregional recurrences in early-stage oral tongue
squamous cell carcinoma (OTSCC), and concluded
that ANN with accuracy of 92.7% outperformed
LR with accuracy of 86.5%. [8] identified the
prognostic  factors for locally advanced
nasopharyngeal carcinoma relapse, and concluded
that DT classifiers showed high prediction in the
prognosis of individual recurrence pattern with
overall accuracy of 84.5% — 95.2% compared to the
Kaplan-Meier analysis. [40,41,48] applied SVM in
the prediction of laryngeal cancer recurrence and
concluded that the said prognostic model had high
accuracy, and thus a good classifier for tumor
progression. [37] applied SVM in the prognosis of
oral cancer recurrence. [36] used SVM with
accuracy of 87.0% to identify the prognosis of
patients with recurrence and metastasis of HNSCC
and concluded to be a good model for HNSCC
recurrence/metastasis. A study on nasopharyngeal
carcinoma for local recurrence was conducted by
[11], with 7 classification techniques; DT, KNN,
LDA, LR, NB, RF and RBF-SVM, and 6 feature
selection techniques; MIM, FSCR, RELF-F,
CMIM, MRMR, and JMI. They achieved optimal
integration methods of outperforming classifiers
for prognosis with accuracies of (FSCR+RF:
89.2%, FSCR+KNN: 88.3%, FSCR+RBF-SVM:
86.7%, and MRMR+RBF-SVM: 88.3%). A similar
study conducted by [31] identified the prognosis of
patients with nasopharyngeal carcinoma who were
treated with intensity-modulated radiotherapy
(IMRT) and experienced recurrence, using ANN,
KNN, and SVM, and concluded that the
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classification models considered exhibited
potential and high prediction accuracies; ANN:
81.2%, KNN: 77.5%, and SVM: 73.2%. Again,
[16] identified the most prognostic features that are
associated with oral squamous cell carcinoma
(OSCC) relapses using Dynamic Bayesian
Network (DBN), NB, ANN, SVM, DT, and RF
with accuracies obtained on clinical data as (BN:
73.7%, NB: 74.6%, ANN: 74.6%, SVM: 74.6%,
DT: 81.6%, RF: 74.6%), on imaging data (BN:
86.4%, NB: 87.5%, ANN: 83%, SVM: 84.1%, DT:
77.3%, RF: 83%), on tissue genomic data (BN:
75.8%, NB: 74.2%, ANN: 74.2%, SVM: 74.2%,
DT: 69.2%, RF: 80%), and on blood genomic data
(BN: 87.5%, NB: 91.7%, ANN: 95.8%, SVM:
95.8%, DT: 87.5%, RF: 87.5%). They concluded
that, with all the three-input (clinical, imaging, and
genomic) data fed into DBN, the model revealed a
high accuracy of 100%.

Though these previous studies produced some
useful results, each using one or several ML
techniques on individually basis for recurrent
HNSCC subtypes prognosis, it is possible that their
prognostic models would have been outperformed
by an ensemble ML technique if they had been
combined to the training data in a stacking
ensemble; given now that, there is a rapid
significant development of ensemble ML
techniques in cancer prediction and prognosis.
According to [12], not all ML techniques are
equally created; while some perform better given
problems of certain kinds, others do better given
problems of other kinds. For instance, given the
size of biological domain, some ML techniques
may scale nicely to meet such size, while others
will not. Similarly, some techniques might have
assumptions regarding the kind of data that might
render them incapable for a given problem at hand.
It is this that makes it more important to consider
stacked generalization of ML techniques on any
given set of training data in cancer prognosis.
Many well-known modern ML techniques are
mostly ensembles; including bagging (random
forest) and boosting (gradient boosting machine)
and have been applied in most studies, particularly
in medical fields to obtain better performance
[18,23,38]. Whereas random forest minimizes the
variance and solves over-fitting issues in the
model, boosting minimizes the bias and solves
under-fitting issues in the model during the training
process. Stacking combines multiple of different
base classifiers into a strong one in their
combination using a meta learning algorithm. The
benefit of stacking is that it can harness the
capabilities of a range of well-performing models
on a classification task and make predictions that
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have better performance than any single model in
the ensemble [47]. It worthwhile to combined these
techniques in an ensemble learning so as to achieve
a well optimally ensemble classification model for
HNSCC recurrence among HNSCC patients using
stacked ensemble learning of ML classifiers.

2. Materials and Methods

2.1. Dataset

To evaluate the performance of the classification
models, the HNSCC subtypes dataset including
laryngeal  cancer, hypopharyngeal  cancer,
nasopharyngeal cancer, and oropharyngeal cancer
was obtained from the registry of radiotherapy and
oncology department at Korle Bu, Accra. It has a
total of 125 instances, 18 attributes (features), and
a class label with binary outcome coded 1 (as
recurrence) or 0 (as nonrecurrence). There are 33
and 92 female and male records respectively. The
data was preprocessed using model imputation to
avoid the deletion of instances with missing
examples. In order to normalize the training
examples, one-hot encoding was used on attributes
with more than two levels. The summary of this
dataset is shown table 1. To generate stacked
ensemble model, [23] proposed a stacked ensemble
algorithm, a technique that found the optimal
weighted average of diverse base learners for
classification of various healthcare datasets
(Wisconsin Breast Cancer, Pima Indian Diabetes
Dataset, and Indian Liver Patient Dataset using
GBM, DRF, and DNN as base learners, and GLM
as a meta learner to stack GBM and DRF in one
case; then stack GBM, DRF, and DNN in another
case. [27] likewise proposed a stacked ensemble
algorithm, a technique that found the best meta-
learner in a stacking ensemble for classifying
breast cancer, using GBM, DRF, DNN, and GLM
as base learners, and each of which was used as a
meta-learner to determine the best meta-learner in
a stacking ensemble. Base on the ML algorithms
considered by [23,27] as the most effective
algorithms to providing the most effective
ensemble classification model for HNSCC
prognosis, all have been employed under this study
with the inclusion of NB to experiment a stacked
ensemble consisting of five (5), at least one more
that of the state-of-the-art stacked ensemble model
consisting of a maximum of four (4) base
classifiers in HNC prognosis. Thus, NB was
chosen from among the most effective single base
classifiers (DT, KNN, NB, and SVM) considered
by the previous studies, based on its performance
on the experimental data. Data augmentation was
generally used to improve a model’s performance.
It is a technique that comprises a set of methods
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used to artificially increase the number of data
samples present in the dataset. This was done as
deep learning models generalize well when the
number of data samples available to train on is
large. In this way, state-of-the-art models can be
created with fewer data samples available. The data
augmentation technique is usually applied to
computer vision applications where domain-
specific data, such as medical data, is not
abundantly available. Thus, data augmentation
technique was used. In medical research, it takes
time to collect sufficient samples as most patients
are usually lost to follow-up to check whether or
not they had a recurrence and thus, the sample size
is usually small. HNSCC is considered recurrence
if the patient was treated with curative intent and
after the cancer reaches its remission, they
redeveloped HNSCC termed as recurrence.
Patients that received palliative treatment intent
and still had cancer are not considered cancer
recurrent patients. Unfortunately, most patients
received palliative intent treatment and only a few
could receive curative intent due to financial
difficulties, causing small instances. Hence, there
is a need to implement feature selection methods to
identify significant variables that are important to
the clinical outcomes and to avoid the over-fitting
problem. In this research, implementing the feature
selection method aims to find an optimal number
of features for the small sample of oral cancer
prognosis data. The number of features in the
dataset was considered too many (18 attributes) if
compared to the sample size (125 instances). Thus,
the feature selection method is needed to reduce the
number of features and select only those significant
to HNSCC prognosis. Thus, the original dataset
was subjected to five feature selection techniques,
namely GBM, DRF, DNN, GLM, and NB, each
provided feature subset of the data as shown table

2. Training data (75%) and test data (25%) were
constructed for each data subset. The evaluation
metrics; accuracy, recall, specificity, logarithmic
loss (logloss), and AUC of Receiver Operating
Characteristic Curve were used to measure the
performance of the classification models. The H20
package for machine learning library in R
programming language was used.

3. Description of Proposed Stacked Ensemble
Techniques

This paper presented four different techniques of
stacked ensemble learning. The first one used two
base classifiers, namely gradient boosting machine
(GBM) and distributed random forest (DRF); the
second one used three base classifiers, namely
GBM, DRF, and deep neural network (DNN); the
third one used four base classifiers, namely GBM,
DRF, DNN, and generalized linear model (GLM);
and the fourth one used five base classifiers,
namely GBM, DRF, DNN, GLM, and Naive bayes
(NB); and in each case, a meta-classifier called
GBM was used [27].

Various cancer data subsets related to HNSCC
provided by various feature selection techniques
used in this study were used, and compare the
performance of stacked ensemble models on these
various data subsets.

The evaluation results confirmed that stacked
ensemble techniques built on Gradient Boosted
feature subset (GBM-FS) has the ability to perform
better compared to stacked ensemble techniques
built on feature subsets provided by other feature
selection techniques. Similarly, the evaluation
results confirmed that stacked ensemble techniques
consisting of five base classifiers has the ability to
perform better compared to other stacked ensemble
techniques considered on five feature subsets of
HNSCC dataset.

Table 1. Dataset description.

Dataset No. of instances No. of attributes

Class label with No. of instances

HNSCC 125 18

Class 1: recurrence (61); class 0: nonrecurrence (60)

Table 2. Optimal Feature Subset Selected.

Feature Selection

Feature Subset Selected

Technique

GBM-FS Nodes, Age, Smoke, StagelV, p63, TreatCCRT, PaTT4, Size

DRF-FS TreatCCRT, Age, Smoke, Invasion, PINN2, HPV, PaTT2, TreatRT, Nodes, PaTT4, StagelV, SiteNPC, p16,
Size, Drink,

DNN-FS TreatCCRT, TreatRT, p63, Nodes, p16, Size, Smoke, HPV

GLM-FS p63, TreatCCRT, Stagell, paTT3, Smoke, Stagelll, Nodes, PINN3

NB-FS TreatCCRT, p63, Smoke, Nodes, paTT3, TreatRT, Invasion, Age
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Figure 1. Rank plots for features by feature selection techniques.

Algorithm 1. Stacking with k-fold (k=10) cross validation

Input: Dataset D = {x;,y;}=,; learning ratea > 0
C = {hy, h,, ..., h, } —classifiers set which constitute the ensemble.
Output: An ensemble classifier H
Step 1: Adopt cross validation approach in preparing a training set for meta-classifier
Randomly split D, into V equal-size subsets: D = {D,, D,, ..., Dx}
forv « 1toK do
Step 1.1: Learn first-level classifiers {hq, h,, ..., h.}
forl < 1toLdo
Learn a classifier hy,; from D/D,,
end for
Step 1.2: Construct a training set for second-level classifiers
for x; € D, do
Get a record {x},y;}, where x; = {hy; (X;), hyea (X;), oo, i, (%)}
end for
end for
Step 2: Learn second-level classifier
Re-learn first-level classifier h; from the collection of Z = {x;, v;}i-,

end for
Return H(x) = k' (hl(x), h, (%), ..., hL(x))
Step 3: Predict unseen example (testing set)

for each x € D, do
Apply an ensemble classifier H(x) on x.
end for

71



Owusu et al./ Journal of Al and Data Mining, Vol. 12, No. 1, 2024

To achieve better performance using these base
classifiers from H20, GBM, DRF, DNN, GLM, and
NB were selected [44]. For the meta-classifier,
GBM model was used [27] as it was the best

performing base classifier

among the base

classifiers considered in this study as shown in
Figure 2. To obtain data subsets for learning
stacked ensemble technigues, each base classifier
was used to perform feature selection, each of
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Table 3. Classifiers with their corresponding hyper-parameter values.

Classifiers Hyper-parameters in grid search with the corresponding hyperparameters fixed values
range of values
GBM max_depth = ¢(7, 9), ntrees = 3000
learn_rate = ¢(0.01, 0.1), nfolds = 10
learn_rate_annealing=c(0.99, 1), Fold_assignment = "Modulo"
sample_rate=c(0.5, 0.7, 1), keep_cross_validation_predictions = True
col_sample_rate=c(0.8, 0.9, 1) stopping_rounds = 50
DRF max_depth = ¢(9, 30), ntrees = 3000
mtries = 3, nfolds = 10
sample_rate = ¢(0.5, 0.75, 1), Fold_assignment = "Modulo"
col_sample_rate_per_tree= (0.8, 0.9, 1) keep_cross_validation_predictions = True
stopping_rounds = 50
DNN activation=c("Rectifier", "Tanh"), epochs =20
hidden = c(5, 10, 50), nfolds = 10
11 =¢(0, 1e-3, 1e-5), Fold_assignment = "Modulo"
12 =¢(0, 1le-3, 1e-5), keep_cross_validation_predictions = True
stopping_rounds = 50
NB Laplace=c(0, 5, by 0.5) nfolds = 10
Fold_assignment = "Modulo"
keep_cross_validation_predictions = True
GLM alpha=c(0.1) nfolds = 10
remove_collinear_columns = True
Fold_assignment = "Modulo"
keep_cross_validation_predictions = True
4. Results DNN, GLM, and NB) on the test set for all the data

This study compared the performance of the
stacked ensemble techniques implemented on
various feature subsets of the HNSCC dataset
provided by various feature selection techniques
used in this study. The stacked ensemble
techniques were trained on the training set, and
were evaluated on the test set for each data subset.
Table 4. Performance of stacked ensemble model (model-

GBM2) consisting of two base classifiers (GBM AND
DRF) on test data.

Feature selectors

Metrics GBM-  DRF- DNN- GLM- NB-
FS FS FS FS FS
Accuracy 0.8172 0.7813  0.6667 0.7419  0.6875
Logloss 0.3379 05879 0.7379  0.5959  0.7889
Recall 0.8939 0.8636  0.9130  0.9245 0.8421
Specificity =~ 0.6296  0.6000 0.4255  0.5000 0.4615
AUC 0.8018 0.7391 0.7289  0.7684  0.7198

Table 4 shows the performance of the proposed the
stacked ensemble technique having two base
classifiers (GBM and DRF) on the test set of
different feature subsets of the data; table 5 shows
the performance of the proposed stacked ensemble
technique having three base classifiers (GBM,
DRF, and DNN) on the test set for all the data
subsets used in this study; Table 6 shows the
performance of the proposed stacked ensemble
technique having four base classifiers (GBM, DRF,
DNN, and GLM) on the test set for all the data
subsets used in this study; and Table 7 shows the
performance of the proposed stacked ensemble
technique having five base classifiers (GBM, DRF,
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subsets used in this study.

Table 5. Performance of stacked ensemble model (model-
GBM3) consisting of three base classifiers (GBM, DRF,
AND DNN) on test data.

Feature selectors

Metrics GBM- DRF- DNN- GLM- NB-
FS FS FS FS FS
Accuracy 0.8278 0.7813  0.7527 0.7312  0.7813
Logloss 0.3267 0.4167  0.4257 0.4267  0.4269
Recall 0.9206  0.8333  1.0000 0.8793  0.8333
Specificity ~ 0.6333  0.6250  0.9855 0.4857  0.6250
AUC 0.8625 0.8623  0.7023 0.7322  0.7319

Table 6. Performance of stacked ensemble model (model-
GBM4) consisting of four base classifiers (GBM, DRF,
DNN, and GLM) on test data.

Feature selectors

Metrics GBM- DRF- DNN- GLM- NB-
FS FS FS FS FS
Accuracy 0.8817  0.8438  0.8280 0.7742  0.7500
Logloss 0.3042 04141 04111 0.4241  0.4441
Recall 0.9143  0.6667  0.8630 0.9138 0.8571
Specificity ~ 0.7826  0.9500  0.7000 0.5429  0.5455
AUC 0.8809  0.8179  0.7597 0.7908  0.7536

Considering the Tables 4, 5, 6, and 7, for the data
subsets used in this study, best results were
obtained using stacked ensemble learning. For the
stacked ensemble having two base classifiers on
test data in table 4, best accuracy (81.72%), log loss
(0.3379), specificity (62.96%), and AUC (0.8018)
were obtained for data subset provided by GBM
feature selection technique. For stacked ensemble
model having three base classifiers on test data in
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table 5, best accuracy (82.78%), log loss (0.3267),
and AUC (0.8625) for data subset provided by
GBM feature selection technique. Interestingly,
best recall (100%) and specificity (98.55%) were
obtained for DNN data subset.

Table 7. Performance of stacked ensemble model (model-
GBM5) consisting of five base classifiers (GBM, DRF,
DNN, GLM, AND NB) on test data.

Feature selectors

Metrics GBM- DRF- DNN- GLM- NB-
FS FS FS FS FS
Accuracy 0.9063 0.8817  0.8172 0.8280  0.8438
Logloss 0.2959 0.3041  0.3679 0.3659  0.3359
Recall 0.7500 0.9265 0.8714  0.8533  0.9091
Specificity ~ 1.0000  0.7600  0.6522 0.7222  0.7000
AUC 0.9251 0.8321  0.7947 0.8010  0.8333

Parformance of stacked ensemble model having two
base classifiers (GBM and DRF) on feature subsets

— — 7 — -
GBM.FS DREFS DNNFS GLM.FS NB FS

Hechon Te

For stacked ensemble model having four base
classifiers on test data in Table 6, best accuracy
(88.17%), log loss (0.3042), recall (91.43%), and
AUC (0.8809) was obtained for GBM data subset.
Best specificity (95.00%) was obtained for DRF
data subset. For stacked ensemble model having
five base classifiers on test data in Table 7, best
accuracy (90.63%), log loss (0.2959), specificity
(100%), and AUC (0.9251) was obtained for GBM
data subset. Best recall (92.65%) was obtained for
DRF feature subset. The graphs of the information
in tables 4, 5, 6, and 7 are represented in Figure 3.

Performance of stacked ensemble model having three
base classifiers (GBM, DRF, & DNN) on feature subsets
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Figure 3. Performance plots of feature selection techniques based on stacked ensemble techniques.

In addition, Tables 8, 9, 10, 11, and 12 show the
performance comparison of various stacked
ensemble techniques implemented on each feature
subset of the data used in this study. For data
subsets provided by each feature selection
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technique, best results were obtained using stacked
ensemble learning. Table 8 shows the performance
comparison of various stacked ensemble
techniques implemented on the test set of features
subset provided by GBM feature selection.
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Table 8. Performance comparison of stacked ensemble models on GBM-FS test set.

Stacked ensemble

Stacked ensemble model-

Stacked ensemble model-  Stacked ensemble model-

Metrics model-GBM2 GBM3 GBM4 GBMb5
Accuracy 0.8172 0.8278 0.8817 0.9063
Logloss 0.3379 0.3267 0.3042 0.2959
Recall 0.8939 0.9206 0.9143 0.7500
Specificity 0.6296 0.6333 0.7826 1.0000
AUC 0.8018 0.8625 0.8809 0.9251
Table 9. Performance comparison of stacked ensemble models on DRF-FS test set.
Stacked ensemble Stacked ensemble model-  Stacked ensemble model-  Stacked ensemble model-
Metrics model-GBM2 GBM3 GBM4 GBMb5
Accuracy 0.7813 0.7813 0.8438 0.8817
Logloss 0.5879 0.4167 0.4141 0.3041
Recall 0.8636 0.8333 0.6667 0.9265
Specificity 0.6000 0.6250 0.9500 0.7600
AUC 0.7391 0.8623 0.8179 0.8321
Table 10. Performance comparison of stacked ensemble models on DNN-FS test set.
Stacked ensemble Stacked ensemble model- ~ Stacked ensemble model-  Stacked ensemble model-
Metrics model-GBM2 GBM3 GBM4 GBM5
Accuracy 0.6667 0.7527 0.8280 0.8172
Logloss 0.7379 0.4257 0.4111 0.3679
Recall 0.9130 1.0000 0.8630 0.8714
Specificity 0.4255 0.9855 0.7000 0.6522
AUC 0.7289 0.7023 0.7597 0.7947
Table 11. Performance comparison of stacked ensemble models on GLM-FS test set.
Stacked ensemble Stacked ensemble model- ~ Stacked ensemble model-  Stacked ensemble model-
Metrics model-GBM2 GBM3 GBM4 GBM5
Accuracy 0.7419 0.7312 0.7742 0.8280
Logloss 0.5959 0.4267 0.4241 0.3659
Recall 0.9245 0.8793 0.9138 0.8533
Specificity 0.5000 0.4857 0.5429 0.7222
AUC 0.7684 0.7322 0.7908 0.8010
Table 12. Performance comparison of stacked ensemble models on NB-FS test set.
Stacked ensemble Stacked ensemble model-  Stacked ensemble model-  Stacked ensemble model-
Metrics model-GBM2 GBM3 GBM4 GBM5
Accuracy 0.6875 0.7813 0.7500 0.8438
Logloss 0.7889 0.4269 0.4441 0.3359
Recall 0.8421 0.8333 0.8571 0.9091
Specificity 0.4615 0.6250 0.5455 0.7000
AUC 0.7198 0.7319 0.7536 0.8333

It can be observed that the stacked ensemble
technique having five base classifiers performed
better than other techniques implemented on GBM
feature subset of the data used in this study. For this
data subset, best accuracy (90.63%), log- loss
(0.2959), specificity (100%), and AUC (0.9251)
were obtained using stacked ensemble technique
having five base classifiers followed by stacked
ensemble technique having four base classifiers
with accuracy (88.17%), logloss (0.3042), and
AUC (0.8809). Best recall (92.06%) was obtained
using stacked ensemble technique having three
base classifiers. In table 9, best accuracy (88.17%),
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log loss (0.3041), recall (92.65%), and AUC
(0.8321) were obtained using the stacked ensemble
technique having five base classifiers followed by
stacked ensemble technique having four base
classifiers with accuracy (84.38%) and log loss
(0.4141) for DRF feature subset of the data. For
DNN feature subset data, best accuracy (82.80%)
with higher log loss (0.4111) were obtained using
stacked ensemble technique consisting of four base
classifiers followed by stacked ensemble technique
having five base classifiers; accuracy (81.72%)
with best log loss (0.3679) and AUC (0.7947). For
GLM data subset, best accuracy (82.80%), log loss
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(0.3659), specificity (72.22%), and AUC (0.8010)
were obtained using stacked ensemble technique
having five base classifiers followed by stacked
ensemble technique having four base classifiers
with accuracy (77.43%). For NB data subset, best
accuracy (84.38%), log loss (0.3359), recall
(90.91%), specificity (70.00%), and AUC (0.8333)
were obtained using stacked ensemble technique
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having five base classifiers followed by stacked
ensemble technique having three base classifiers
with accuracy (78.13%), log loss (0.4269), and
specificity (62.50%). The graphs of the information
in Tables 8, 9, 10, 11, and 12 are represented in
Figure 4.
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Figure 4. Performance plots of stacked ensemble techniques on various feature subsets.

Partial Dependence Plot (PDP) and Individual
Conditional Expectations (ICE) were used to make

prognostications of recurrence patterns on HNSCC
patients. The PDP is similar to ICE, and shows the
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marginal effect a feature has on the predicted class
label (binary classification in this case) of a
machine learning model. A PDP or ICE can show
whether the relationship that exists

between the target and a feature is linear,
monotonic or more complex. The yellow curves in
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For feature Nodes on the class label, PDP shows
that, the probability of recurrence increases with a
greater number of neck nodes exceeding about
50% compared to that with a smaller number of
neck nodes. The prediction of recurrence is centred
at “0” until the number of lymph nodes exceeds
50%. The probability of recurrent increases around
50% of the presence of lymph nodes, but is this true
for every patient (instance) in the dataset? The ICE
plot reveals that for most patients, the lymph nodes
effect follows the average pattern of an increase of
lymph nodes around 50%, but there are some
exceptions: For some patients that have a high
predicted probability at few of lymph nodes, the
predicted recurrence does not change with much
presence of lymph nodes.

Similarly, for the feature Size on the class label, the
PDP explains that with low tumor size of 2 cm or
less, the possibility of experiencing recurrence is
zero while it is around 0.09 for larger tumor size
greater than 2 cm. Interestingly, the predicted
probability of experiencing recurrence does not fall
when the size of tumor is greater than 2 cm. PDP
shows that the recurrent probability increases at
around 0.55 (around 2 cm) of the tumor size, but is
this true for every instance in the dataset? The ICE
plot reveals that for most patients the tumor size
effect follows the average pattern of an increase at
around 2 cm, but there are some exceptions: For
some patients that have a high predicted probability
at a smaller tumor size (2 cm), the predicted
recurrent HNSCC probability does not change with
size (tumor size 2 cm or greater). This feature has
a positive marginal effect on the target binary class.

For feature TreatCCRT on class label, PDP
explains that as more of Concurrent
Chemoradiotherapy ~ (CCRT) treatment is

administered on patients on regular basis, less
recurrences are experienced and vice versa. The
PDP explains that the probability of recurrence
decreases around when the treatment process is
half-way (55%) to its completion, but is this true
for every patient in the dataset? The ICE plot
reveals that for most patients, the TreatCCRT
effect follows the average pattern of decrease at
around 55% to its completion, but there are some
exceptions: For some patients that have low
predicted probability at the half-way of treatment
with CCRT, the predicted recurrence does not
change with TreatCCRT completion. This feature
has a positive marginal effect on the target binary
class. Similar interpretation can be made for other
PDP and ICE plots.

In summary, the results of various stacked
ensemble techniques implemented on feature
subsets of the data provided by various feature
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selection techniques used in this study showed that,
all the stacked ensemble techniques used in this
study achieved higher performance on data subset
provided by GBM feature selection technique
compared to their performance results on data
subsets provided by other feature selection
techniques. It was also observed that for each
stacked ensemble technique implemented on each
feature subset of the data provided by each feature
selection technique with the exception of DNN
feature subset data, the stacked ensemble technique
consisting of five base classifiers achieved the
highest accuracy compared to other stacked
ensemble techniques used in this study. The
stacked ensemble technique having four base
classifiers achieved the highest accuracy on data
subset provided by DNN feature selection
technique. In terms of log loss, it was observed that
for each stacked ensemble technique implemented
on each feature subset of the data provided by each
feature selection technique, the stacked ensemble
technique consisting of five base classifiers
achieved the least logloss compared to other
stacked ensemble techniques used in this study. In
terms of AUC, it was also observed that for each
stacked ensemble technique implemented on each
feature subset of the data provided by each feature
selection technique with the exception of DRF
feature subset data, the stacked ensemble technique
consisting of five base classifiers achieves the
highest AUC compared to other stacked ensemble
techniques used in this study. The stacked
ensemble technique having three base classifiers
achieves the highest AUC on data subset provided
by DRF feature selection technique. The stacked
ensemble model having five base classifiers
implemented on GBM feature subset data was used
to make predictions using PDP and ICE.

5. Conclusion and Future Work

This paper focused on the improvement of the
ensemble classification performance through
stacked generalization towards the prediction of
HNSCC recurrence patterns using data subsets
provided by various feature selection techniques
considered in this study. To achieve this, the
stacked ensemble technique that finds the optimal
weighted average of diverse machine learning base
models using meta learning algorithm was used.
For base classifiers, GBM and DRF were used and
another base classifier DNN along with the
previous two (GBM and DRF) was integrated.
Next, another base classifier GLM along with the
previous three (GBM, DRF, and DNN) was
integrated. Then, another base classifier NB along
with the previous four (GBM, DRF, DNN, and
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GLM) was integrated. To achieve the optimal
combination of these diverse of base classifiers
models considered in this study, the GBM was used
as meta-classifier based on its high performance
when trained as base classifier on various data
subsets compared to other base classifiers
considered in this study. The experimental results
showed that using stacked ensemble technique
having five base classifiers had better performance
compared to other stacked ensemble techniques
considered in this study, and using GBM feature
selection technique is better as a supporting tool for
generating the most accurate prognostic features
for HNSCC dataset.

In our future study, we will extend each stacked
ensemble learning technique to a multi-level
stacked ensemble learning, with multiple layers of
stacking at each layer by considering more than a
maximum of five base classifiers.
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