M. Zarbazoo Siahkali; A.A. Ghaderi; Abdol H. Bahrpeyma; M. Rashki; N. Safaeian Hamzehkolaei
Abstract
Scouring, occurring when the water flow erodes the bed materials around the bridge pier structure, is a serious safety assessment problem for which there are many equations and models in the literature to estimate the approximate scour depth. This research is aimed to study how surrogate models estimate ...
Read More
Scouring, occurring when the water flow erodes the bed materials around the bridge pier structure, is a serious safety assessment problem for which there are many equations and models in the literature to estimate the approximate scour depth. This research is aimed to study how surrogate models estimate the scour depth around circular piers and compare the results with those of the empirical formulations. To this end, the pier scour depth was estimated in non-cohesive soils based on a subcritical flow and live bed conditions using the artificial neural networks (ANN), group method of data handling (GMDH), multivariate adaptive regression splines (MARS) and Gaussian process models (Kriging). A database containing 246 lab data gathered from various studies was formed and the data were divided into three random parts: 1) training, 2) validation and 3) testing to build the surrogate models. The statistical error criteria such as the coefficient of determination (R2), root mean squared error (RMSE), mean absolute percentage error (MAPE) and absolute maximum percentage error (MPE) of the surrogate models were then found and compared with those of the popular empirical formulations. Results revealed that the surrogate models’ test data estimations were more accurate than those of the empirical equations; Kriging has had better estimations than other models. In addition, sensitivity analyses of all surrogate models showed that the pier width’s dimensionless expression (b/y) had a greater effect on estimating the normalized scour depth (Ds/y).
I Pasandideh; A. Rajabi; F. Yosefvand; S. Shabanlou
Abstract
Generally, length of hydraulic jump is one the most important parameters to design stilling basin. In this study, the length of hydraulic jump on sloping rough beds was predicted using Gene Expression Programming (GEP) for the first time. The Monte Carlo simulations were used to examine the ability of ...
Read More
Generally, length of hydraulic jump is one the most important parameters to design stilling basin. In this study, the length of hydraulic jump on sloping rough beds was predicted using Gene Expression Programming (GEP) for the first time. The Monte Carlo simulations were used to examine the ability of the GEP model. In addition, k-fold cross validation was employed in order to verify the results of the GEP model. To determine the length of hydraulic jump, five different GEP models were introduced using input parameters. Then by analyzing the GEP models results, the superior model was presented. For the superior model, correlation coefficient (R), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) were computed 0.901, 11.517 and 1.664, respectively. According to the sensitivity analysis, the Froude number at upstream of hydraulic jump was identified as the most important parameter to model the length of hydraulic jump. Furthermore, the partial derivative sensitivity analysis (PDSA) was performed. For instance, the PDSA was calculated as positive for all input variables.
C. Software/Software Engineering
H. Motameni
Abstract
To evaluate and predict component-based software security, a two-dimensional model of software security is proposed by Stochastic Petri Net in this paper. In this approach, the software security is modeled by graphical presentation ability of Petri nets, and the quantitative prediction is provided by ...
Read More
To evaluate and predict component-based software security, a two-dimensional model of software security is proposed by Stochastic Petri Net in this paper. In this approach, the software security is modeled by graphical presentation ability of Petri nets, and the quantitative prediction is provided by the evaluation capability of Stochastic Petri Net and the computing power of Markov chain. Each vulnerable component is modeled by Stochastic Petri net and two parameters, Successfully Attack Probability (SAP) and Vulnerability Volume of each component to another component. The second parameter, as a second dimension of security evaluation, is a metric that is added to modeling to improve the accuracy of the result of system security prediction. An isomorphic Markov chain is obtained from a corresponding SPN model. The security prediction is calculated based on the probability distribution of the MC in the steady state. To identify and trace back to the critical points of system security, a sensitive analysis method is applied by derivation of the security prediction equation. It provides the possibility to investigate and compare different solutions with the target system in the designing phase.