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Thyroid disease is common worldwide and early diagnosis plays an
important role in effective treatment and management. Utilizing
machine learning techniques is vital in thyroid disease diagnosis. This
research proposes tree-based machine learning algorithms using
hyperparameter optimization techniques to predict thyroid disease.
The thyroid disease dataset from the UCI Repository is benchmarked
to evaluate the performance of the proposed algorithms. After data
preprocessing and normalization steps, data balancing has been
applied to the data using the random oversampling (ROS) technique.
Also, two methods of grid search (GS) and random search (RS) have
been employed to optimize hyperparameters. Finally, employing
Python software, various criteria were used to evaluate the
performance of proposed algorithms such as decision tree, random
forest, AdaBoost, and extreme gradient boosting. The results of the
simulations indicate that the Extreme Gradient Boosting (XGB)
algorithm with the grid search method outperforms all the other
algorithms, obtaining an impressive accuracy, AUC, sensitivity,
precision, and MCC of 99.39%, 99.97%, 98.85%, 99.40%, 98.79%,
respectively. These results demonstrated the potential of the proposed
method for accurately predicting thyroid disease.

1. Introduction

Thyroid disorders are one of the most common
chronic diseases that affect a large population in the
world. Various research studies show that a large
number of people in different communities suffer
from this disease; Therefore, early diagnosis of this
disease has a vital role and importance [1].
Predicting and diagnosing diseases is a very
complicated process for experts in the medical
field. In recent years, utilizing artificial intelligence
(Al) methods and machine learning (ML)
algorithms to adopt the correct diagnosis and
prediction of diseases in medical sciences has been
the focus of researchers [2, 3].

Data-driven methods have emerged as useful
instruments for analyzing dataset from a variety of
fields, such as medicine and healthcare [4, 5].

Specifically, ML techniques can efficiently process
amounts of medical data to enable accurate disease
prediction and diagnosis [6, 7]. The authors in [8]
used a neural network classifier with selecting
features in association Synthetic Minority
Oversampling Technique (SMOTE) for predicting
of thyroid disease. The proposed classifier
achieved an accuracy of 98.10%. The authors in [9]
compared the variant classifiers for thyroid disease
prediction including support vector machine
(SVM), random forest (RF), XG-Boost, and
ensemble method and the results indicated an
enhanced accuracy of 99.10%. The research in [10]
described five classifiers obtaining SVM, RF,
AdaBoost, long short-term memory (LSTM)
network, and CNN-LSTM for thyroid disease
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prediction. The proposed algorithms obtained an
accuracy of 99%.

The authors of [11] investigated a variety of
machine learning algorithms in the experiment,
such as artificial neural network (ANN), tree-based
algorithm (TTA), and statistical models for
predicting of thyroid disease. The artificial neural
network had the highest score of all their proposed
methods with the accuracy of 95.87%. The authors
in [12] studied the multiple multilayer perceptron
(MMLP) algorithm using back propagation error
and adaptive learning approach for thyroid disease
diagnosis. The accuracy of 99% had been obtained
using their proposed method. The authors of [13]
presented the ensemble classifiers using SMOTE
method for early thyroid risk prediction. The
authors discussed different machine learning
algorithm obtaining SVM, decision tree, naive
bayes, and multiple linear regression for thyroid
disease prediction. The results displayed the
accuracy of 99.23% for predicting of thyroid
disease [14].

The authors in [15] proposed two classical machine
learning algorithms including SVM and decision
tree with Bayesian graph for classification of
thyroid disease. Also, they applied SMOTE
approach for balancing thyroid dataset, and results
showed avg F1-score of 98%. The research in [16]
considered a modified extreme gradient boosting
(MXGB) algorithm for predicting thyroid disease
and the proposed method attained a notable 96.40
% accuracy. In addition, the authors of this paper
evaluated the Matthews Correlation Coefficient
criterion and the simulations showed that the value
of this criterion is 86.10%. The authors of [17]
explored different machine learning algorithms for
classification thyroid texture and the proposed
algorithm reached an accuracy of around 90%. The
authors in [18] suggested Multitask Cascade
Convolution Neural Network architecture for
classification of thyroid nodule and their proposed
algorithm achieved an impressive accuracy of
98.20%, which outperformed the average
performance of common convolutional neural
network by 5%. The research in [19] proposed the
CNN method with a decision support system for
classification medullary thyroid cancer and their
result indicated a classification accuracy of
99.00%. The research in [20] introduced a
convolutional neural network (CNN) with a new
nodule feature method entitled feature fusion
ResNet for diagnosing thyroid ultrasonography
nodules. Their result showed an accuracy and
F-score of 88.30% and 92.52%, respectively. In
previous studies, the SMOTE technique has been
widely employed for balancing and categorizing
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thyroid datasets. While SMOTE is an effective
approach for data balancing, particularly for large
datasets, it often underperforms when applied to
smaller datasets due to its reliance on generating
synthetic samples, which may deviate from the
original data distribution. Additionally, prior
research has heavily relied on trial-and-error
methods for hyperparameter tuning, rather than
structured optimization techniques like Grid
Search and Random Search, which offer more
systematic and effective solutions. Moreover, the
evaluation metrics used in many studies, such as
precision, accuracy, and F1-score, though
common, do not adequately address the challenges
posed by imbalanced datasets. Metrics like the
Matthews Correlation Coefficient (MCC), which
provides a more balanced assessment by
considering all elements of the confusion matrix,
have been underutilized.
These limitations underscore the need for further
research that incorporates more robust data
balancing techniques, structured hyperparameter
optimization, and comprehensive evaluation
metrics tailored for imbalanced datasets. The
proposed methodology in this study directly
addresses these challenges by leveraging Random
Oversampling (ROS) as an effective method for
balancing small datasets, employing Grid Search
and Random Search for systematic hyperparameter
tuning, and utilizing MCC alongside other standard
metrics to provide a thorough evaluation of the
proposed tree-based machine learning models. The
main contributions of this research are as follows:

e Enhancing accuracy through a comparative
analysis of tree-based algorithms, including
Random Forest, Decision Tree, Extreme
Gradient Boosting, and AdaBoost, for thyroid
disease prediction.

e Utilizing Grid Search and Random Search
techniques to optimize hyperparameters and
determine the most effective tuning approach
for each model.

e Improving the performance of the proposed
methods by employing the Random
Oversampling (ROS) technique to address
data imbalance effectively.

e Using the Matthews Correlation Coefficient
(MCC) as a key metric to provide a balanced
evaluation of model performance, particularly
for imbalanced datasets, making it suitable for
medical applications.

This research is particularly beneficial for
healthcare professionals and decision-makers in
the healthcare field. By leveraging optimized
machine-learning models, such as those proposed
in this study, medical practitioners can achieve
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more accurate predictions for thyroid disease,
facilitating early diagnosis and effective treatment
planning. Additionally, metrics like MCC and
comprehensive evaluation methods enhance the
robustness of the proposed approaches for
imbalanced datasets commonly encountered in
medical applications. These contributions also
provide policymakers with reliable tools for
decision-making in  clinical environments,
improving patient care and outcomes.

This paper is organized as follows: Section 2
introduces the materials and the proposed tree-
based machine learning algorithms, and procedures
used under imbalanced dataset for this work.
Section 3 presents the results and compares variant
machine learning algorithms using classification
criteria to predict thyroid disease. Section 4
discusses and compares two hyperparameter
optimization techniques for the proposed
algorithms. Lastly, Section 5 concludes this study.
2. Material and Methods

The following subsections address
background material and study methods.
2.1. Dataset Acquisition

The thyroid dataset used in this study was obtained
from the UCI Machine Learning Repository. It
contains 383 instances and 17 attributes.
Throughout the fifteen years that the information
for this dataset was being collected, every patient
was tracked for a minimum of a decade. Attribute
name, attribute description, and attribute role
obtaining input or target are shown in Table 1.
Figure 1 depicts the percentage of instants for each
type of target. As shown in figure 1, 275 of the
instants were patients with no recurred (71.80%),
whereas 108 of the patients have recurred
(28.20%).

Since most clinical datasets are imbalanced, it is
necessary to balance them for improved algorithm
performance. In the subsection, a technique known
as ROS is employed to balance the imbalanced
thyroid dataset.

2.2. Pre-processing

2.2.1. Feature Scaling

Feature scaling is a crucial data pre-processing
technique that standardizes feature values by
bringing them to a comparable scale. This ensures
a consistent representation of all attributes,
enhancing the performance and reliability of the
proposed algorithm. Using raw data without
preprocessing can significantly reduce the speed
and accuracy of learning systems. To address this,
the data was normalized before being applied to the
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system, ensuring uniformity and improved model
performance.

Distribution of Thyroid Disease

Number of Cases of Thyroid Disease

P

Figure 1. Thyroid dataset distribution.

It is essential for datasets exhibiting varying range,
unit, or magnitude characteristics. Common
techniques include standardization, normalization,
and min-max scaling. This process enhances
algorithm performance, convergence, and avoids
biasing attributes with larger values. for datasets
exhibiting varying range, unit, or magnitude
characteristics.

This paper employs standard scaling as a data
preprocessing technique. By centering the data at
zero mean and scaling to unit standard deviation,
this method normalizes the attributes and produces
standard attributes. Its mathematical formulation is

as follows:
X—u
Xscalled = T (1)
Where, xs.q11¢4 1S the value of feature after scaling,
and x is the original value. In addition, u is the
mean, and o is standard deviation of the feature

values [21].

2.2.2. Imbalanced Dataset

Due to the inherent imbalance in many clinical
datasets, balancing them is crucial for optimizing
algorithm performance. Numerous techniques exist
to address imbalanced datasets, including methods
SMOTE, ROS, and Adaptive Synthetic Sampling
(ADASYN). Previous research on thyroid disease
prediction and diagnosis has predominantly
employed SMOTE technique for dataset balancing
[8, 13, 15]. Given the relatively small sample size
of the dataset in this study, ROS technique is
deemed the most appropriate [22]. Consequently,
Table 2 presents the class distribution of the thyroid
disease dataset before and after the application of
ROS technique. Furthermore, as illustrated in
Figure 2, the dataset, following the application of
ROS technique, displays a balanced distribution
with 275 (50%) non-recurrent and 275 (50%)
recurrent cases.
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Table 1. Description of attributes from thyroid dataset.

Sl. No. Attribute Name Attribute Description Attribute role
1 Age The age of the patient at the time of diagnosis or treatment. Input
2 Gender The gender of the patient (male or female). Input
3 Smoking Whether the patient is a smoker or not. Input
4 Hx Smoking Smoking history of the patient. Input
5 Thyroid Function The statug Qf thyroid function, possibly indicating if there are any Input
abnormalities.
. " Findings from a physical examination of the patient, which may
6 Physical Examination include palpation of the thyroid gland and surrounding structures. Input
7 Adenopathy Presence_or absence of enlarged lymph nodes (adenopathy) in the Input
neck region.
8 Pathology Spemflc _types o_f thyroid cancer as determined by pathology Input
examination of biopsy samples.
9 Hx Radiotherapy History of radiotherapy treatment for any condition. Input
. The risk category of the cancer based on various factors, such as
10 Risk - - . Input
tumor size, extent of spread, and histological type.
11 Focalit Whether the cancer is unifocal (limited to one location) or Inout
y multifocal (present in multiple locations). P
Tumor classification based on its size and extent of invasion into
12 T Input
nearby structures.
13 N Nodal classification indicating the involvement of lymph nodes. Input
14 M Metastasis classification indicating the presence or absence of Input
distant metastases.
The overall stage of the cancer, typically determined by
% Stage combining T, N, and M classifications. Input
16 Response Response to treatment, indicating whether the cancer responded Inout
P positively, negatively, or remained stable after treatment. P
17 Recurred Indicates whether the cancer has recurred after initial treatment. Target

Table 2. Real and balanced thyroid dataset.

Ratio of majority

Samples ~ Total ~ Majority  Minority to minority
Real 383 275 108 2.55

dataset

Balanced

dataset 50 218 275 !

Distribution of Thyroid Disease

Number of Cases of Thyroid Disease

Recurred

Figure 2. Balanced dataset using ROS technique.

2.2.3. Data Splitting

Employing a 70:30 split, the dataset was divided
into training and testing sets, applying 70% data for
training, and 30% for testing. The dataset was
confirmed using 5-fold cross-validation on the
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thyroid set, displaying consistent performance. The
Python frameworks including Pandas, NumPy,
Seaborn, Matplotlib, and Scikit-learn were applied
for performing the machine learning pre-
processing. Furthermore, this paper utilized the
ROS technique from the imbalanced-learn Python
framework.

2. 3. Proposed Method

The following subsection presents tree-based
machine learning algorithms such as decision tree
(DT) classifier, random forest (RF) classifier,
extreme gradient boosting (XGB) classifier, and
AdaBoost (AB) classifier for thyroid disease
prediction.

2.3.1. Decision Tree

Decision tree classifiers construct hierarchical
algorithms where internal nodes indicate attributes
upon which decisions are based, edges denote the
possible outcomes of these decisions, and leaf
nodes represent the predicted class. The
classification of a new data instance is determined
by traversing the tree from the root node, following
the branches that correspond to the instance's
attribute values, until a leaf node is reached [23,
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24]. In this paper, DT hyperparameters included
splitter, max depth, min samples leaf, max features,
class weight, and criterion.

2.3.2. AdaBoost

AdaBoost is an ensemble classifier that
sequentially combines multiple 'weak classifier' to
construct a 'strong classifier'. Decision stumps,
which are one-level decision trees, are a common
choice for base learners in AdaBoost due to their
simplicity and computational effectiveness [25]. In
this search, AB hyperparameters included number
of estimators, learning rate, algorithm, base
estimator criterion, and base estimator max depth.
2.3.3. Extreme Gradient Boosting

Extreme Gradient Boosting is a highly effective
tree-boosting algorithm that can utilize the datasets
and achieve state-of-the-art results. By leveraging
advanced methods like regularized learning, and
approximate algorithms, the XGB excellently
moderates overfitting and improves generalization
[26]. In this study, XGB hyperparameters included
max depth, learning rate, number of estimators, and
subsamples.

2.3.4. Random Forest

Random forest algorithm builds numerous DT on
training dataset to cause a classifier model. This
algorithm decides on a tree-based on furthermost
selections, which proposes high accuracy when working
with  especially huge dataset. This algorithm
associations two feature selection approaches, bagging,
and random selection, to produce a more effective
ensemble algorithm. Employing variant trees with
random forest algorithm reduces the problem of
overfitting and time of training. [27, 28]. In this paper,
RF hyperparameters included number of estimators,
max depth, max features, min sample split, min sample
leaf, bootstrap, class weight, and criterion. In this study,
two criteria such as Gini index, and Entropy index were
employed by the following formula:

Gini Index =1 — P? @)
n=1
Entropy Index = — Z B, log,(B,) @)
n=1

where P, denotes the probability of class n.

2.4. Hyperparameter Optimization
Hyperparameter tuning is a critical step in
enhancing and optimizing the performance of
machine learning algorithms. In this paper, two
techniques including grid search (GS) and random
search (RS) are utilized to tune and utilized to
optimize and tune hyperparameters. In GS, a
predefined set of values or ranges for each
hyperparameter is specified. GS then exhaustively
explores the algorithm's performance for all
possible combinations of hyperparameters. By
providing a comprehensive search of the
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hyperparameter space, it aims to identify the
optimal hyperparameters. Nevertheless, this
technique becomes computationally expensive
when dealing with a large number of
hyperparameters and a wide range of values. RS
technique samples a specified number of
hyperparameter combinations at random, rather
than exhaustively evaluating all possible
combinations. This procedure is predominantly
effective and efficient when the hyperparameter
space is vast and computationally expensive to
explore exhaustively [5, 29, 30].

2.5. Performance Evaluations

The performance of the proposed algorithms is
assessed based on confusion matrix displayed in
Table 3. In this paper, the common criteria such as
accuracy, sensitivity, precision, F1-score, and area
under curve (AUC) were utilized to measure the
results of the machine learning algorithms [31].
Also, considering that the thyroid dataset in this
research is a binary classification, the Matthews
Correlation Coefficient (MCC) criterion was used
to evaluate the proposed algorithms. further, the
confusion matrix and receiver operating
characteristic (ROC) curve have also been used to
assess the performance of the proposed algorithms
[32]. In the following, the criteria formulas are
presented:

A %) = TN +TP X 100 Q)
ceuracy (%) = TN ¥ TP+ FP + FN
Sensitivity (%) = L ©)
Y= TP Y EN
Precision (%) = L X 100 ®)
TP + FP

2TP @)

F1 —score (%) = ————— x 100
2TP + FP + FN

MCC (%) (8)

B (TP X TN — FP x FN ) x 100

a (TP + FP)(FN + TP)(FP + TN)(FN + TN)
In Table 3, the confusion matrix depicts the binary
classification results in terms of TP, TN, FP, and
FN.

Table 3. Confusion Matrix

Actual

Predicted

TP denotes the samples that were correctly
predicted as the positive class, while TN denotes
the sample that were correctly predicted as the
negative class. FP denotes samples that were
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incorrectly predicted as the positive class and FN
denotes samples that were incorrectly predicted as
the negative class [5].

3. Result

In this research, the thyroid disease dataset
obtained from the UCI Machine Learning
Repository was utilized. At first, significant pre-
processing steps including missing value, outlier
detection, and data scaling by standard scaling
were applied to the dataset. Due to the imbalanced
nature of the dataset and the limited number of
samples in the thyroid dataset, the random
oversampling (ROS) technique has been used to
balance the dataset and improve the performance of
the algorithms. Subsequently, employing the
Python-based scikit-learn framework, the dataset
was split into training and testing sets with a ratio
of 70% to 30%. Finally, tree-based algorithms,
including decision tree, random forest, XGB, and
AdaBoost, were applied to the dataset. To optimize
the hyperparameters of the proposed algorithms in
this paper, GS and RS methods have been used and
criteria such as accuracy, precision, sensitivity, F1-
score, and AUC have been used to evaluate their
performance.

Table 4 presents the comparative performance of
the proposed algorithms, whose hyperparameters
have been tuned and optimized through Grid
Search (GS) method. As shown in Table 3, the
XGB algorithm outperformed all the other
algorithms using GS method, achieving the highest
scores in terms of accuracy (Acc), sensitivity (Se),
precision (Pr), Fl-score (F1), and AUC, with
values of 99.39%, 98.85%, 99.40%, 99.39%, and
99.97%, respectively.

Table 4. Comparative of tree-based algorithms using ROS
technique and grid search method.

Grid Search method

Table 5. Comparative of tree-based algorithms using ROS
technique and random search method

Random Search method

Algorithm

Acc(%) Se(%) Pr(%) F1(%) AUC(%)
DT 95.76 96.25 95.77 95.76 99.07
AB 96.97 93.75 97.14 96.96 99.66
RF 96.97 9375 9714 96.96  99.76
XGB 96.97 93.75 97.14 96.96 99.66

Figures 3-6 present the confusion matrices and
receiver operating characteristic (ROC) curves for
the proposed algorithms including decision tree
(DT), AdaBoost (AB), random forest (RF), and
extreme gradient boosting (XGB), respectively.
The hyperparameters of these algorithms were
tuned using grid search method. The results
demonstrate the superiority of the extreme gradient
boosting algorithm compared to the other proposed
algorithms with grid search method.

Canfusion Matrix DT

ROC Curve DT

— (AUC DT = 99.71)

0] 02 0.4 06 08 L0
False Positive Rate

Figure 3. Confusion matrix and ROC curve of decision
tree algorithm using grid search method.

Confusion Matrix AB ROC Curve AB

= (AUC AB =99 96)

Algorithm  Acc(%) Se(%) Pr(%) F1(%) AUC(%)
DT 96.36 98.85 9646  96.36  99.71
AB 98.18 98.85 9819 98.18  99.96
RF 98.18 98.85 9819 9818  99.97
XGB 99.39 98.85 9940 9939  99.97

0.0 0.2 0.4 0.8 08
False Positive Rate

Figure 4. Confusion matrix and ROC curve of
AdaBoost algorithm using grid search method.

Confusion Matrix RF ROC Curve RF

1.0

Table 5 displays a comparative analysis of the
proposed algorithms, whose hyperparameters were
accurately fine-tuned using the Random Search
(RS) method. The results, as depicted in Table 4,
explicitly demonstrate the superiority of the RF
algorithm, which achieved the highest scores
across all evaluation metrics: accuracy (96.97%),
sensitivity (93.75%), precision (97.14%), F1-score
(96.96%), and AUC (99.76%).

— (AUCRF =99.97)

0.2

04 06 0.8 10

False Positive Rate

Figure 5. Confusion matrix and ROC curve of random
forest algorithm using grid search method.

The comparative performance of the proposed

decision tree, AdaBoost,
extreme gradient

random forest,
boosting algorithms,

and
with

hyperparameters optimized via random search, is
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visualized in Figures 7-10 through confusion
matrices and ROC curves. The random forest and
extreme gradient boosting algorithms outperform
the other algorithms using random search method,
underscoring their superior performance.

ROC Curve XGB

Confusion Matrix
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Figure 6. Confusion matrix and ROC curve of extreme
gradient boosting algorithm using grid search method.
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Figure 7. Confusion matrix and ROC curve of decision
tree algorithm using random search method.
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Figure 8. Confusion matrix and ROC curve of
AdaBoost algorithm using random search method.
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Figure 9. Confusion matrix and ROC curve of random
forest algorithm using random search method.
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Figure 10. Confusion matrix and ROC curve of
extreme gradient boosting using random search method

4. Discussion

In the results section, we surveyed four tree-based
machine-learning algorithms with different criteria
for predicting thyroid disease. In Figure 11, the
MCC criterion for the proposed algorithms has
been evaluated and compared with two grid search
and random search methods. As shown in Figure
11, the MCC index for all the proposed algorithms,
including decision tree, random forest, XGB, and
AdaBoost with the grid search method is more
efficient in the hyperparameter optimization than
the random search method.

10

102
—#- Grid Search
100 --#-- Random Search
-
I’ \__\
98
r’ ‘\\‘
e ~a
s -~
- ~.
T ose{ M~ . *
= ~o -
- ~
] Sss e
(%} ~
S o4 *. Seo P JIREE SR LTECEETEERE -*
~~_ 7
'
92 R .
e
901
88
RF DT XGB AB

Proposed methods
Figure 11. Comparison of MCC criterion using grid
search and random search methods.

Figures 12-16 present a comparative analysis of
accuracy, sensitivity, precision, F1-score, and
AUC for two hyperparameter optimization
techniques: grid search and random search. These
metrics were employed to evaluate the
performance of the proposed algorithms including
DT, RF, XGB, and AB in thyroid disease
prediction.

100 98.18_ 96.97

98.18 g6 97

96.36_ 95.76

80

60

Accuracy(%)

40

20

RF T XGB
Proposed methods

N Grid Search Il Random Search

Figure 12. Comparison of accuracy criterion using grid
search and random search methods.
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Figure 12 illustrates the performance of both
methods for accuracy criterion. The findings
indicate that grid search is a more effective strategy
for hyperparameter tuning.

A comparative evaluation of grid search and
random search for hyperparameter optimization is
depicted in Figures 13-16. The proposed
algorithms for thyroid disease prediction were
assessed using sensitivity, precision, F1-score, and
AUC in these figures. The results support the
superiority of grid search over random search in
achieving optimal performance.

98.85 oo 07

98.85 4q 07

100 28-85 96.07

80

60

Sensitivity (%)

40

20

RF XGB

oT
Proposed methods
EmE Grid Search Emm Random Search

Figure 13. Comparison of sensitivity criterion using grid
search and random search methods.

100 4 9B8.19 g7.1a 28.19 g57.14

96.46_ 9577

80 4
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404

RF GB
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Figure 14. Comparison of precision criterion using grid
search and random search methods.
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Figure 15. Comparison of F1-score criterion using grid
search and random search methods.
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99.71 99.07

99.96 99.66

AUC (%)

RF DT xGB
Proposed methods

Hmm Grid Search I Random Search

Figure 16. Comparison of AUC criterion using grid
search and random search methods.

5. Conclusion

This paper employed tree-based machine learning
algorithms, including decision trees, random
forests, AdaBoost, and extreme gradient boosting,
to predict thyroid disease. Hyperparameter
optimization methods, such as grid search and
random search, were utilized to enhance algorithm
performance. The imbalanced binary classification
dataset was sourced from the UCI Machine
Learning Repository. To address class balance and
enhance proposed algorithms performance,
random oversampling (ROS) was implemented.

A comprehensive evaluation of the proposed
algorithms was conducted using various criteria,
including accuracy, sensitivity, precision, F1-
score, MCC, AUC, confusion matrix, and ROC
curve analysis. The XGB algorithm, when
optimized using grid search, demonstrated superior
performance in predicting thyroid disease
compared to other proposed algorithms.
Furthermore, random forest and XGB algorithms,
trained with random search, exhibited competitive
results. The findings indicate that in all the
proposed algorithms, the grid search method
demonstrated significant performance compared to
the random search method in predicting thyroid
disease.
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