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 To mitigate COVID-19’s overwhelming burden, a rapid and efficient 

early screening scheme for COVID-19 in the first-line is required. 

Much research has utilized laboratory tests, CT scans, and X-ray data, 

which are obstacles to agile and real-time screening. In this study, we 

propose a user-friendly and low-cost COVID-19 detection model 

based on self-reportable data at home. The most exhausted input 

features were identified and included in the demographic, symptoms, 

semi-clinical, and past/present disease data categories. We employed 

Grid search to identify the optimal combination of hyperparameter 

settings that yields the most accurate prediction. Next, we apply the 

proposed model with tuned hyperparameters to 11 classic state-of-

the-art classifiers. The results show that the XGBoost classifier 

provides the highest accuracy of 73.3%, but statistical analysis shows 

that there is no significant difference between the accuracy 

performance of XGBoost and AdaBoost, although it proved the 

superiority of these two methods over other methods.  Furthermore, 

the most important features obtained using SHapely Adaptive 

explanations were analyzed. “Contact with infected people,” “cough,” 

“muscle pain,” “fever,” “age,” “cardiovascular comorbidities,” 

“PO2,” and “respiratory distress” are the most important variables. 

Among these variables, the first three have a relatively large positive 

impact on the target variable, whereas “age,” “PO2”, and “respiratory 

distress” are highly negatively correlated with the target variable. 

Finally, we built a clinically operable, visible, and easy-to-interpret 

decision tree model to predict COVID-19 infection. 
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1. Introduction 

In December 2019, a novel coronavirus was 

reported in Wuhan, China, caused by the new 

“severe acute respiratory syndrome coronavirus 2”, 

later named COVID-19 by the World Health 

Organization (WHO) in February 2020. Within a 

short period, this epidemic spread from China to 

more countries, and less than three months after the 

epidemic began; the WHO declared it a global 

pandemic [1]. COVID-19 is a highly contagious 

respiratory infection that can be considered the 

greatest challenge faced by humanity since World 

War II. As of today (June 21, 2023), there are over 

768.2 million confirmed cases, and the number of 

people infected is probably much higher. There are 

also more than 6,954,731 confirmed deaths, 

according to the WHO [2]. The COVID-19 sudden 

outbreak imposes an overwhelming burden on 

countries’ medical systems through an increase in 

the demand for hospital beds and a shortage of 

medical equipment, while medical staff themselves 

can also become infected [3]. To mitigate this 

burden, countries worldwide have taken various 

measures to cope with the spread of COVID-19, 

including curfews, lockdowns, and travel 

restrictions. These actions are needed, but are not 
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sufficient to cut off the source of infection. 

Therefore, a rapid and efficient early screening 

scheme for COVID-19 in the first-line is 

momentous in several ways. First, it prevents the 

source of infection, helps government agencies 

prevent its spread, and saves lives. Secondly, early 

treatment can be initiated immediately, and limited 

treatment resources are prioritized for patients at a 

higher risk of mortality. Thirdly, it helps optimize 

the allocation of limited health system resources [4, 

5]. 

A high volume of research is carried out on how to 

detect COVID-19 coronavirus in the first-line 

through an accurate, real-time, and fast-screening 

scheme to take emergency or suitable preventive 

actions. Methods based on Reverse Transcriptase 

Polymerase Chain Reaction (RT-PCR) have 

become the gold standard for confirming that 

individuals with COVID-19 have active shedding 

of SARS-CoV-2 [6]. Although RT-PCR is 

considered an efficient and competent test kit, its 

wide-scale screening of patients at the screening or 

testing centers has several limitations such as the 

high mounting demand for testing kits in the initial 

phases of pandemic emergence; inequitable testing 

kit distribution, especially in developing countries 

[7]; test results ranging from one to more days, 

especially in rural areas [8]; the need for 

specialized laboratories with specialized 

equipment and trained staff [9]; and the high cost 

of RT-PCR, especially in single versus batches of 

samples run. In addition, the use of public 

transportation to visit screening centers increases 

the vulnerability to COVID-19 spread, as it 

increases the risk of infection due to the interaction 

between COVID-19-negative and COVID-19-

positive patients. 

Despite public health efforts aimed at improving 

testing [10], prevention strategies [11], and 

scientific advances in vaccination programs [12], 

the severe situation has not yet been effectively 

controlled. Smart technologies including machine 

learning [13, 14], blockchain [15], and the Internet 

of Things [16] have been used to overcome the 

challenges posed by COVID-19. Machine learning 

(ML) is a branch of artificial intelligence (AI) that 

provides systems with the ability to automatically 

learn and improve from experience without being 

explicitly programming [17]. Here, we present a 

ML-based detection model that predicts a positive 

SARS-CoV-2 infection in an RT-PCR test by 

asking some basic questions that can be used in the 

frontline of fighting against COVID-19.  

Considering these issues, we propose a model for 

detecting COVID-19 based on machine learning 

within minutes, and the results of the model can be 

used to assist doctors in finding suitable preventive 

measures. Different classification algorithms 

including Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), Naive 

Bayes (NB), Support Vector Classifier (SVC), 

Decision Tree (DT), Random Forest (RF), K-

Nearest-Neighbor (KNN), Adaptive Boosting 

(AdaBoost), Extreme Gradient Boosting 

(XGBoost), Logistic regression (LR), and Extra 

Tree classifier (ETC) are used to evaluate the 

model. We used grid optimization to tune the 

hyperparameters of the classification algorithms. 

Different performance metrics such as accuracy, 

sensitivity, and specificity were used to compare 

the classification performance of the above 

algorithms. 

 

2. Related Works 

ML, as a subset of AI, has been successfully 

applied in many fields such as healthcare [18]. AI 

and ML can be used to improve diagnosis, 

prognosis, monitoring, and treatment delivery to 

improve patient health outcomes [19]. Since the 

beginning of the COVID-19 pandemic, an 

increasing number of people have become 

interested in using ML to fight the pandemic. One 

of the areas where ML is used is the screening 

phase of the pandemic management of COVID-19. 

An effective screening scheme leads to rapid 

diagnosis of COVID-19, thereby reducing the 

burden on healthcare systems. In the literature, 

COVID-19 infection prediction models have used 

features such as CT scans [20-24], clinical 

symptoms [25], laboratory tests [26, 27], and/or a 

combination of these features [28]. Each detection 

method has its drawbacks; for example, CT-based 

models require expensive equipment and 

professional staff, exposure patients to unnecessary 

irradiation [29], and overwhelming use of the 

limited resources of the health system. However, 

most previous models were based on data from 

hospitalized patients and thus were not effective for 

the fast screening of SARS-CoV-2 in the general 

population. Therefore, all the studies whose input 

data was not self-reportable are outside the scope 

of this study. A comprehensive but not exhaustive 

review of the infection prediction of COVID-19 

based on self-reported data is summarized in Table 

1. Eight studies were compared in several aspects 

including the type and size of the dataset, number 

and type of input features, classification methods, 

and performance indicators.  
Access to COVID-19 data is a complex process 

owing to different government policies and 

regulations regarding data sharing. Additionally, 

the lack of standardized formats and varying levels 
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of data transparency across countries further 

complicate the accessibility and analysis of the 

COVID-19 data. As can be seen in Table 1, only 

three studies ([30], [31], and [32]) have more than 

20,000 records in their dataset, and only four 

studies ([30], [31], [32], and [33]) have a real 

dataset. The limited availability of large datasets 

hinders comprehensive analysis and modeling of 

the pandemic. Furthermore, variations in data 

collection methods and reporting standards across 

regions further complicate the comparison and 

aggregation of the COVID-19 data. Although there 

is no consensus in the literature regarding a 

sufficient number of samples [34], the results of 

small-sample studies are more susceptible to minor 

analytical errors that result in false-negative results 

[35, 36]. The researchers are advised to conduct 

large-scale studies that can produce statistically 

realistic effects, owing to their higher statistical 

power. Results from large studies are statistically 

more reliable than those from small studies because 

of the reduced risk of increased effect size and 

lower Type I error [37]. 

Our literature review categorizes self-reportable 

input features into three main groups: basic 

information (demographic data), symptoms, and 

past or current diseases. The extent to which these 

features are covered in each study is a key 

difference between this and previous studies. 

Studies [38] and [30] focused only on the 

symptoms, excluding features like “age,” 

“gender,” “contact with an infected person,” and 

other variables related to past or current diseases. 

In [33], in addition to the variables in the basic 

information category, the focus was on symptoms, 

but features related to past or current diseases were 

not included in the model. However, in [31], the 

researchers expanded their analysis to include the 

influence of past and current diseases to gain a 

more comprehensive understanding of the factors 

contributing to the study outcomes. 

 Although Iranian researchers, like other 

researchers, have been at the forefront of research 

related to COVID-19 [39], a limited number of 

studies are related to the topic of the current 

research. Rezaei et al. [40] have classified COVID-

19 patients by using 767 chest images through a 

pre-trained convolutional neural network. Heydari 

et al. [41] clustered patients using self-organizing 

mapping. In a retrospective study, Sobhani et al. 

[42] investigated the relationship between clinical 

characteristics and laboratory findings for patients 

using statistical methods. In the most relevant 

research work, Jamshidi et al. [31] studied two 

models: the symptom prediction model and the 

mortality prediction model due to infection with 

COVID-19. They created a symptom prediction 

model with ROC-AUCs of 0.53–0.78. 

Many studies have been carried out recently, and 

we refer the reader to the recent reviews of AI in 

combating COVID-19, but what distinguishes our 

study from other studies is the type of the data we 

need. The contributions of our paper are as what 

follows. First, it has the most thorough coverage of 

features compared to earlier studies by identifying 

a comprehensive list of input features in the three 

major categories of demographics, symptoms, and 

concurrent diseases. Secondly, the proposed model 

can easily be used with in-house data, so patients 

do not need to go to COVID-19 screening centers. 

Thirdly, the health system can optimize its limited 

resources by minimizing unnecessary exposure to 

irradiation [29] for COVID-19 detection. Fourthly, 

the performances of 11 state-of-the-art binary 

classification machine-learning techniques were 

compared. Fifthly, the SHapely Adaptive 

Explanations (SHAP) analysis is used to identify 

important features and interpret models, resulting 

in a clinically actionable decision tree that is 

beneficial to the assigned staff. 

Up to now, we have reviewed the literature and 

specified where our study is located. The remainder 

of this paper is organized as what follows. In 

Section 3, we provide a detailed description of the 

materials and methods used in our study including 

the data collection process and algorithms 

employed. Section 4 presents the experimental 

results obtained from our analysis, and highlights 

key findings and insights. Section 5 describes the 

validation methods used to evaluate the 

generalization of the statistical analysis results. In 

Section 6, we engage in a comprehensive 

discussion, and compare our work with various 

machine learning algorithms employed in similar 

studies. Finally, in Section 7, we draw meaningful 

conclusions based on our research findings and 

propose potential avenues for future research. 
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2. Materials and Method 

The flow of the research, which refers to our data 

mining methodology, is adjusted to the step 

approach in the CRISP-DM method [46]. The 

overall COVID-19 classification process is 

illustrated in Figure 1. In Section 1, the problem is 

well-described, and how it can be converted into a 

data-mining project is clarified. First, the most 

time-consuming step is collecting and aggregating 

data, followed by pre-processing. As we will 

discuss in more detail later, in the pre-processing 

step, we cleaned the data. In some records in HIS 

databases, many useful data were stored in 

inappropriate data structures; for example, 

symptoms were typed in the Description field of 

HIS software by end users. 

We used a mini-text mining process to extract the 

data and import them into the corresponding 

relevant fields. In step 3, based on an extensive 

literature review, we chose eleven state-of-the-art 

classifiers. Next, in a time-consuming step, the 

hyperparameters of the classifiers are tuned using 

Grid search. Data mining models are constructed, 

trained, tested, and their performance criteria are 

compared by the using Python programming 

language. Finally, we drew the overall top 20 

features’ importance in the COVID-19  

classification, and traced and explained them well 

using SHAP analysis. 

 

 

 

 

Table 1. A literature review of COVID-19 detection model based on self-reportable input data. 

Ref. Year Dataset Methods 
# of features Dataset 

records 

AURO

C 
Drawbacks 

G1 G2 G3 Sum 

[38] 2021 created 

dataset 

AdaBoost, BT, NB, KNN, RF, SVM 
0 6 2 8 200 0.97 

D1, D2, D3, 

D4, D5  

[43] 2022 created 
dataset 

AdaBoost, DT, KNN, LR, NN, RF 
3 9 3 15 200 0.98 D2, D3, D5  

[44] 2022 Kaggle KNN, SVM, LR, MLPNN, GRU and LSTM 1 8 5 14 5,434 0.98 D2, D3 

[32] 2021 
Real 

Gradient-boosting machine model 
built with DT base-learners 

3 5 0 8 99,232 0.90 
D4, D5 
 

[45] 2021 Kaggle J48 DT, RF, NB k-NN, SVM* 1 8 5 14 5434 0.98 D2, D3 

[30] 2021 Real DT, LR, NB, KNN, SVM 0 7 0 7 199,334 0.90 D3, D5 
[33] 2022 Real BT, LR, MLP, RF, SVM 3 15 1 19 4434 0.65 D6 

[31] 2021 Real LR, RF, ANN, KNN, LDA, NB 2 12 14 28 26,189 0.78 - 

This study Real 
AdaBoost*, XGBoost, LR, LDA, DT, RF, ETC, 
NB, KNN, QDA, SVC 

6 18 14 38 76,324 0.73 - 

Abbreviations: D1: small dataset, D2: unreal dataset, D3: limited attributes in G1, D4: limited attributes in G2, D5: limited attributes in G3, G1: 

Demographics, G2: Symptoms, G3: Past/current disease, GRU: Gated Recurrent Unit, MLPNN: Multi-layer Perceptual Neural Networks machine 
learning, LSTM: Long Short-Term Memory deep learning algorithms. 

Problem understanding 

/ Data Acquisition  

 Data gathering 
 Data aggregation  

Data preprocessing 

 Data manipulating 

 Data cleaning  

Classifiers selection 

 Literature study 

 Identify state-of-the 

art classifiers  

Hyper-parameter tuning 

 Grid Search 

 Finding tuned values 

Model construction 

 Build different models 

 Train and test models 

Performance analysis 

 Identify criteria 

 Ranking classifiers 

Model explanation 

  Feature importance 

 SHAP value analysis 

Figure 1. The overall process of the classification COVID-19. 
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2.1. Data Acquisition 

We collected raw data on confirmed or suspected 

SARS-CoV-2 infections in 145 public and private 

hospitals under the supervision of Iran University 

of Medical Sciences, Tehran, Iran. Data was 

gathered between February 1, 2020, and September 

30, 2020, and all ages were included in the data. 

The criteria to confirm COVID-19 was RT-PCR 

results. All individuals had undergone an RT-PCR 

assay of a nasopharyngeal swab at hospital 

admission. The dataset contains 217,436 records 

with 40.3% of patients' COVID-19 positive and 

29.6% COVID-19 negative tests, and 30.1% 

missing values. The database has four categories of 

features: basic information (six features), 

symptoms (17 features), clinical data (one feature), 

 (1 feature), and comorbidities (14 features). Table 

2 provides detailed information regarding these 

features. Unlike most studies in the COVID-19 

detection domain, radiological information was not 

utilized because most patients did not have 

radiological details, and it also required time and 

special equipment. Although in this research, the 

PO2 measured in hospitals was used as the only 

clinical data; it was considered as data that can be 

measured at home easily. The raw data included 

positive and negative results for symptomatic and 

asymptomatic patients. The only integer variable 

was “age”, and all others were almost Boolean. It 

can be further added that percentage of missing 

value is 12%, and the PO2 and PCR results have the 

least and the most missing values, respectively. 

 

2.2. Data pre-processing 

After data acquisition, unnecessary fields were 

eliminated. Among the raw dataset attributes, 37 

attributes plus one target attribute RT-PCR test 

result were required for this research, and others 

were removed. The dataset contains 217,436 

records. The process of cleaning the dataset is 

shown in Figure 2. 

Table 2. Dataset characteristics.  

Features 
Variable 

type 

Total 

n=76,324 

PCR (+) 

n=26,945 
 

PCR (-) 

n=49,379 

n % n %  n % 
                   

Basic information:          
Sex (Male) Bionomical 39,632 (51.92)  14,212 (52.74) 25,420 (51.48) 

Age, median (IRQ) Integer 55 (40-66)  57 (38-68) 54 (40-65) 

Smoker Binary 1,710 (2.24)  1058 (3.92) 652 (1.32) 
Drug addiction Binary 1,127 (1.48)  802 (2.97) 325 (0.66) 

Contact with infected people Binary 53,490 (70.08)  13,514 (50.15) 39,976 (80.96) 

Current pregnancy  Binary 1,216 (1.59)  548 (2.48) 668 (1.11) 

Symptoms:  

Cough Binary 39,239 (51.41)  10,317 (38.29) 28,922 (58.57) 

Fever1 Binary 30,912 (40.5)  21,878 (44.30) 9,034 (33.53) 
Convulsion Binary 240 (0.31)  160 (0.59) 80 (0.16) 

Respiratory Distress Binary 36,462 (47.77)  12,619 (46.83) 23,843 (48.29) 

Muscular pain Binary 27,730 (36.33)  6,634 (24.62) 21,096 (42.72) 
Reduction or loss of smell Binary 1,219 (1.6)  339 (1.26) 880 (1.78) 

Reduction or loss of taste Binary 820 (1.07)  206 (0.77) 614 (1.24) 

Stomachache Binary 2,316 (3.03)  1,312 (4.87) 1,004 (2.03) 
Anorexia Binary 5,163 (6.76)  1,634 (6.06) ,3529 (7.15) 

Diarrhea Binary 2,686 (3.52)  1,452 (5.40) 1,234 (2.50) 

Nausea Binary 4,969 (6.51)  2,078 (7.71) 2,891 (2.85) 
Vomit Binary 2,898 (3.8)  1,255 (4.66) 1,643 (3.33) 

Vertigo Binary 1,854 (2.43)  522 (1.94) 1,332 (2.70) 

Headache  Binary 8,009 (10.49)  2,583 (9.56) 5,471 (11.08) 
Paresis or Paralysis Binary 275 (0.36)  140 (0.52) 135 (0.27) 

Inflammation of the skin lesion Binary 76 (0.1)  41 (0.15) 35 (0.07) 

Loss of consciousness Binary 2,495 (3.27)  1,455 (5.4) 1,040 (2.10) 

Semi-clinical data:  

PO2>93% Binary 36118 (47.32)  14,444(53.60) 21,674 (43.90) 

Past/current disease:  

Asthma Binary 1218 (1.6)  674 (2.50) 544 (1.10) 
Diabetes Binary 13555 (17.76)  6082 (22.57) 7473 (15.13) 

Dialysis Binary 925 (1.21)  642 (2.38) 283 (0.57) 

Hypertension Binary 679 (0.89)  423 (1.57) 256 (0.52) 
Cancer binary 2671 (3.5)  1800 (6.68) 871 (1.76) 

HIV/AIDS Binary 46 (0.06)  21 (0.08) 25 (0.05) 

Cardiovascular Binary 12722 (16.67)  7140 (26.50) 5582 (11.30) 
Liver disease Binary 706 (0.93)  445 (1.65) 261 (0.53) 

Blood disease Binary 822 (1.08)  496 (1.84) 326 (0.66) 

Kidney disorders Binary 2715 (3.56)  1788 (6.63) 927 (1.88) 
Neurological disorders Binary 1391 (1.82)  791 (2.94) 600 (1.21) 

Acquired/Congenital immunodeficiencies Binary 656 (0.86)  407 (1.51) 249 (0.50) 

Other chronic diseases Binary 3140 (4.11)  1692 (6.30) 1448 (2.94) 
Other respiratory diseases (except Asthma) Binary 1423 (1.86)  795 (2.95) 628 (1.27) 

1 body temperature ≥ 37.8°C         
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 First, records with missing IDs (11 records) were 

removed because the attribute values were not 

appropriate to their corresponding attribute type, 

which may be due to inappropriate data extraction 

from the original database. 

To avoid any bias, nationals of other countries who 

did not have the Iranian National Code (9,555 

records) were excluded from the study. In the next 

step, due to the appropriate size of dataset size, all 

records with missing symptoms (8,123), PO2 

(1,400), and Sex (123) were removed from the 

main dataset. Since our research scope is limited to 

detecting symptomatic COVID-19 patients, all 

records that did not have any symptoms were 

ignored. The criterion for people infected with 

COVID-19 was positive RT-PCR test results. All 

the records without a PCR test or unknown result 

maybe for data collection problems (29,672) or the 

result of the test was not yet known (1,678) are 

excluded from the main dataset. 

 Unfortunately, approximately 10,522 records did 

not have age values, and we ignored them. Finally, 

we generated our final dataset  containing the 

following features in four main categories: 1) Basic 

information: sex, age, smoker, drug addiction, 

contact with infected people, current pregnancy 2) 

Symptoms: cough, fever, convulsion respiratory 

distress, muscular pain, reduction or loss of smell, 

reduction or loss of taste, stomachache, anorexia, 

diarrhea nausea, vomit, vertigo, headache, 

paralysis, inflammation of the skin lesion, loss of 

consciousness 3) Semi-clinical data: PO2 > 93%, 

and 4) Concurrent disease: asthma, diabetes, 

dialysis, hypertension, cancer, HIV/AIDS, 

cardiovascular, liver disease, blood disease, 

kidney disorders, neurological disorders, 

acquired/congenital immunodeficiencies, and 

other chronic or respiratory diseases (except 

asthma). 

 

2.3. Classifiers selection  

Intelligent systems such as machine learning and 

deep learning have been widely used in various 

applications such as healthcare, especially in the 

fight against the worldwide COVID-19 pandemic. 

A recent study [47] provided an analysis of 

machine learning usage levels as well as deep 

learning techniques to address the COVID-19 

challenge. The results show 31% text data input vs. 

69% image and other type of data input in machine-

learning research. Since our input data is a type of 

text, among machine learning techniques, we chose 

a top and recent ML algorithms to compare our 

COVID-19 prediction model and compare the 

results. Table 3 shows the list of selected state-of-

the-art machine learning methods along with their 

main ideas. These methods are linear discriminant 

analysis, quadratic discriminant analysis, logistic 

regression, naive bayes, support vector classifier, 

decision tree, random forest, K-nearest-neighbor, 

extra tree classifier, adaptive boosting, extreme 

gradient boosting. 

 

3. Experimental Results 

This section covers the last four steps in Figure 1. 

Machine learning models are not intelligent 

enough to determine the hyperparameters that 

would lead to the highest possible accuracy on the 

given dataset. However, hyperparameter values 

when set correctly can build highly accurate 

models, allowing our models to try different 

combinations of hyperparameters during the 

training process and make predictions with the best 

combination of hyper-parameter values. Grid 

search is the most widely used strategy for 

hyperparameter optimization [48]. Regardless of 

the optimization method used, the hyperparameter 

optimization task is generally very expensive in 

terms of computational costs. The optimization 

process requires the creation of a search space. 

Geometrically, this can be compared with an n-

dimensional volume, where each hyper-parameter 

stands for a distinct dimension and the scale of the 

dimension is represented by the possible values of 

the hyper-parameter such as real-valued, integer-

valued or categorical. For each value of each 

hyperparameter, a point in the search space is a 

vector with a distinct value. Finding a vector that 

gives the model after learning the best accuracy is 

the aim of the optimization process. With the help 

of Python, we tuned the classifiers’ 

hyperparameters, and the results are shown in 

217,425 

207,870 

199,747 

198,224 

118,196 

86,846 

217,436 

76,324 

198,347 

All records Raw Data 

without record ID (11) 

Non-Iranian Nationality (9,555) 

symptoms missing (8,123) 

asymptomatic patient (80,028) 

PCR results missing (31,350) 

Sex missing (123) 

“Age” missing (10,522) 

PO2 missing 

(1,400) 

Figure 2. The process of raw dataset cleaning . 
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Table 4. For example, the AdaBoost classifier has 

two hyperparameters: the "learning_rate" is the 

weight assigned to each classifier at each iteration 

of boosting, and "n_estimator" is the maximum 

number of estimators at which boosting is 

terminated.  

After carrying out the Grid Search, their 

hyperparameter values are 70 and 0.9, respectively. 

Box-plot diagrams are presented using cross-

validation accuracy to assess statistical 

significance. Finally, utilizing SHAP and SHAP 

analysis, key features for tree-based models have 

been determined.  

Now, the classification algorithms could be applied 

to the cleaned dataset with hyperparameters tuned. 

After constructing, training, and testing the models, 

the popular boosting algorithm AdaBoost provides 

the best binary classification performance. 

However, its performance is comparable with that 

of XGBoost, which has a large performance 

difference; the SVC classifier shows poor 

performance among the different classifiers, as 

shown in Table 4. To demonstrate the results, we 

constructed an ROC curve (Figure 3). The 

performance criteria of the classifiers are listed in 

Table 5. It appears that XGBoost obtained the 

highest Kappa, MCC, and AUC values of 37.96%, 

39.15%, and 67.78%, respectively. 

 

4. Model Validation 

A methodological fault is learning a prediction 

function's parameters and then testing them with 

the same data. A model with a perfect score that 

simply repeated the labels of the samples it had just 

examined would be unable to make any useful 

predictions regarding data that had not yet been 

observed. Overfitting is a term used in this context. 

It is a standard procedure to hold out a portion of 

the available data as a test set while conducting a 

(supervised) machine learning experiment to avoid 

this mistake. This is called K-fold cross-validation 

(CV), and is used as a technique to test the 

effectiveness of machine learning models. In this 

study, we set K = 10, we divided the dataset into 10 

folds and used one-fold for testing and the 

remaining nine folds for training in each iteration. 

We repeated this process 10 times, using a different 

fold for testing each time. Table 6 displays the 

cross-validation results of the classifiers, with the 

classification results for each fold provided for all 

the classifiers. The last row provides the average of 

the accuracy performance metrics. From Table 6, it 

can be seen that SVC yielded the lowest score, 

whereas the AdaBoost and XGBoost have almost 

achieved the same average accuracy, with a mean 

of 73.31% and 73.30%, respectively. The results in 

Table 6 are also depicted in the ROC curve (Figure 

3) and a box plot (Figure 4). 

 

5. Statistical Test Results  

To compare the cross-validation performance 

results of the machine learning algorithms on the 

same dataset, statistical significance tests can assist 

in dealing with the challenge of choosing the best 

machine learning method. To use the ANOVA test, 

the normality assumption should be checked before 

its application. The Anderson-Darling normality 

test results on shuffle 10-fold cross-validation 

indicate that the p-value is less than 0.05 (α = 0.05) 

for all; therefore, the null hypothesis of normality, 

is not rejected. Because the normality assumption 

is not violated, the ANOVA test is applied at two 

levels. At the first level, the hypothesis that there is 

no difference between the means of the algorithms 

is rejected. At the second level, multiple 

comparisons with Bonferroni correction method 

are used to show the superiority of AdaBoost and 

XGBoost over the other methods. Tables 7 and 8 

show the results of the Anderson-Darling 

normality test and ANOVA results. 

 

6. Discussion 

Table 3. Machine learning algorithms and their main 

ideas. 
ML 

algorithm 

Main idea 

LDA 

Finds a linear hyperplane that separates the classes 

and maximizes the between-class to within-class 
variance ratio 

QDA 

A variation of LDA that allows each class to have its 

own covariance matrix and fits a quadratic 
hyperplane to separate the classes. 

NB 

A probabilistic method that applies Bayes' theorem 

and assumes conditional independence among the 
features. 

LR 

A method that models the probability of an outcome 

using a logistic function and estimates the 
parameters by maximizing the likelihood function. 

SVM 

Finds an optimal hyperplane that maximizes the 

margin between the classes and uses kernel functions 
to map the data to a higher-dimensional space. 

DT 

A method that splits the data into subsets based on 

feature values and creates a tree-like structure of 
rules to classify the data. 

RF 

Builds multiple decision trees using bootstrap 

samples of the data and random subsets of the 
features and aggregates their predictions by majority 

voting or averaging 

ETC 
An ensemble method similar to RF but uses the 
entire dataset to train each decision tree and splits the 

nodes randomly rather than optimally. 

KNN 
A non-parametric method that assigns a label to a 
new instance based on the labels of its k closest 

neighbors in the feature space. 

AdaBoost  

An ensemble method that iteratively trains weak 
learners, such as decision trees, and assigns higher 

weights to misclassified instances to improve their 

performance. 

XGBoost 

An ensemble method that uses gradient boosting to 

train decision trees and optimizes a loss function 

using gradient descent. 
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Machine learning models are frequently "black 

boxes," which makes it challenging to analyze 

them. We require explainable machine learning 

algorithms that reveal some of these qualities in 

order to identify the main characteristics that affect 

the output of the model.

Table 7. The Anderson-Darling normality test results. 

 AdaBoost XGBoost LR LDA DT RF ETC NB KNN QDA 

Test statistic 0.41 0.45 0.30 0.30 0.42 0.17 0.41 0.37 0.55 0.35 

Critical value 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

Reject the null hypothesis No No No No No No No No No No 

           

Table 8. Multiple comparisons. (ANOVA) 

Pair P-value 

AdaBoost – XGBoost 0.108 

AdaBoost – each other <0.05 

XGBoost – each other <0.05 

Table 4. Classifier’s hyperparameter values based on Grid search. 

Classifiers # Hyperparameters Hyperparameters name Hyperparameters value(s) 

LDA 1 Solver  {'svd', 'lsqr', 'eigen} 

QDA 1 param_reg _param 0.087 

LR 2 Penalty, Solver None, lbfgs 

NB 1 Alpha 0.7 

DT 3 Criterion, max_depth, max_features Entropy,12,8 

RF 4 Criterion, max_depth, max_features, n_estimator Gini, 12, 10 

ETC 2 Max Depth, Max Features 12, 10 

KNN 1 Number of neighborhoods 19 

XGBoost 5 N_estimator, Learning_rate, max_depth, colsample_by_tree 500, 0.6, 12, 0.7 

RBF-SVM 2 Cost (C), Gamma (𝛾) 0.002724, 57.51 

AdaBoost 2 n_estimator, Learning rate 70, 0.9 

    

Table 5. Classification performance (%) 

Classifiers ACC MSE F1_Score Kappa MCC Precision SE SP AUC 
Jaccard 

score 

AdaBoost 73.31 26.69 56.14 37.71 39.00 67.70 48.32 86.95 67.63 39.40 

XGBoost 73.30 26.70 56.56 37.96 39.15 67.53 49.00 86.56 67.78 39.78 

LR 72.67 27.33 53.87 35.54 37.23 67.67 45.28 87.62 66.45 37.20 

LDA 72.55 27.45 54.17 35.54 37.04 66.94 46.00 87.04 66.52 37.48 

DT 72.35 27.65 55.12 35.82 36.94 65.66 47.88 85.71 66.79 38.40 

RF 72.30 27.55 55.11 35.45 36.62 65.64 47.15 85.05 66.71 38.42 

ETC 72.25 27.75 54.55 35.34 36.59 65.82 47.02 86.01 66.52 37.81 

NB 71.67 28.33 57.06 36.19 36.69 62.35 53.27 81.71 67.49 40.30 

KNN 71.66 28.34 49.53 31.63 33.90 67.23 39.34 89.30 64.32 33.23 

QDA 71.30 28.70 42.28 27.46 32.60 73.86 29.83 93.93 61.88 27.00 

SVC 64.70 35.30 0.00 0.00 0.00 0.00 0.00 100.00 50.00 0.00 

           

Table 6. Accuracy score of classifiers using 10-fold cross-validation. 
K AdaBoost XGBoost LR LDA DT RF ETC NB KNN QDA SVC 

1 67.18 65.77 66.78 66.71 64.21 71.99 64.98 64.48 65.36 66.91 64.69 

2 65.74 65.49 65.79 65.60 64.46 71.19 65.45 63.89 64.56 67.08 64.69 

3 66.38 67.10 66.93 66.54 66.62 70.49 66.68 64.30 66.29 67.56 64.69 

4 71.87 71.95 71.30 71.10 70.50 73.18 69.76 70.01 70.63 69.84 64.69 

5 77.37 77.53 76.87 76.51 76.68 69.49 76.22 76.19 74.99 73.91 64.69 

6 79.95 79.98 79.59 79.69 78.87 70.88 78.51 79.38 77.21 76.53 64.70 

7 75.43 75.48 74.78 74.80 74.91 75.77 74.75 75.08 73.89 72.20 64.70 

8 78.64 78.85 77.80 77.84 78.35 74.60 77.92 78.35 75.92 74.66 64.70 

9 74.10 74.44 72.58 72.33 73.09 72.79 72.38 71.42 73.03 72.20 64.70 

10 76.42 76.43 74.33 74.36 75.84 73.15 75.80 73.61 74.74 72.14 64.70 

AVG 73.31 73.30 72.67 72.55 72.35 72.30 72.25 71.67 71.66 71.30 64.70 
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The SHAP method is one of these techniques; it is 

used to describe how each feature impacts the 

model and allows local and global analysis for the 

dataset and problem at hand. Essentially, SHAP 

can display the local feature contribution for each 

instance of the problem using  the scatterplot of the 

Beeswarm plot (Figure 5) and the global feature 

contribution using the feature importance (Figure 

6). The absolute SHAP value in Figure 5 shows 

that the top 20 factors influence the model more. 

Variables are displayed in descending order of 

importance for each global feature, with the first 

variable being the most important, and the final one 

being the least important. By way of example, 

“contact with infected people”, “cough”, “muscle 

pain”, “age”, “cardiovascular commodities”, 

“fever”, “PO2”, and “respiratory distress” are the 

most important features. It should be noted that 

while SHAP values demonstrates the value or 

contribution of each feature to the model's 

prediction, it does not assess the accuracy of the 

prediction itself.  

 

However, SHAP values only describe the model 

behavior that is built from data, and it does not 

mean a causality relationship between features and 

targe variables [49]. As we know a prediction 

model can have false positives and false negatives 

errors, so the SHAP value can elucidate the results, 

and a summary plot will provide useful 

interpretation. According to Figure 6, we can 

conclude the direction of the feature  impact on the 

target variable. As we can see, “contact with 

infected people”, “cough”, “muscle pain”, 

“cardiovascular” commodities, and “fever” have a 

relatively large positive effects on the target 

variable. The red color represents the "high", while 

the X-axis displays the "positive" influence, 

whereas we conclude by mentioning that the 

features "age", "PO2" (≤ 93%), and "respiratory 

distress" are all strongly inversely related with the 

target variable. Also, variables from “cancer” to 

“asthma” have a small global contribution to the 

target variable, almost all of them except 

Figure 3. ROC curve for COVID-19 classification. 

Figure 4. Box-plot for COVID dataset 

Figure 5. Graph of XGBoost SHAP feature importance 
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“headache” are positively correlated to the target 

variables.  

 

To distinguish between individuals who have 

COVID-19 infection and those who do not, we 

created a decision tree model that is clinically 

applicable, clear, and simple to understand. A DT 

as a simple classifier is a straightforward and user-   

friendly tool to understand the underlying process 

that is constructed in two stages, and the models 

that are produced can be visualized as binary trees.  

First, we investigate each variable to see how to 

most effectively divide the data into two 

groups. We choose important features including x1 

= contact with infected people”, x2 = age, x3 = 

muscle pain, x4 = cough, x5 = fever, x6 = PO2, x7 = 

respiratory distress, and x8 = headache. Figure 7 

represents the corresponding DT.  

 

7. Conclusion 

This study proposes a simple and affordable model 

to detect COVID-19. The main feature of this 

model is its ability to quickly identify COVID-19 

and assist physicians in treating COVID patients by 

guiding them to take appropriate safety 

precautions. Because the collection of self-reported 

symptoms can be performed remotely, and to 

maintain limited testing capacity for suspected 

cases, the ability to predict positive infections 

based on self-reported symptoms is important to 

reduce the need for labs that provide samples only 

for screening. The dataset consists of four main 

categories of features that can be easily accessed at 

home. In this research work, a Grid search-based 

machine learning model is used to identify 

COVID-19 with the in-home dataset. Several state-

Figure 6. Graph of XGBoost SHAP variable 

importance for training data. 

 

Figure 7. A decision rule for detecting COVID-19 with their thresholds in absolute value. 
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of-the-art classifiers including LDA, QDA, DT, 

RF, LR, NB, KNN, XGBoost, AdaBoost, ETC, and 

SVC are utilized to predict the COVID-19 patients. 

The models are validated using 10-cross-validation 

accuracy. Various classification measures 

including MSE, accuracy, Kappa index, 

specificity, sensitivity, Matthew’s correlation 

coefficient, and Jaccard score are utilized to 

describe the classification performance from a 

different perspective. With interpretability 

becoming an increasingly important requirement 

for machine learning projects, we use SHAP value, 

the most powerful method for explaining how 

machine learning models make predictions. 

AdaBoost achieved the best classification 

performance (73.31%) in terms of accuracy. 

XGBoost with a slight difference has a high 

classification performance (72.30) with regards to 

MCC and Kappa. However, AdaBoost's cross-

validation (10-fold) accuracy offers the greatest 

value. Integration of more clinical data such as 

blood samples and X-rays or/and CT-scan will 

improve the classifiers' accuracy. It is necessary to 

consider that our criteria for confirming COVID-

19 infection are RT-PCR that in turn has false 

positive and negative results. That is maybe one of 

the reasons that the classification performance may 

not be satisfactory at the first glance. If we help 

other diagnostic tools including CT-scan or blood 

tests, the classification permeance will improve. 

Finally, a potential application of this research 

result could be able to integrate it into mobile 

devices would be extremely helpful to achieve all 

of our research goals. 

 

Note 

This research work was endorsed by the Research 

Ethics Committees of Tarbiat Modares University, 

Tehran, Iran. 
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 چکیده:

شد یبرا س 19-دیبه کوو انیمبتلا دیکاهش بار  شت یها ستمیبه   یماریب نیو کارآمد در خط مقدم مبارزه با ا عیسر یطرح غربالگر ،یو درمان یبهدا

س ازیمورد ن ست. ب شته از نتا قاتیاز تحق یاریا شعه ا یتیس ،یشگاهیآزما جیگذ سکن و ا ستفاده برا کسیا ستفاده نموده اند که مانع نیا یا ضوع ا  یمو

ست. در ا یغربالگر یبرا یجد شخ کیمطالعه،  نیچابک ا سند و کم 19-دیکوو صیمدل ت ساس داده نهیهزکاربرپ سه دسته  یخانگ یهارا بر ا در قالب 

که  ییپرپارامترهایها نهیبه بیترک ییشناسا یبرا دیگر یمطالعه از روش جستجو نیارائه شده است. در ا یماریعلائم و سوابق ب ،یشناخت تیداده، جمع

که  دهدینشان م جیشده است. نتا سهیمقا نیماش یریادگی یطبقه بند تمیالگور 11استفاده شده است و عملکرد  دهد،یرا ارائه م ینیبشیپ نیترقیدق

و  XGBoost عملکرد دقت نیب یداریکه تفاوت معن دهدینشححان م یآمار یهالیاما تحل کند،یرا ارائه م %73.3صحححت،  نیبالاتر XGBoost تمیالگور

AdaBoost به دست آمده با استفاده از  یها یژگیو نیمهمتر ن،یها اثبات کرد. علاوه بر اروش ریدو روش را نسبت به سا نیا یوجود ندارد، اگرچه برتر

SHapely Adaptive explanations مشحکلات »، «سحن»، «تب» ،«یلاندرد عضح»، «سحرفه»، «تماس با افراد آلوده»قرار گرفت.  لیو تحل هیمورد تجز

س سترسید»و  «PO2» ،«یعروق یقلب ستند. در ب رهایمتغ نیترمهم «یتنف سبتا ز ریاول تاث ریسه متغ رها،یمتغ نیا نیه هدف  ریبر متغ یادیمثبت ن

قابل اجرا،  میک مدل درخت تصمی ت،یدارند. در نها یمنف یهدف همبستگ ریبه شدت با متغ «یتنفس سترسید»و « PO2»، «سن»که  یدارند. در حال

 ارائه شده است. 19-دیکوو یابتلا ینیبشیپ یآسان برا ریقابل مشاهده و تفس

 ، علائم بیماری، یادگیری ماشین، طبقه بندی، هوش مصنوعی.19-کووید :کلمات کلیدی

 


