[1] Rajaratnam, N. (1968). Hydraulic jumps on rough beds. Transactions of the Engineering Institute of Canada, vol. 11, no. A-2, pp. 1-8.
[2] Hughes, W. & Flack, J. (1984). Hydraulic Jump Properties over a Rough Bed. J. Hydraul. Eng., vol. 110, no. 12, pp. 1755-1771.
[3] Mohamed Ali, H. S. (1991). Effect of roughened-bed stilling basin on length of rectangular hydraulic jump. Journal of Hydraulic Engineering, vol. 117, no. 1, pp. 83-93.
[4] Ead, S. & Rajaratnam, N. (2002). Hydraulic Jumps on Corrugated Beds. J. Hydraul. Eng., vol. 128, no. 7, pp. 656-663.
[5] Carollo, F., Ferro, V. & Pampalone, V. (2007). Hydraulic Jumps on Rough Beds. J. Hydraul. Eng., vol. 133, no. 9, pp. 989-999.
[6] Elsebaie, I. H. & Shabayek, S. (2010). Formation of hydraulic jumps on corrugated beds. International Journal of Civil & Environmental Engineering IJCEE-IJENS, vol. 10, pp. 40-50.
[7] Ahmed, H. M. A., El Gendy, M., Mirdan, A. M. H., Ali, A. A. M. & Abdel Haleem, F. S. S. (2014). Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Engineering Journal. vol. 5, pp. 1033-1042.
[8] Nissi, K. & Shafaee Bajestan, M. (2008). Laboratory study of detention pond length on rough beds. Second National Conference on Irrigation and Drainage Networks Management. Shahid Chamran University of Ahvaz (In Persian).
[9] Cheng, C. T., Wu, X. Y. & Chau, K. W. (2005). Multiple criteria rainfall–runoff model calibration using a parallel genetic algorithm in a cluster of computers/Calage multi-critères en modélisation pluie–débit par un algorithme génétique parallèle mis en œuvre par une grappe d'ordinateurs. Hydrological sciences journal, vol. 50, no. 6.
[10] Fotovatikhah, F., Herrera, M., Shamshirband, S., Chau, K. W., Faizollahzadeh Ardabili, S. & Piran, M. J. (2018). Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, vol. 12, no. 1, pp. 411-437.
[11] Taormina, R., Chau, K. W. & Sivakumar, B. (2015). Neural network river forecasting through baseflow separation and binary-coded swarm optimization. Journal of Hydrology, 529, 1788-1797.
[12] Cheng, C. T. & Chau, K. W. (2004). Flood control management system for reservoirs. Environmental Modelling & Software, vol. 19, no. 12, pp. 1141-1150.
[13] Wang, W. C., Xu, D. M., Chau, K. W. & Chen, S. (2013). Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD. Journal of Hydroinformatics, vol. 15, no. 4, pp. 1377-1390.
[14] Wu, C. L. & Chau, K. W. (2011). Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, vol. 399, no. 3-4, pp. 394-409.
[15] Omid, M. H., Omid, M. & Esmaeeli, V. M. (2005). Modelling hydraulic jumps with artificial neural networks. Proc. Inst. Civ. Eng., Water Manage. vol. 158, no. 2, pp. 65–70.
[16] Naseri, M. & Othman, F. (2012). Determination of the length of hydraulic jumps using artificial neural networks. Advances in Engineering Software. vol. 48, pp. 27–31.
[17] Karbasi, M. & Azamathulla, H. M. (2016). GEP to predict characteristics of a hydraulic jump over a rough bed. KSCE Journal of Civil Engineering, vol. 20, no. 7, pp. 3006-3011.
[18] Ferreira, C. (2001). Gene expression programming in problem solving. 6th Online World Conference on Soft Computing in Industrial Applications (Invited Tutorial).
[19] Kumar, M. & Lodhi, A. S. (2016). Hydraulic jump over sloping rough floors. ISH Journal of Hydraulic Engineering, vol. 22, no. 2, pp. 127-134.
[20] Hager, W.H., Bremen, R. & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, vol. 28, no. 5, pp. 591-608.
[21] Azimi, H., Bonakdari, H., Ebtehaj, I. & Michelson, D. G. (2018). Combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural. Comput. & Applic. vol. 29, no. 6, pp. 249-258.
[22] Azimi, H., Bonakdari, H., Ebtehaj, I., Gharabaghi, B. & Khoshbin, F. (2018). Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta. Mechanica., vol. 229, no. 3, pp. 1197-1214.
[23] Azimi, H., Bonakdari, H. & Ebtehaj, I. (2019). Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed. ISH J. Hydraul. Eng. pp. 1-11. doi.org/10.1080/09715010.2019.1579058.