B.3. Communication/Networking and Information Technology
V. Babaiyan; Seyyede A. Sarfarazi
Abstract
Telecommunication Companies use data mining techniques to maintain good relationships with their existing customers and attract new customers and identifying profitable/unprofitable customers. Clustering leads to better understanding of customer and its results can be used to definition and decision-making ...
Read More
Telecommunication Companies use data mining techniques to maintain good relationships with their existing customers and attract new customers and identifying profitable/unprofitable customers. Clustering leads to better understanding of customer and its results can be used to definition and decision-making for promotional schemes. In this study, we used the 999-customer purchase records in South Khorasan Telecommunication Company which has been collected during a year. The purpose of this study is to classify customers into several clusters. Since the clusters and the number of their members are determined, high-consumption users will be logged out of the system and high-value customers who are missed will be identified. In this research we divided our customers into five categories: loyal, potential, new, missed and high-consumption by using the Clementine software, developing the RFM model to the LRFM model and TwoStep and k_Means algorithms. Thus, this category will be a good benchmark for company's future decisions and we can make better decisions for each group of customers in the future.
H.6.4. Clustering
M. Manteqipour; A.R. Ghaffari Hadigheh; R. Mahmoodvand; A. Safari
Abstract
Grouping datasets plays an important role in many scientific researches. Depending on data features and applications, different constrains are imposed on groups, while having groups with similar members is always a main criterion. In this paper, we propose an algorithm for grouping the objects with random ...
Read More
Grouping datasets plays an important role in many scientific researches. Depending on data features and applications, different constrains are imposed on groups, while having groups with similar members is always a main criterion. In this paper, we propose an algorithm for grouping the objects with random labels, nominal features having too many nominal attributes. In addition, the size constraint on groups is necessary. These conditions lead to a mixed integer optimization problem which is not convex nor linear. It is an NP-hard problem and exact solution methods are computationally costly. Our motivation to solve such a problem comes along with grouping insurance data which is essential for fair pricing. The proposed algorithm includes two phases. First, we rank random labels using fuzzy numbers. Afterwards, an adjusted K-means algorithm is used to produce homogenous groups satisfying a cluster size constraint. Fuzzy numbers are used to compare random labels, in both observed values and their chance of occurrence. Moreover, an index is defined to find the similarity of multi-valued attributes without perfect information with those accompanied with perfect information. Since all ranks are scaled into the interval [0,1], the result of ranking random labels does not need rescaling techniques. In the adjusted K-means algorithm, the optimum number of clusters is found using coefficient of variation instead of Euclidean distance. Experiments demonstrate that our proposed algorithm produces fairly homogenous and significantly different groups having requisite mass.
H.6.4. Clustering
M. Lashkari; M. Moattar
Abstract
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization ...
Read More
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages such as fast convergence rate, intelligent operators and simultaneous local and global search which are the motivations behind choosing this algorithm. In the Extended Cuckoo Algorithm, we have enhanced the operators in the classical version of the Cuckoo algorithm. The proposed operator of production of the initial population is based on a Chaos trail whereas in the classical version, it is based on randomized trail. Moreover, allocating the number of eggs to each cuckoo in the revised algorithm is done based on its fitness. Another improvement is in cuckoos’ migration which is performed with different deviation degrees. The proposed method is evaluated on several standard data sets at UCI database and its performance is compared with those of Black Hole (BH), Big Bang Big Crunch (BBBC), Cuckoo Search Algorithm (CSA), traditional Cuckoo Optimization Algorithm (COA) and K-means algorithm. The results obtained are compared in terms of purity degree, coefficient of variance, convergence rate and time complexity. The simulation results show that the proposed algorithm is capable of yielding the optimized solution with higher purity degree, faster convergence rate and stability in comparison to the other compared algorithms.