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Abstract 

Grouping datasets play an important role in many scientific research works. Depending on the data features 

and applications, different constrains are imposed on groups, while having groups with similar members is 

always a main criterion. In this paper, we propose an algorithm for grouping the objects with random labels, 

nominal features having too many nominal attributes. In addition, the size constraint on groups is necessary. 

These conditions lead to a mixed integer optimization problem that is neither convex nor linear. It is an NP-

hard problem, and exact solution methods are computationally costly. Our motivation to solve such a 

problem comes along with grouping the insurance data, which is essential for fair pricing. The proposed 

algorithm includes two phases. First, we rank random labels using fuzzy numbers. Afterwards, an adjusted 

 -means algorithm is used to produce the homogenous groups satisfying a cluster size constraint. Fuzzy 

numbers are used to compare random labels, in both the observed values and their chance of occurrence. 

Moreover, an index is defined to find the similarity of multi-valued attributes without perfect information 

with those accompanied with perfect information. Since all ranks are scaled into the interval      , the result 

of ranking random labels does not require rescaling techniques. In the adjusted K-means algorithm, the 

optimum number of clusters is found using the coefficient of variation instead of the Euclidean distance. 

Experiments demonstrate that our proposed algorithm produces fairly homogenous and significantly 

different groups having the requisite mass.  

 

Keywords: Classification, Clustering, Fuzzy Numbers, Homogenous Groups, K-means Algorithm.  

1. Introduction

Generally, data grouping provides a powerful tool 

for managers and researchers. Here, a large 

number of objects are divided into a few groups 

such that the members of each group are similar 

as much as possible, while they have the most 

dissimilarity with the members of the other 

groups. Exploiting members' common behavior of 

a homogenous group empowers mangers in 

decision-making in many practical cases as well 

as in scientific studies. In this work, we aim to 

group a dataset into homogenous groups 

satisfying requisite of mass that enables using the 

law of large numbers. The objects of this dataset 

are labeled with random variables. 

Profitability and retaining a certain level of 

market share are two main goals in policy pricing 

strategies of all insurance industries [1, 2]. For 

devising a plan to accomplish these goals, having 

homogenous and insurable risk groups is 

important, and an optimum pricing plan usually 

follows the average behavior of such groups in 

several aspects such as claim cost, effect of 

premium variation on customers' retention rates, 

and demand functions. 

Consequently, we are motivated to find a method 

to group the database of cargo insurance policies 

to insurable homogenous risk groups. Here, 

policies are objects, and the cost of claims is their 

labels that can be assumed as random variables 

with non-negative outcomes. Our dataset contains 

a large number of nominal attributes, while the 

attributes of some features can be merged to 

produce a new integrated attribute. For instance, 

when a policy-holder uses airplane, lorries, and 

trains altogether for transportation, these three 

attributes are incorporated to construct a multi-
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valued attribute, and consequently, such an 

attribute must be considered different from its 

components. In other words, the transporting 

mean of a policy as a feature might have multi-

valued attributes, while the type of commodity is 

a feature with simple attributes. 

Homogeneity in a group of this dataset may be 

defined as the similarity of different policies on 

the basis of cost of claims, which are considered 

as the random variables. Furthermore, insurability 

imposes the condition of having enough members 

in each group [2]. 

Two main approaches exist for constructing a 

homogenous collection of objects, classification 

and clustering. While classification is a supervised 

learning algorithm [3], clustering methods are 

categorized as unsupervised learning methods [4]. 

Clearly speaking, the clustering algorithms are 

used for the unlabeled objects, while the 

classification methods are applied to predict the 

labels of new objects using the pattern of some 

other samples. 

It is worth mentioning that the labels of objects in 

this work are random variables, while the popular 

classification methods are applied for objects with 

crisp labels. Further, the classification methods 

such as the SVM [3] techniques divide the dataset 

with respect to these labels, and as a main 

characteristic, the classification methods typically 

have no control on the size of classes. 

Having objects with nominal attributes may tempt 

one to apply one of the existing clustering 

methods such as  -modes [5, 6] and  -prototype 

[7]. These methods only consider two possibilities 

for the nominal attributes, similar and dissimilar. 

Therefore, by minimizing the intra-dispersion in 

all clusters, objects are included in a group when 

most of their features are the same. By this 

consideration, the impacts of dissimilar attributes 

on random labels are ignored. Furthermore, when 

the possible number of values for nominal 

variables is too many, it may lead to clusters with 

a low similarity between objects. 

Another option to deal with too many nominal 

attributes might be clustering the attributes of 

each feature. For example, this idea has been 

applied in a heuristic fashion on the automobile 

policies with 4 features; each categorized into 3 

attributes [8]. As a result,    risk groups are 

identified, while some of them are not insurable. 

Besides, labels (cost of claims in our case) do not 

play any role on specifying the clusters in this 

method. 

Recall that the value of claim on each policy as a 

label can be considered as a random variable. This 

imposes a sort of uncertainty on the problem.  In 

order to deal with such a dataset, the idea of 

probabilistic databases [9] strikes. For ranking the 

tuples with respect to scores, claim rates in this 

work, Li et. al [10, 11] introduced a method using 

a parameterized ranking function, defined as 

follows:  

0

( ) ( , )Pr( ( ) ),w

i

t w i t r t i


   

in which, Pr( ( ) )r t i  is the probability where t  

stands in position i  and ( , )w i t  is a weight 

function. The higher the value for ( )w t , the 

higher the rank. In this approach, the authors 

devised a method to determine the priorities of 

tuples according to scores, while evaluation of the 

distance between tuples was not their concern. 

Consider the situation where there are tuples

1, , nt t with uniform distributions such that with 

certainty they sit in positions   to  , respectively. 

Recalling the notion of support of a probability 

distribution f as{ ; ( ) 0}fx D f x  , this means 

that supports of their distribution probabilities 

have empty intersections. Subsequently,

( ) ( , ).w it w i t   If w  does not depend on the 

distribution of scores of   as well as the location of 

values of scores, as defined in [10, 11], no matter 

how far the scores of tuples are from each other, 

the values for ( )w t  are determined as the same. 

Since our final aim is to cluster the objects 

respecting their distances, applying this model 

emerges an additional challenge on determining a 

suitable w  , which makes it potentially impractical 

for our goal. 

Since distance plays a vital role in clustering 

algorithms, distance of probability distributions 

defined in [12] could be another option for 

determining the distance between random 

variables. As a measure, f-divergences are not 

symmetric, and do not need to satisfy triangular 

inequality.  Recall that they are applied for finding 

the distance of probability distributions with 

common supports, and consequently, they are 

independent from the values of random variables. 

For example, consider the case of having uniform 

random variables ( , ) 1,2, ,i iU l u i n  with

1 1, , 1i iu l i n   ; f-divergence functions 

take equal values regardless of the distances 

between the support sets. As a result, the f-

divergence function is a weaker notion than the 

distance, in addition to their other properties, 

which make them less effective in addressing our 

problem. 
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For clustering a database with random labels and 

nominal attributes, we need a method to compare 

the random variables considering both the location 

of their values and their chance for occurrence. 

For simultaneously respecting these two criteria, 

fuzzy numbers capability is an appropriate option. 

The idea of fuzzy sets was introduced by Zadeh 

[13] to deal with the uncertainty by extending the 

concept of membership to a set. The membership 

function helps to consider the trustworthy of the 

claim cost occurrence. Moreover, by comparing 

 -cuts, the location of claim rate values can be 

considered in calculation of the distance between 

random variables.  

Since we use fuzzy numbers for labels with 

random values, their ranking necessitates a 

method for fuzzy numbers' ranking. Several 

methods exist in the literatures for this purpose, 

each of which has some advantages and 

disadvantages. Their ability in distinguishing 

different fuzzy numbers can be considered as the 

most important criterion to choose one of them in 

practical applications.  

The proposed method in [14] is applied in this 

research work that uses  -cuts instead of local 

information. Recall that in the clustering methods, 

the range of variables must be comparable. Since 

all the ranks obtained are in [0,1], rescaling the 

data, as suggested in [15, 16], is superfluous. Our 

experiments denote that this method intuitively 

produces more consistent and sensible results.  

K-means is one of the most popular clustering 

algorithms for ordinal data [17].  

According to [18], it is the second top algorithm 

among the top-10 data mining algorithms. As an 

achievement, it produced a more satisfying 

outcome in a case study for claim cost prediction 

in the automobile insurance industry [2]. In this 

work, we need to have clusters satisfying requite 

mass, while the number of clusters is not known 

in advance. 

There are some research works aimed to limit the 

number of members in each group (e.g. [19]). 

Their modification is based on sorting the distance 

of objects from centers in ascending order, and 

including an object in a group with the least 

distance while not violating the size restriction. 

This adapted algorithm maintains the mass of 

groups less than a pre-determined volume; 

however, after identifying the centroid, there is no 

control on dispersion of objects in each group. 

Here, we adjust the K-means algorithm in another 

sense; it identifies the number of clusters such that 

the ratio of intra-dispersion index to the centers-

dispersion index is minimized. 

The rest of the paper is organized as what follows. 

In Section 2, the understudied problem is stated. 

Section 3 explains our proposed method. It is 

applied in a motivating problem with real data in 

Section 4, and the results obtained are analyzed. 

The final section concludes with findings and 

future related works. 

 

2. Problem statement  

To clarify the problem, let  A  denote a dataset 

defined as 1 2{ , , , }mA a a a , where

1 2 1, ,i

na B B B i m      and 
jB  is a set 

of nominal attributes available for the 
thj   

dimension of an object. Therefore, each object is a 

vector with nominal components.  In addition, the 

object 
ia  has a label ( ) , 1, , ,i il a r i m   

which is considered as a random variable such as 

cost of claims in our motivating problem. Our 

goal is to partition A  into disjoint subsets

, 1, ,jA j k   while k  is not known 

beforehand. These subsets should satisfy the 

following conditions: 

0

1

. ;

. , 1, , , ;

. .

j

j l

k j

j

I A

II A A j l k j l

III A A







  



 

(1) 

 

The sets , 1, ,jA j k  are called clusters in the 

literature. The corresponding clustering problem 

can be formulated as the optimization problem (2) 

(See [20, 21, 22]). In which, l  assigns the unique 

random variables to the objects, , 1, ,jl j k  is 

the center of the  
thj cluster, and (.,.)dist  denotes 

dissimilarities of two random variables. In this 

problem, jl and
ijw are decision variables. In an 

optimal solution, the binary variable
ijw is 1 if 

ia

belongs to the 
thj  cluster and 0 otherwise.  For an 

exact definition of the distance between two 

random variables, their properties should be 

identified.  

1 1

1

0

1

min ( ( ), )

.

1 1, , ,

1, , ,

{0,1} 1, , , 1, ,

m k
i

ij j

i j

k

ij

j

m

ij

i

ij

w dist l a l

s t

w i m

w j k

w i m j k



 





 

 

  







  
(2) 
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Recall that
jB is the set of nominal attributes 

available for the 
thj dimension of an object. Since 

there are not sufficient observations of the 

outcomes of ( )il a ,  we consider the following 

random variables of all
ia , where their 

thj  

dimension is 
jb . 

 ( | ), , 1, , .i i

j j j jl a a b b B j n     

For the sake of simplicity, ( | )i i

jl a a is denoted by

(. | )i

jl a , hereafter. Therefore, the distance of two 

random variables is defined as follows: 

  1

( ( ), ) :

(., ), , (., ) ,

i

j

i i

n j

dist l a l

dist l a l a l


 (3) 

 

To evaluate the distance of two vectors with 

random variable components, we first construct 

fuzzy numbers  (., )fuz l b from the outcomes of 

random variables (., ), , 1, ,jl b b B j n  . Then 

for all 1, , ,j n members of the produced fuzzy 

numbers set{ ( (., )); }jfuz l b b B are ranked. Let 

( )R b R  denote the rank of jb B . In this way, 

the Euclidean distance can be applied as a 

measure for the specified ordinal values. 

 

 1

2

1

( ),

: ( ( ), , ( )),

: (( ( ), , ( ))

i

j

i i

n j

i i

n j

dist l a l

dist R a R a R

R a R a R



 

 
(4) 

By considering such a distance function, problem 

(2) identifies a mixed integer problem that is 

neither linear nor convex. 

In some cases, the size of jB might be too large, 

and as a consequence, there are not enough 

observations of some (., )l b for jb B , and the 

calculated ( )R b might be not reliable. In such 

cases, finding the similarity of jb B for those 

members of B that their related (., )l b has been 

observed enough may help to estimate the rank of 

(., )l b . Structure of elements in jB  plays an 

important role in determining such similarity. In 

our case study, we observed two kinds of jB 's; 

with multi-valued, and with simple attributes. 

Recall that members of jB  are subsets of possible 

attributes, and these subsets may be non-singleton 

only for the multi-valued attribute. Here, a 

heuristic method is proposed to measure these 

similarities, and specify ( )R b for the b 's with not 

enough observations. 

After execution of the above procedure, a rank is 

assigned to each attribute. At this stage, we need 

to solve problem (2) with distance function 

defined in (4). If the number of clusters, k , was 

identified, while the third constraint in problem 

(2) was not satisfied, the K-means algorithm could 

be useful to find a local optimum. Even so, for 

solving problem (2) with unknown k , we propose 

an adjusted K-means algorithm, explained in the 

next section. 

 

3. Methodology details 

Our proposed method includes two main phases; 

ranking random labels, and data clustering. 

 3.1. Phase 1: Ranking random labels 

In this phase, the uncertain label of each policy is 

first described as a triangular fuzzy number, and 

then these fuzzy numbers are ranked. The steps of 

this phase for all , 1, ,jB j n  are as what follow. 

Step1: Divide the members of jB  into two 

disjoint sets,
e

jB  and
l

jB , where 
e

jB  is the set of 

members with enough large numbers of 

observations, more than a threshold 0t , and

\l e

j j jB B B . 

Step2: Construct the fuzzy numbers, ( (., ))fuz l b  

from the outcome (., ), e

jl b b B . 

Step3: Rank all the fuzzy numbers

( (., )) e

jfuz l b b B , denoted by ( ( (., )))R fuz l b . 

Determine the rank of
l

jb B  as follows: 

For all
l

jb B
, where jB

is a set of simple 

attributes, let: 

  

 (., )

(., )
e
jb B

e

j

R l b

R l b
B





 . 

For all
l

jb B , where
jB is a set of multi-valued 

attributes, let: 

  (., ) ( (., ))
e
j

b

b B

R l b w R l b


 . 

where, 1
e
j

b

b B

w


 . 



Manteqipour et al. / Journal of AI and Data Mining, Vol 6, No 1, 2018. 
 

167 

 

Steps 2-4 are explained in details in the sequel. 

3.1.1. Step 2: Constructing fuzzy numbers 

Fuzzy number construction from uncertain data 

mainly depends on the application. Employing the 

outcomes of random labels, the fuzzy numbers 

could be associated such that the outcomes with a 

higher possibility are assigned a higher 

membership degree, and more reliable results are 

expected from more accurate and informative 

fuzzy numbers [23]. Here, the triangular fuzzy 

numbers are used.  A triangular fuzzy number is 

shown by a triple 1 2 3[ , , ]a a a with the membership 

function defined as: 

 

1
1 2

2 1

3
2 3

3 2

2

( )

1

0

x a
if a x a

a a

a x
if a x ax

a a

if x a

otherwise




  




  



 



  

Let bF  for , 1, ,e

jb B j n   be the crisp set of 

the observed outcomes of label (., )l b . The fuzzy 

number associated with b is defined as: 

( (., )) : [min( ), ( ),max( )]b b bfuz l b F mean F F . 

Depending on the application, definition of a 

triangular fuzzy number can be varied. For 

instance, the minimum and maximum values can 

be substituted by percentiles to ignore the outlier 

data. 

3.1.2. Step 3: Ranking fuzzy numbers 

The ranking method used in this work is due to 

[14]. Let X  and Y  be the intervals for an 

uncertain variable with uniform distributions

( )xp x and ( )yp y , respectively. In order to 

compare these intervals, the probability ( )P X Y   

is evaluated as: 

( ) ( )[ ( ) ] .
x

x yP X Y p x p y dy dx


 
    (5) 

 

Calculating (5) is simplified by considering all the 

six different possible relative positions of X and

Y  [14]. 

For an (0,1] , the  -cut of a fuzzy number A  

, denoted by A  , is the crisp set

{ ; }AA x    R ; ,where A  is the 

membership function of A . Obviously, any  -cut 

is an interval. For comparing the two fuzzy 

numbers A  and B  based on their  -cuts by (5), 

an index called comparison relation is defined as: 
1

0
( ) ( ) .P A B P A B d   

 
(6) 

Let 1 2{ , , , }NS A A A  be a set of fuzzy 

numbers. The fuzzy target number T associated 

with S  is a number with the membership function

: [0,1]T R satisfying the following 

properties: 

1. T is a piecewise continuous function, and

( ) { ; ( ) 0}Asupp T x x  R  is bounded. 

2. For any i  , ( ) ( )isupp A supp T . 

3. T  is non-empty, i.e. ( ) 0T x dx



   .  

For the target number T , values of

( ) ( ), 1,2, ,T i iE A P A T i N   are first 

calculated and then normalized   as: 

( )
( )

max { ( )}
j

T i
T i

A S T j

E A
R A

E A

  (7) 

Recall that ( ) [0,1]T iR A  , referred to as the 

relative index of the fuzzy number iA S with 

respect to the target T .  

In [14], three different triangular target fuzzy 

numbers are introduced according to the objective 

of decision-maker;
pesT  , netT  , and 

optT   for 

pessimistic, neutral, and optimistic ones, 

respectively. 

Let us define: 

min

max

min{ ; ; ( ) 0},

max{ ; ; ( ) 0}.

i

i

i A

i A

x x A S x

x x A S x





   

   
 

In this way, the two fuzzy triangular numbers 
pesT   

and optT   are defined as:  

 
min min max

min max max

[ , , ],

[ , , ].

pes

opt

T x x x

T x x x




  

Furthermore, netT is defined as a fuzzy number 

with the membership function that attains 1 over 

the interval min max[ , ]x x   and 0 elsewhere. 
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Figure 1. Two symmetric fuzzy numbers [ , , ]A a b c   and 

[ , , ]B a b c     and their associated fuzzy targets 

pesT   and 
optT   are, respectively, depicted by dashed and 

solid lines. 

An appropriate fuzzy target number for a problem 

is the one that assigns identical ranks to identical 

random labels, and different ranks to the others. A 

further helpful criterion for a suitable target fuzzy 

number is its behavior on comparing two 

symmetric fuzzy numbers. The result of rating 

two symmetric fuzzy numbers with identical mean 

should satisfy the sense of decision-makers. In 

some applications, the outer number, i.e. the more 

deviated one, may be preferred to have a higher 

rank. However, the inner one's rank is preferred to 

be larger in some other cases. Simply, it can be 

seen that if[ , , ]a b c  and[ , , ]a b c    are two 

triangular fuzzy numbers with 0  , then: 

[ , , ] [ , , ],
net netT TR a b c R a b c     (8) 

[ , , ] [ , , ],
pes pesT TR a b c R a b c     (9) 

[ , , ] [ , , ],
opt optT TR a b c R a b c     (10) 

Thus, the target number can be selected respecting 

(8) -(10). As it can be seen in Figure 1, A  and B  

are two symmetric fuzzy numbers with identical 

means, while A  is more deviated. In light of (8), 

the algorithm does not distinguish A and B , if one 

uses netT as the target number, no matter how large 

the value for   is (See Figure 1). If the decision-

maker does not care about the value for deviation, 

netT  could be an appropriate target number. On 

the other hand, if assigning a lower rank to 

random labels with lower minimum outcomes is 

preferred, 
pesT  might be considered as the target 

number (9), while 
optT  seems significant when the 

decision-maker prefers to assign larger ranks to 

fuzzy numbers with a higher maximum outcome. 

3.1.3. Step 4: Ranking random labels with not 

enough observations 

Recall that random labels (., ), l

jl b b B   are 

ranked in Step 4. As mentioned earlier, some 

random variables may have not enough 

observation of outcomes. For these cases, we 

approximate their rank by the average of the

 ( (., )) , ,e

jR fuz l b b B  based on the existing 

similarity. If kB is a set of single attributes, there is 

no explicit similarity between the members since 

they are only nominal attributes. Therefore, we 

simply approximate their ranks as the average of

 ( (., )) , e

jR fuz l b b B . 

 

( )

( (., )) : .
e
jb B

e

j

R b

R fuz l b
B





 (11) 

When    is a set of multi-valued attributes, some 

members of
l

kB  and
e

kB  have some common codes. 

We will make use of this property. Consider the 

set of multi-valued attributes
l e

k k kB B B  , 

where  

1 2{ , , , }
k

l l l l

k mB C C C  

 
1 2 '{ , , , }

k

e e e e

k mB C C C , 

and
l

iC  and
e

iC are subsets of a set of all options 

for the 
thk features. For 1, , 'kj m  and

1, , ki m   define: 

2
( , ) :

l e

i jl e

i j l e

i j

C C
w C C

C C





. 

 

The weighted mean is defined as follows: 

 

  
'

1

'

1

( , ) (., )
( ) :

( , )

k

k

m l e e

i j jjl

i m l e

i jj

w C C R fuz l C
S C

w C C










 (12) 

Let    represent the validity of the index ( )l

iS C  , 

as the rank of the 
thi   attribute

l

iC  . Let us define 

the value for i   as follows: 

 

( )
: .

e e
k k

e
k

l l

i id B d B

i l

id B

C d C d

d C


 











  (13) 

 

ɑ ɑ+δ b c-δ c

Tpes

A

Topt

B
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Observe that
i can be considered as a 

generalization of ( , )l e

i jw C C , i.e. ( , )l e

i jw C C is the 

value for
i   when { }e e

k jB C . 

Now the rank of ( (., ))l

iR l C is determined as 

follows: 

( (., )) ( ) (1 ) ,l l

i i i iR l C S C M      (14) 

in which M  is the average of the objects' ranks in
e

jB . A larger value for i may refer to more 

reliability of ( )iS C . When
l

iC has no intersection 

with all members of
e

kB , we have 0i  and

 (., )l

iR l C M . 

3.2. Phase 2: Clustering objects 

 In this phase, we are looking for an optimal 

solution of the following problem that is a 

transformation of (2). 
2

1 1

1

01

min ( )

. . 1 1, ,

1, ,

{0,1}, 1, , 1, ,

m k i

ij ji j

k

ijj

m

iji

ij

w R a R

s t w i m

w j k

w i m j k



 







 

 

  

 





  

(15) 

where, k  is the number of clusters, jR  is the 

center of the
thj cluster, and 

ijw   are decision 

variables. To do this end, an adjusted K-means 

algorithm is proposed. 

3.2.1 Adjusted K-means algorithm 

 Problem (15), without satisfying a size constraint 

on clusters, is a well-known NP-hard problem 

[24]. When the number of clusters is known, it 

can be solved in time
1( log )nkO m m

, [25], where 

m  is the number of objects, k  is the number of 

clusters, and n  is the dimension of objects. In 

such a case, several heuristic methods have been 

proposed to find a local minimum solution. The 

standard K-means algorithm can be summarized 

as follows: First, the initial k  centers are selected. 

Each point in the dataset is then assigned to the 

closest center, and a cluster is identified as the 

points with identical centers. In each step, the 

centers are updated with respect to the elements of 

clusters. This process is iterated until no point 

changes the cluster center. This algorithm is 

usually fast, and therefore, running it for several 

times with different numbers of clusters to find 

the best one is common [15, 16]. Our adjusted K-

means algorithm to solve problem (15) is based on 

this property. It should be mentioned that this 

method strongly depends on the selection of the 

initial centers. Different initial centers may lead to 

different solutions. Therefore, we execute this 

method 1000 times, each time with different 

initial centers, and select the best solution 

obtained among these runs.  

To find the best number of clusters, several 

indices are defined [15, 16]; while there are two 

main ideas behind them, having clusters with 

lower intra-dispersion or clusters with a higher 

differentiate between them. Most of these indices 

apply the Euclidean norm between the objects. 

We use the coefficient of variation, which is a 

better index to evaluate dispersion. 

Recall that in our approach, in addition to the 

constraint on the size of clusters, the number of 

clusters is also unknown. The following adjusted 

algorithm is proposed to approximate 
*k  as the 

best solution for the number of clusters and *k
 as 

the clustering solution. 

1. Set the number of clusters 2k  and

0.T   

2. Apply the  -means algorithm for 1000 

times, leading to 1, ,1000k

iE i   as 

their solutions. Let E  be the set of such 

solutions among these 1000 that satisfy 

the cluster constraint size. If E   go to 

Step 5. 

3. Let
( )

arg min
( )

k
i

k

i
k kE E

i

IDI E

ODI E



  and 1T 

. 

4. 1,k k   and go to Step 2. 

5. If 1T   , let: 

*

2, , 1

( )
arg min

( )

j

k

j

IDI
k

ODI




 , 

otherwise there is no clustering solution 

with clusters satisfying the requisite mass 

constraint. 

In Step 3, ( )k

iIDI E  denotes the intra-dispersion 

index of clusters, defined as the sum of coefficient 

of variation of cluster's members, and ( )k

iODI E   

is the sum of coefficient of variation of centers. 

When the underlying data includes multiple 

vectors, the sum of the coefficient of variations 

over all dimensions are considered. The best 
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number of clusters is the value that minimizes the 

ratio of these two indices, which is a number 

between 2 and

0

m



 
 
 

, where m  is the number of 

objects, and 0 is the minimum number of 

elements in each cluster. Thus, the algorithm 

terminates after finite iterations. The algorithm 

may obtain no solution; for example, 
0 m  . 

Such conditions are controlled by the variable T . 

4. Experimental results 

Here, the proposed method is applied to a real 

data of the cargo insurance policies. 

4.1. Describing real world data 

For nine years, the number of written cargo 

insurance policies has been 354820. For each of 

them, there are 6 features including different kinds 

of parceling, transportation means, special 

conditions, origin, destination, and commodity 

name, which, respectively, have 190, 1100, 2121, 

177, 287, and 1063 different nominal values. In 

details, the first three variables are constructed 

from 65, 21, and 36 different possible values, 

accordingly. Therefore, the number of related 

attributes is the number of these multi-valued 

attributes. Table 1 shows two examples of such 

registered policies. 

Special conditions are added to some policy 

contracts. They are texts, each of which is 

replaced by a code for summarizing the 

information. Analogously, for an easier 

programming, the codes are associated with the 

attributes. As a result, for problem (2) in our case, 

354820, 6m n   , and random labels stand for 

the cost of claims. To remove the effect of 

inflation rates and make the costs comparable, the 

ratio of cost of claims over insured capital is 

considered as the label instead. Hereafter, we refer 

to this value as the claim ratio. 

4.2. Application of proposed algorithm 

Let us explain executing the proposed algorithm 

on this real-case data step by step. Here, 0   in  (2) 

is fixed to 5000. 

4.2.1. Phase 1 

This phase includes 4 steps. In the first step

1, ,6jB j   are partitioned into
e

jB and
l

jB . 

The   threshold value is set to    . It means that 

for an accurate conclusion on the claims rate, at 

least     policies from each attribute must be 

observed. This value has been determined 

empirically. Only 304, 69, and 70 codes from total 

codes for commodity, origin, and destination have 

more than 200 records, and the triangular fuzzy 

numbers are constructed just for the related 

random claim values of these simple attributes. 

Further, there are 76, 29, and 204 multi-valued 

attributes of parceling; transportation means and 

special conditions have enough observations. 

Table 1. Two different sample policies and their features. 
Feature Attributes 

Policy1 Policy2 

Origin North Korea Dubai 

Destination Tehran Tehran 

Commodity Polyethylene Diesel Generator 

Vehicle Cargo ship Cargo ship, Lorry 

Parceling Pallet, Container, 

bag 

Container 

Conditions 5, 8, 9, 24 5, 9, 11, 20 
 

 

In Step 2, fuzzy numbers related to random labels 

for members of 1, ,6e

jB j  are constructed 

from the outcomes of random labels. For all 

members of
e

jB , the claim ratios are calculated 

annually; these ratios are presented by
iyr  for

1,2, , e
jB

i n , and 1,2, ,9y  . These indices 

help us to remove the effect of inflation or any 

other price variation over time. As a result, a 

single rate is calculated for each code in each 

year. By dividing these values by the number of 

policies having 
thi attribute in the

thy year, we 

have per-capita rate of claims in each year, shown 

by
iy . 

For each code, 1,2, , e
jB

i n , the values for 

minimum, mean, and maximum are evaluated. 

 

 

1, ,9

1, ,9

1, ,9

min min { },

{ },

max max { }.

i y iy

i y iy

i y iy

mean mean



















 (16) 

We restate that using other kinds of fuzzy 

numbers may lead to a higher accuracy but with 

costly computation in the ranking phase. Here, the 

triangular fuzzy numbers are chosen to simplify 

the calculation in this study. Considering (16), the
thi    triangular fuzzy number is

[min , ,max ]i i imean . 

These fuzzy numbers are ranked using the method 

explained in Section 3.1.2. Nature of the 

motivating problem, which deals with claim rates, 

encourages us to be more conservative assuming 
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     as the target fuzzy number. In table 2, some 

of the existing multi-valued attributes for 

parceling, their related fuzzy numbers, and 

associated ranks are mentioned. 

Table 2. Ranks of fuzzy numbers for some multi-valued 

attributes for parceling. 
Multi-

valued 

attributes 

Fuzzy number Rank 

{Carton} [0, 0.000025, 0.000059] 0.000850 

{Pallet} [5.16-08, 0.0001. 0.000298] 0.003859 

{Carton, 

Container} 

[0, 7.91-06, 0.000025] 0.000310 

{Pallet, 

Container} 

[3.85659e-06, 0.00003,7.54141e-05] 0.001150 

{Carton, 

Bag} 

[0, 2.244 e-05, 0.00020] 0.000326 

{Pallet, 

Bag} 

[0, 0.00018, 0.00047] 0.002596 

The results of this ranking coincide with the 

expectations. A lower rank denotes a higher safety 

in parceling.  As it can be seen in table 2, 

{Carton} stands lower in the rank than {Pallet}. 

This means that Carton is safer than Pallet. 

Further, a joint use of different kinds of parceling 

reasonably saves the order of safety. For instance, 

when pallet and carton are mixed with container, 

{carton, container} is safer. Analogously, 

expectation shows more safety for {Carton, Bag} 

than for {Pallet, Bag}.  

Another intuition observed in this table is the 

ranks of {Carton, Bag} and {Carton, Container}, 

meaning that the Container provided a safer 

parceling than the Bag.  An analogous conclusion 

is also valid in comparing {Pallet, Bag} and 

{Pallet, Container}. Another intuition observed in 

this table is the rank of {Carton, Bag} and 

{Carton, Container}, meaning that the Container 

provided a safer parceling than the Bag.  An 

analogous conclusion is also valid in comparing 

{Pallet, Bag} and {Pallet, Container}. Another 

accordance with the rational expectation is that 

such attributes including more kinds of parceling 

are safer. Similar intuitions are observed in other 

multi-valued attributes. 

The final task in this phase is the ranking of

.l

jb B In our database, three simple attributes are 

origin, destination, and commodity, in addition to 

three multi-valued attributes; parceling, 

transportation means, and special conditions. The 

rank of single attributes in members of
1 2 3, ,l l lB B B  

(the first three) are approximated by simple 

average of 
e

jB   members' rank using (11). 

 

Table 3. Attributes having common codes with

{21,25}l

iC  . 

e

jC   ( , )l e

i jw C C  l e

i jC C  e

jC   

{25} 0.667 1 1 

{21} 0.667 1 1 

{13,25} 0.5 1 2 

{13,21} 0.5 1 2 

{3,25} 0.5 1 2 

{2,21} 0.5 1 2 

{3,13,21} 0.4 1 3 

{1,25} 0.5 1 2 

{3,21} 0.5 1 2 

{4,13,21} 0.4 1 3 

{2,13,21} 0.4 1 3 

{1,21} 0.5 1 2 

 

For the ones with multi-valued attributes, denoted 

as members of
4 5 6, ,l l lB B B , the weighted average 

seems more accurate. A sample calculation of 

such weighted average is summarized as what 

follows. Consider the multi-valued attribute

{21,25}l

iC      of a parceling feature. Members of 

sets are representatives for different kinds of 

parceling, used instead of texts. In table 3, 

different attributes having non-empty intersection 

with
l

iC and their related weights, ( , )l e

i jw C C , 

(defined in Section 3.1.3) are calculated. Using 

these weights, the weighted average ( )l

iS C  is 

computed as defined in (12). Then i in definition 

(13), which estimates the validation of ( )l

iS C as 

the rank of
l

iC , is obtained. The value for M is the 

simple average of ( )R b   for all
e

jb B . At last, the 

rank of
l

iC  is approximated by replacing these 

values in (14). The calculation leads to: 

12 2
0.51852 ( ) 0.1119

25 2

0.014896 ( ) 0.0652

i

l

i

l

i

S C

M R C




  


 

  

4.2.1. Phase 2 

 In this phase, for clustering the objects having 

ordered features, a local solution of problem (15) 

is obtained. Figure 2 depicts the results of the K-

means algorithm. In these graphs, the horizontal 

axes show the number of clusters. The vertical 

axis in the first graph stands for the number of 

clustering solutions having insurable clusters 

among 1000 different solutions.  
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As it is seen, all clustering solutions have 

insurable groups when the number of clusters is 2, 

while there is no solution with insurable groups 

with 12 clusters. Henceforth, the algorithm of 

clustering is terminated for 12k  .  

The optimum value of
i  for 2, ,12   is obtained 

where 7k  . The second graph denotes the 

minimum value of intra-dispersion index among 

1000 solutions for different numbers of clusters, 

and the last one denotes the deviation between 

centers. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. First graph, from above, illustrates number of 

clustering solutions having insurable groups among 1000 

solutions for different number of clusters. Second one 

shows minimum value of intra-dispersion index over 1000 

solutions, and third one denotes dispersion of centers. 

 

4.3. Validity of results 

In table 4, the number of elements in each cluster 

is reported. As it can be seen, the second and third 

clusters are so massive in comparison with the 

others. For keeping consistency with other 

clusters, these clusters are considered as self-stand 

databases, and the operation is carried out on them 

once again. This process is named as re-clustering 

in table 4. 

Re-clustering of data in the third cluster 

determines 2 as the best number of sub-clusters; 

however, having the ability of comparison, the 

number of sub-clusters are fixed at 3. Even by this 

consideration, the third sub-cluster is still highly 

populated, while one more time re-clustering 

leads to no insurable groups. This phenomenon 

may refer to the structure of data, that some 

attributes are very popular. For instance, about 

one third of data have the same transportation 

mean; {Lorry} and {Cargo Ship}. 

 

Table 4. Number of members of obtained cluster. 
No. First 

clustering 

Re-clustering 

1 6034  

2 76913 42629 

34284 

3 175007 23149 

9690 

142168 

4 5902  

5 14890  

6 21607  

7 54467  

 

Table 5. Distance of centers from origin. 

No. 
iC

  

No. 
iC

 

1 1.001073   

2 0.019112 2.1 0.027325        

2.2 0.009190 

3 1.00017 3.1 1.008535 

3.2 1.000058 

3.3 1.000017 

4 1.064107   

5 1.414227   

6 0.130789   

7 0.061332   

 

The center of a cluster is considered as its 

representative. Being a centroid in far distance   

from the origin may be a sign of higher expected 

claim of the associated cluster. In table 5, the 

Euclidean distance of centers from origin is 

presented. As it can be seen, Cluster 2 is the 

nearest one to the origin, and Cluster 5 is the 

farthest. Re-clustering leads to some close sub-

clusters. Table 5 shows that by re-clustering 

cluster 3 to 2 sub-clusters, the optimal solution of 

the proposed algorithm is preferable. 

Recall that nominal attributes are converted to the 

ordinal ones and then clustered. Analyzing the 

difference between the clusters obtained with 

respect to the nominal attributes is useful. In order 

to do this comparison, the Chi-square test is 

applied to identify how distribution of nominal 

attributes differs [26]. Therefore, 10

2

 
 
 

 pairwise 

comparisons are carried out between clusters for 

each attribute. Table 6 presents the results, where 

1x - 6x  , respectively, denotes the features origin, 

destination, parceling, special condition, 

commodity, and transportation mean. 

0

2000

2 3 4 5 6 7 8 9 10 11 12

0

10

20

2 3 4 5 6 7 8 9 10 11 12

0

1

2
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Table 6. Chi-square test results for pair wise comparison 

of clusters. 

pairs 
1x  

2x  
3x  

4x  
5x  

6x  

1 2.1  9791 12353 48653 13427 21970 35038 

2.1 2.2 15556 20188 23606 27743 24277 72466 

2.2 3.1  6588 7360 11928 19150 57433 57433 

3.1 3.2 3435 3096 27639 4035 32839 0 

3.2 3.3 3796 5416 145687 7538 18643 0 

3.3 4 14820 8101 21509 148519 38213 96434 

4 5 12398 6819 20792 20687 15981 12103 

5 6 23112 11999 36497 27726 34571 36497 

6 7 20464 10405 13790 14658 76074 40359 

 

The critical values for the Chi-squared distribution 

with respect to degrees of freedom are given in 

table 7 as well. Comparing the values in tables 6 

and 7 shows that the Chi-squared values are high 

enough to conclude that most groups are 

significantly dissimilar with respect to all 

attributes. However, there are a few exceptions.  

For example, Clusters 3.1, 3.2, 3.3, and 5 are 

exactly similar with respect to the attribute 6x  . 

The transportation means for all of their members 

are the multi-valued attribute {Lorry, Cargo 

Ship}. Besides, some groups are totally dissimilar. 

For instance, there are no policies with identical 

transportation mean or commodity in Clusters 2.2 

and 3.1. In addition, all the three pairwise 

comparisons of Clusters 3.1, 3.2, and 3.3 reveal 

that they are not significantly dissimilar with 

respect to the attribute 4x  . 

 

Finally, the dissimilarity measure proposed in 

[27], which is designed to compare two 

populations with nominal attributes, is calculated. 

The dissimilarity measure for two clusters, say C   

and 'C ,  is defined as: 

 
2

, ,

, '

1 1 ,

( ' )
,

inr
i k i k

C C

i k i k

C C
G

P 




 

where, r   is the number of features (here 6), in
 

is the number of attributes for the
thi   feature, and

,i kC and ,'i kC
are proportions in the 

thk   attribute 

for the 
thi   feature in Clusters C and 'C , 

respectively, and  , , ,1/ 2( ' )i k i k i kP C C  . 

Table 7. Critical values for Chi-squared with respect to 

degree of freedom. 
Degree of 

freedom 

critical 

value 

(0.95) 

critical 

value (0.99) 

variable 

880 950 1054 
1x  

1430 1519 1557 
2x  

5395 5567 5640 
3x 

10535 10775 10876 
4x 

5310 548 5553 
5x 

945 1018 1049 
6x 

Table 8. Dissimilarity measure between any two clusters. 
No. 2.1 2.2 3.1 3.2 3.3 4 5 6 7 

1 12 11 16 15 14 13 13 9 12 

2.1  10 14 14 11 11 18 8 11 

2.2   11 11 8 11 16 9 11 

3.1    9 5 12 14 9 16 

3.2     6 13 14 15 15 

3.3      11 12 13 13 

4       17 10 11 

5        19 19 

6         9 
 

Comparing the values reported in table 8 says that 

pairs of Clusters 6, 5 and Clusters 2.1, 5 have the 

highest dissimilarity measure, while the lowest 

dissimilarity relates to pairs of Cluster 3.1, 3.2, 

and Clusters 3.2, 3.3. 

As a conclusion, it can be said that the groups 

obtained are significantly dissimilar. However, it 

may be better to merge clusters 3.1, 3.2, and 3.3 

since centers of these clusters are positioned very 

close to each other according to table 5, and 

additionally, they are not significantly dissimilar 

in some features. This consistency might be an 

evidence that our proposed algorithm satisfyingly 

specifies the number of clusters.  

5. Conclusion 

In this work, we modeled a real-world problem 

with a non-linear, non-convex optimization 

model, in which the objective function includes 

distances of random variables. For solving the 

problem obtained, an algorithm was proposed, 

which included two phases, ranking random 

labels, and clustering.  

To define the distance of random labels, fuzzy 

numbers were used, which enabled us to consider 

the value of random variables and their chance of 

occurrence into ranking process simultaneously.  

To produce homogenous clusters satisfying a 

requisite mass, an adjusted K-means algorithm 

was applied. In this algorithm, to determine the 

best number of clusters, an index applying 
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coefficient of variation of the objects was defined. 

The optimum number of clusters is chosen so that 

the clusters obtained have members with lower 

intra-dispersing and higher differentiate with the 

members of other clusters; simultaneously, the 

constraint of the requisite mass for each cluster is 

satisfied.  

The proposed algorithm was applied on real data 

of nine-year cargo insurance policies including 

more than 354000 objects.  The results obtained 

show that the seven obtained clusters are 

significantly different and homogenous, while 

they satisfy cluster constraint size.  

Here, triangular fuzzy numbers were used to rank 

the random labels. More accurate fuzzy numbers 

may produce more reliable results, though the 

complexity of computations may increase. The 

rank of not enough observed attributes, and 

weighted average of the rank for all enough 

frequency ones were estimated. By selecting a 

proper collection of enough frequency attributes 

instead of all of them in Section 3.1.3, the 

accuracy of the ranks, and henceforth, the final 

results can be improved, which could be a further 

research direction. The proposed method can be 

considered as a main approach in the future works 

by testing some other fuzzy ranking methods, and 

other similarity indices.  
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 های همگن با حداقل تعداد اعضابندی اشیاء به کلاسگروه

 

 3امیر صفری و 2، رحیم محمودوند1علیرضا غفاری حدیقه، 1*مهناز منطقی پور

  .ایران، تبریز، آذربایجاندانشگاه شهید مدنی گروه ریاضی کاربردی، ، دانشکده علوم پایه 1

  .ایران همدان،، گروه آمار، دانشکده علوم پایه 2

   .تهران، ایران بیمه مرکزی ج.ا.ا،وابسته به  پژوهشکده بیمه 3

 02/10/6102 پذیرش ؛62/10/6102 بازنگری؛ 10/19/6102 ارسال

 چکیده:

هرا در نررر گرهتر  ها و کاربرد موضوع قیود متفاوتی برای گرروهبر اساس نوع داده کنند.علمی پیاده می تحقیقاتها نقش بسیار مهمی در بندی دادهگروه

بنردی اشریاب برا یرن مقالر  مرا الگروریتمی بررای گرروهباشد. در اشامل اعضای مشاب  یکی از مهمترین معیارها می هاییک  داشتن گروهدر حالی ،شودمی

یرن مسرهل  است. مدلسازی ادر نرر گرهت  شدهقید حداقل تعداد عضو  ،گروهنمائیم. همچنین برای هر های تصادهی و خصوصیات اسمی ارائ  میبرچسب

شده است ک  ن  خطی است و ن  محدب. یاهتن جوابهای دقیق این مسهل  از نررر محاسرتاتی بسریار  مختلط سازی عدد صحیحمنجر ب  یک مسهل  بهین 

بوده است ک  برای تعیین نرخ منصرفان  مفیرد اسرت. الگروریتم پیشرنهادی باربری  بندی ریسکهای بیم گروه ،پر هزین  است. انگیزه ما از حل این مسال 

ها برای سراختن میانگین-گوریتم اصلاح شده کالهای تصادهی با استفاده از اعداد هازی و پس از آن استفاده از ابندی برچسبهاز است. اول رتت  دوشامل 

ایم. عرلاوه برر آن بر  های تصادهی از اعداد هازی استفاده کردهحداقل تعداد عضو. برای مقایس  مقادیر و احتمال رخداد برچسبهای همگن و دارای گروه

-ایرم. در الگروریتم کرااند شاخص شتاهت آنها ب  سایر خصوصریات را تعریرک کرردهک  ب  اندازه کاهی مشاهده نشده منرور یاهتن رتت  خصوصیات اسمی

هرای کرارگیری الگروریتم پیشرنهادی برر دادهاست. ب  ب  دست آمده هادادهها با استفاده از ضریب تغییرات تعداد بهین  خوش  ،معرهی شده هایمیانگین

 شامل حداقل اعضا شده است. و متفاوتب  طور معنادار  همگن، هاییواقعی منجر ب  تولید خوش 

 .همگن هایگروه بندی،کلاس ،بندیها، خوش میانگین-اعداد هازی، الگوریتم کا :کلمات کلیدی

 


