F.4.18. Time series analysis
Ali Ghorbanian; Hamideh Razavi
Abstract
In time series clustering, features are typically extracted from the time series data and used for clustering instead of directly clustering the data. However, using the same set of features for all data sets may not be effective. To overcome this limitation, this study proposes a five-step algorithm ...
Read More
In time series clustering, features are typically extracted from the time series data and used for clustering instead of directly clustering the data. However, using the same set of features for all data sets may not be effective. To overcome this limitation, this study proposes a five-step algorithm that extracts a complete set of features for each data set, including both direct and indirect features. The algorithm then selects essential features for clustering using a genetic algorithm and internal clustering criteria. The final clustering is performed using a hierarchical clustering algorithm and the selected features. Results from applying the algorithm to 81 data sets indicate an average Rand index of 72.16%, with 38 of the 78 extracted features, on average, being selected for clustering. Statistical tests comparing this algorithm to four others in the literature confirm its effectiveness.
Seyyed A. Hoseini; P. Kabiri
Abstract
When a camera moves in an unfamiliar environment, for many computer vision and robotic applications it is desirable to estimate camera position and orientation. Camera tracking is perhaps the most challenging part of Visual Simultaneous Localization and Mapping (Visual SLAM) and Augmented Reality problems. ...
Read More
When a camera moves in an unfamiliar environment, for many computer vision and robotic applications it is desirable to estimate camera position and orientation. Camera tracking is perhaps the most challenging part of Visual Simultaneous Localization and Mapping (Visual SLAM) and Augmented Reality problems. This paper proposes a feature-based approach for tracking a hand-held camera that moves within an indoor place with a maximum depth of around 4-5 meters. In the first few frames the camera observes a chessboard as a marker to bootstrap the system and construct the initial map. Thereafter, upon arrival of each new frame, the algorithm pursues the camera tracking procedure. This procedure is carried-out in a framework, which operates using only the extracted visible natural feature points and the initial map. Constructed initial map is extended as the camera explores new areas. In addition, the proposed system employs a hierarchical method on basis of Lucas-Kanade registration technique to track FAST features. For each incoming frame, 6-DOF camera pose parameters are estimated using an Unscented Kalman Filter (UKF). The proposed algorithm is tested on real-world videos and performance of the UKF is compared against other camera tracking methods. Two evaluation criteria (i.e. Relative pose error and absolute trajectory error) are used to assess performance of the proposed algorithm. Accordingly, reported experimental results show accuracy and effectiveness and of the presented approach. Conducted experiments also indicate that the type of extracted feature points has not significant effect on precision of the proposed approach.
M. Azimi hemat; F. Shamsezat Ezat; M. Kuchaki Rafsanjani
Abstract
In content-based image retrieval (CBIR), the visual features of the database images are extracted, and the visual features database is assessed to find the images closest to the query image. Increasing the efficiency and decreasing both the time and storage space of indexed images is the priority in ...
Read More
In content-based image retrieval (CBIR), the visual features of the database images are extracted, and the visual features database is assessed to find the images closest to the query image. Increasing the efficiency and decreasing both the time and storage space of indexed images is the priority in developing image retrieval systems. In this research, an efficient system is proposed for image retrieval by applying fuzzy techniques, which are advantageous in increasing the efficiency and decreasing the length of the feature vector and storage space. The effect of increasing the considered content features' count is assessed to enhance image retrieval efficiency. The fuzzy features consist of color, statistical information related to the spatial dependency of the pixels on each other, and the position of image edges. These features are indexed in fuzzy vector format 16, 3, and 16 lengths. The extracted vectors are compared through the fuzzy similarity measures, where the most similar images are retrieved. To evaluate the proposed systems' performance, this system and three other non-fuzzy systems where fewer features are of concern were implemented. These four systems are tested on a database containing 1000 images, and the results indicate improvement in the retrieval precision and storage space.
M. Kakooei; Y. Baleghi
Abstract
Shadow detection provides worthwhile information for remote sensing applications, e.g. building height estimation. Shadow areas are formed in the opposite side of the sunlight radiation to tall objects, and thus, solar illumination angle is required to find probable shadow areas. In recent years, Very ...
Read More
Shadow detection provides worthwhile information for remote sensing applications, e.g. building height estimation. Shadow areas are formed in the opposite side of the sunlight radiation to tall objects, and thus, solar illumination angle is required to find probable shadow areas. In recent years, Very High Resolution (VHR) imagery provides more detailed data from objects including shadow areas. In this regard, the motivation of this paper is to propose a reliable feature, Shadow Low Gradient Direction (SLGD), to automatically determine shadow and solar illumination direction in VHR data. The proposed feature is based on inherent spatial feature of fine-resolution shadow areas. Therefore, it can facilitate shadow-based operations, especially when the solar illumination information is not available in remote sensing metadata. Shadow intensity is supposed to be dependent on two factors, including the surface material and sunlight illumination, which is analyzed by directional gradient values in low gradient magnitude areas. This feature considers the sunlight illumination and ignores the material differences. The method is fully implemented on the Google Earth Engine cloud computing platform, and is evaluated on VHR data with 0.3m resolution. Finally, SLGD performance is evaluated in determining shadow direction and compared in refining shadow maps.
H.3. Artificial Intelligence
Z. Karimi Zandian; M. R. Keyvanpour
Abstract
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods ...
Read More
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based on network level. In this paper a method called MEFUASN is proposed to extract features that is based on social network analysis and then both of obtained features and features based on user level are combined together and used to detect fraud using semi-supervised learning. Evaluation results show using the proposed feature extraction as a pre-processing step in fraud detection improves the accuracy of detection remarkably while it controls runtime in comparison with other methods.
H.3.2.2. Computer vision
Seyyed A. Hoseini; P. Kabiri
Abstract
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured ...
Read More
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4 meters. The system can be used in unknown environments with no additional information available from the outside world except in the first two images that are used for initialization. Pose estimation is performed using only natural feature points extracted and matched in successive images. In wide-baseline images unlike consecutive frames of a video stream, displacement of the feature points in consecutive images is notable and hence cannot be traced easily using patch-based methods. To handle this problem, a hybrid strategy is employed to obtain accurate feature correspondences. In this strategy, first initial feature correspondences are found using similarity of their descriptors and then outlier matchings are removed by applying RANSAC algorithm. Further, to provide a set of required feature matchings a mechanism based on sidelong result of robust estimator was employed. The proposed method is applied on indoor real data with images in VGA quality (640×480 pixels) and on average the translation error of camera pose is less than 2 cm which indicates the effectiveness and accuracy of the proposed approach.
H.6.3.2. Feature evaluation and selection
M. Imani; H. Ghassemian
Abstract
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it ...
Read More
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new feature extraction method in this paper, which uses the boundary semi-labeled samples for solving small sample size problem. The proposed method, which called hybrid feature extraction based on boundary semi-labeled samples (HFE-BSL), uses a hybrid criterion that integrates both the local and global criteria for feature extraction. Thus, it is robust and flexible. The experimental results with three real hyperspectral images show the good efficiency of HFE-BSL compared to some popular and state-of-the-art feature extraction methods.
H.6.3.2. Feature evaluation and selection
E. Golpar-Rabooki; S. Zarghamifar; J. Rezaeenour
Abstract
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. ...
Read More
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels due to orientation analysis of different aspects of an area. In this paper, two methods are introduced for feature extraction. The recommended methods consist of four main stages. At the first stage, opinion-mining lexicon for Persian is created. This lexicon is used to determine the orientation of users’ reviews. The second one is the preprocessing stage including unification of writing, tokenization, creating parts-of-speech tagging and syntactic dependency parsing for documents. The third stage involves the extraction of features using two methods including frequency-based feature extraction and association rule based feature extraction. In the fourth stage, the features and polarities of the word reviews extracted in the previous stage are modified and the final features' polarity is determined. To assess the suggested techniques, a set of user reviews in both scopes of university and cell phone areas were collected and the results of the two methods were compared.
H.6.3.3. Pattern analysis
M. Imani; H. Ghassemian
Abstract
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very ...
Read More
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weighting (OFW) for supervised feature extraction of hyperspectral data. In the OFW method, the feature vector of each pixel of hyperspectral image is divided to some segments. The weighted mean of adjacent spectral bands in each segment is calculated as an extracted feature. The less the overlap between classes is, the more the class discrimination ability will be. Therefore, the inverse of overlap between classes in each band (feature) is considered as a weight for that band. The superiority of OFW, in terms of classification accuracy and computation time, over other supervised feature extraction methods is established on three real hyperspectral images in the small sample size situation.
Hossein Shahamat; Ali A. Pouyan
Abstract
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component ...
Read More
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of PCA results. For feature extraction, local binary patterns (LBP) technique is applied on the ICs. It transforms the ICs into spatial histograms of LBP values. For feature selection, genetic algorithm (GA) is used to obtain a set of features with large discrimination power. In the next step of feature selection, linear discriminant analysis (LDA) is applied to further extract features that maximize the ratio of between-class and within-class variability. Finally, a test subject is classified into schizophrenia or control group using a Euclidean distance based classifier and a majority vote method. In this paper, a leave-one-out cross validation method is used for performance evaluation. Experimental results prove that the proposed method has an acceptable accuracy.