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Abstract

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of
hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the
dimensionality of hyperspectral images without losing important information is a very important issue for the
remote sensing community. We propose to use overlap-based feature weighting (OFW) for supervised
feature extraction of hyperspectral data. In the OFW method, the feature vector of each pixel of
hyperspectral image is divided to some segments. The weighted mean of adjacent spectral bands in each
segment is calculated as an extracted feature. The less the overlap between classes is, the more the class
discrimination ability will be. Therefore, the inverse of overlap between classes in each band (feature) is
considered as a weight for that band. The superiority of OFW, in terms of classification accuracy and
computation time, over other supervised feature extraction methods is established on three real hyperspectral
images in the small sample size situation.
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1. Introduction

The high spectral resolution hyperspectral images
allow the characterization, identification, and
classification of the land covers with improved
accuracy, robustness, and more details. A large
number of training samples is required for
achieving satisfactory accuracy in classification
problems. However, the collection of ground
reference data (training samples) in real world
applications is an expensive and time consuming
task and so the number of available training
samples might be very limited.

There are different solutions to cope with the
small training sample size. Semi-supervised
approaches use the ability of unlabeled samples in
addition to labeled samples to improve the
classification accuracy [1,2]. Advanced classifiers
such as kernel-based classifiers are distribution
free and do not make assumptions about the
density functions of the data [3,4]. Feature
reduction is one of the most important solutions
for small sample size problem [5-9]. In addition to
improving the classification accuracy, feature
reduction techniques reduce the computational

complexity and also simple the visualization of
data. Feature reduction methods are divided into
two general groups: feature selection and feature
extraction. Feature selection methods select an
appropriate subset of features from the original
candidate features and maintain the physical
meaning of data. Feature extraction methods
transform the feature space of data usually with
using a projection matrix. Feature reduction
techniques can be done supervised [10,11],
unsupervised [12,13] or semi-supervised [14]. We
assess the supervised feature extraction methods
in this paper.

Multiple features such as spectral, texture, and
shape features are employed to represent pixels
from different perspectives in hyperspectral image
classification. The properly combining multiple
features results in good classification
performance. A patch alignment framework to
linearly combine multiple features in the optimal
way, which obtains a unified low-dimensional
representation of these multiple features for
subsequent classification, is introduced in [15]. A
pixel in a hyperspectral image can be represented
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by both spatial and spectral features. Each view of
a feature summarizes a specific characteristic of
the studied object from different feature spaces,
and also features for different views are
complementary to each other. An ensemble
manifold regularized sparse low-rank
approximation algorithm for multi-view feature
dimensionality reduction is proposed in [16].
Linear discriminant analysis (LDA) is a simple
and popular method for feature extraction in
different pattern recognition applications [17].
LDA maximizes the between-class scatter matrix
and minimizes the within-class scatter matrix to
increase the class discrimination. Because of
singularity of within-class scatter matrix, LDA
has weak efficiency when the number of training
samples is limited. Generalized discriminant
analysis (GDA) is the nonlinear version of LDA,
which works in the kernel space [18]. Because of
the limitation of rank of between-class scatter
matrix, LDA and GDA can extract maximum ¢ —
1 features where ¢ is the number of classes.
Nonparametric  weighted feature extraction
(NWFE) uses the nonparametric form and
weighted mean for calculation of scatter matrices
[19]. Thus, NWFE can extract more than ¢ — 1
features and, moreover, it has good efficiency
with small training set. Median-mean line
discriminant analysis (MMLDA), which is
recently proposed, copes with the negative effect
of the class mean caused by outliers with
introduction of median—mean line as an adaptive
class-prototype [20].

We propose a supervised feature extraction
method in this paper that is simple, fast and
efficient in small sample size situation. The
proposed method is named overlap-based feature
weighting (OFW). In a hyperspectral image, the
adjacent spectral bands contain redundant
information. Thus, we divide the feature vector of
each sample of data to some segments in such a
way that each segment contains adjacent spectral
bands. We consider the weighted mean of spectral
bands (original features) in each segment as an
extracted feature. If classes have more overlap in
a spectral band, then, the discrimination of classes
in that band is harder. Thus, the class
discrimination ability in each band has reverse
relationship with the overlap value between
classes in that band.

Therefore, we assign the inverse of overlap
between classes in each feature, as a weight for
that feature in the weighted mean. Feature
extraction methods such as LDA, GDA, NWFE,
and MMLDA need to estimate the mean vectors
(the first order statistics) and the scatter matrices
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(the second order statistics). The accurate estimate
of statistics needs large enough training set. When
the number of training samples is limited, the
accurate estimate of mean vectors and covariance
matrices cannot be provided, and so, the accuracy
of LDA-based methods such as conventional
LDA, GDA, NWFE, and MMLDA is decreased.
The proposed method, OFW, just uses the original
training samples and does not need to estimate the
statistics of data. Therefore, it can have good
efficiency in small sample size situations
compared to LDA-based methods. Moreover,
OFW has simple calculations, so, it is fast. The
efficiency of OFW is investigated by three real
hyperspectral images. The current paper focuses
on the following sections: section 2 introduction
of proposed method, section 3 the experimental
results, and section 4 conclusions.

2. Proposed method

The adjacent spectral bands (features) in each
pixel of hyperspectral image contain high
redundant information. Then, for extraction of m
features from d original spectral bands, we divide
the feature vector of each sample of data to m

segments containing K = I%J adjacent spectral

bands. Then, the weighted mean of spectral bands
in each segment, is considered as an extracted
feature  for that  segment. Let, x=
[¥1 %2 x4]T be the feature vector of a pixel
of hyperspectral image and y =
V1 Y2 Ym]T be the extracted feature vector
of x where m<d . The elements of y are

calculated as follows:
LK

y = wix; 1<l<m-1 (D)
j=-DK+1
(< d
Ry W]-x]-;mK<d(m<E)
_ ) j=(m-1DK+1
Ym = mK d (2)
l wjxj;szd(mzf)
j=(m—1)K+1

where, w; is the weight of jth spectral band in the
above weighted mean. How to decompose the
whole spectral signature has been searched in
some literatures such as [21].

To this end, we implemented the simplest possible
approach for segmentation of spectral signature of
pixels. The calculation of weights is the novelty of
our proposed method. In some spectral bands, the
difference between classes is more than other
bands.
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Figure 1. Samples of two classes in a two-dimensional
feature space.

spectral band (feature), the harder the class
discrimination will be in that spectral band. In
other words, the class discrimination ability, in
each feature, has reverse relationship with the
overlap between classes in that feature.

Figure 1 shows the samples of two classes in a
two-dimensional feature space. In band x;, two
classes have not overlap and thus are
discriminable from each other, while in the band
x5, classes are overlapped and discrimination
between them is hard. To better understanding,
see figure 2.

Two classes in band x;, have no overlap; thus,
they are easily separated from each other using a
simple line; while these two classes have overlap
in band x;, and so, a complex nonlinear curve is
needed to separate them from each other.
Therefore, it is obvious that the ability of each
spectral band in discrimination between classes
has a reverse relationship with the overlap
between classes in that band.

Let, xq(]—l ,d;q=1,...,n5i=1,..,c) be
the jth feature of gth sample of class i where d, c,
and n; are the number of spectral bands (features),
the number of classes, and the number of training
samples in class i, respectively. The minimum and
maximum values of each spectral band in each
class are given by:

fmm,ﬁ=qm1n x}q ;i=1,.,c; j=1,..,d 3
fmax,ﬁ=qrr11'ax x]q ji=1,..,c; j=1,..,d (4)

where, fin ji is the minimum value of feature j in
class i and frqyj; is the maximum value of
feature j in class i.
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Figure 2. There is not overlap between classes in band x;,
and so two classes are easily separated from each other in x;
while there is overlap between classes in band x;, and so two

classes are hardly separated from each other in x;.

Two classes i and k (i,k=1,..,c ) are not
overlapped and are completely separate from each
other in band j if:

(fmin,ji < fmin,jk) & (fmin,ji < fmax,jk)

5
& (fmax,ji < fmin,jk) & (fmax,ji < fmax,jk) ( )
or
(fmin,ji > fmin,jk) & (fmin,ji > fmax,jk) & 6)

(fmax,ji > fmin,jk) & (fmax,ji > fmax,jk)

Otherwise, two classes i and k have overlap and
the value of overlap between them in feature j is
calculated as follows:

(0Vi)j = |max(fmin jir fimin,jic)
— min(fraz,jis fnaz,jic)| (7
i=1..,ck=1,.,c;j=1,..,d

where, (OVy); is the overlap value of class i and

class k in feature j. The overlap between all pairs
of classes is calculated as follows:

0v; = ZZZ(om), =1

The class discrimination ability has reverse
relationship with the overlap value between
classes. Thus, the weight associated with each
feature in the weighted mean in (1) and (2) is
calculated by:

(8)

9)
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Figure 3. An example of determination of overlap between
two classes.

Figure 3 shows an example of determination of
overlap between two classes. In band x;, we have:

(fmin,ll < fmin,lz) & (fmin,ll < fmax,lz)

& (fmax,ll < fmin,lz) & (fmax,ll < fmax,lz)

Thus, in band x4, classes are not overlapped while
in band x,, classes are overlapped and the overlap
value between them is given by:

(0V13)2 = |max(finin21, fnin22)
- min(fmax,Zlﬂ fmax,22)|

= |fmin,21 - fmax,21|

3. Experiments and discussion

In this section, we assessed the performance of
proposed method, OFW, compared to some
supervised feature extraction methods such as
LDA, NWFE, GDA, and MMLDA using three
real hyperspectral images: Indian, university of
Pavia, and KSC datasets. The Indian Pines is
provided by Airborne Visible/Infrared Imaging
Spectrometer  (AVIRIS) over Northwestern
Indiana. Indian image comprises 224 spectral
bands, which are initially reduced to 200 by
removing water absorption bands. This image has
145%145 pixels and 16 classes which 10
interesting classes of it are chosen for our
experiments. The university of Pavia dataset is
collected by the Reflective Optics System
Imaging Spectrometer (ROSIS). The number of
spectral bands in the original recorded image is
115 from which 103 bands are selected for
analysis of data after the removal of noisy bands.
This urban image has nine classes and 610x340
pixels. The KSC dataset is provided by AVIRIS
over the Kennedy Space Center, Florida. After
removing water absorption and low SNR bands,
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176 bands are used for the analysis of data. The
KSC image has 512x614 pixels and 13 classes.
Support vector machine (SVM) and Gaussian
maximum likelihood (ML) are used as classifier
to assess the performance of feature extraction
methods. The polynomial with degree 3 with
default parameters defined in LIBSVM [22] is
used as kernel function in SVM classifier. We
used some measures for assessment of
classification accuracy: Average accuracy,
average reliability, and kappa coefficient [23].
The reliability in a class is the number of testing
samples that are correctly classified divided to the
overall samples, which are classified in that class.
We used the McNemars test [24] for assessment
of statistical significance of differences in the
classification results. The sign of Z;, indicates
whether classifier 1 is more accurate than
classifier 2 (Z;, > 0) or vice versa (Z;, < 0).
The difference in classification accuracy between
two classifiers is statistically significant if
|Z15] > 1.96. We used 16 training samples per
class in our experiments to investigate the
performance of feature extraction methods in
small sample size situation. The training samples
are chosen randomly from entire scene. We used
the reminded samples as testing samples. We did
each experiment 10 times and the average results
are reported here.

Figures 4, 5, 6 show the average classification
accuracy versus the number of extracted features
with 16 training samples by a) SVM, b) ML
classifiers for Indian, Pavia, and KSC datasets
respectively. The accuracy and reliability of
classes obtained by 16 training sample and SVM
classifier for Indian (with 9 extracted features),
Pavia (with 8 extracted features), and KSC (with
10 extracted features) are represented in tables 1,
2, and 3. The ground truth map (GTM) and
classification maps for Indian and Pavia datasets
are shown in figures 7, and 8 respectively. The
highest classification accuracies achieved by 16
training samples for all feature extraction methods
and hyperspectral images are shown in table 4.
Table 5 shows the McNemars test results for
different cases. The comparison of computation
time of feature extraction processes is done in
table 6.

We can see from the obtained results that OFW
works better than other methods almost in all
cases (only for Pavia urban image with ML
classifier, GDA has better performance than other
feature extraction methods). Popular feature
extraction methods such as LDA, NWFE, GDA,
and MMLDA calculate the scatter matrices and
maximum the between-class scatter matrix and
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minimum the within-class scatter matrix. The
proposed method, OFW, calculates the weighted
mean of adjacent spectral bands and considers the
inverse of overlap between classes in each feature
as a weight for that feature. LDA, NWFE, GDA,
and MMLDA methods need to calculate the first
and second order statistics of data (mean vectors
and covariance matrices) while OFW does not
need to estimate theses statistics. Therefore, when
a limited number of training samples is available,
the accurate estimations of mean vectors and
scatter matrices cannot be provided. In these
conditions, OFW is superior to LDA-based
methods. However, with increasing the number of
training samples, the accurate estimations of
scatter matrices are obtained and the performance
of LDA-based methods is improved.

(a) Indian (10 class)/SVM classifier/16 training samples
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The performance of OFW is compared with LDA
in different training sample size for Indian dataset
by SVM classifier and 9 extracted features and the
results are shown in figure 9.

Moreover, the OFW method uses the simple
calculations to obtain weight for each feature and
calculates the weighted mean. Thus, it is faster
than LDA, NWFE, GDA, and MMLDA methods
which need to calculate scatter matrices. After
OFW, LDA is faster than others. MMLDA,
because of calculation of median-mean line, and
GDA, because of calculations in kernel space, are
slower than LDA. NWFE is the slowest method
because it needs to calculate the weighted mean of
all training samples to estimate the nonparametric
scatter matrices.

(b) Indian (10 class)/ML classifier/16 training samples
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Figure 4. Average classification accuracy versus the number of extracted features obtained by a) SVM, b) ML classifiers
for Indian dataset.

(a) Pavia (9 class)/SVM classifier/16 training samples
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Figure 5. Average classification accuracy versus the number of extracted features obtained by a) SVM, b) ML
classifiers for Pavia dataset.
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Table 1. Accuracy and reliability of classes of Indian dataset obtained by SVM classifier and 9 extracted features.

(b) KSC (13 class)/ML classifier/16 training samples
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class LDA NWFE GDA MMLDA
(proposed)
No Name of class # samples Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
1 Corn-no till 1434 0.64 0.68 0.19 0.32 0.60 0.56 0.59 0.39 0.49 043
2 Corn-min till 834 0.64 0.40 0.24 0.18 0.55 0.40 0.58 0.51 0.63 0.38
3 Grass/pasture 497 0.93 0.67 0.32 0.14 0.50 0.40 0.83 0.58 0.74 0.50
4 Grass/trees 747 0.74 0.81 0.31 0.28 0.78 0.83 0.72 0.83 0.59 0.75
5 Hay-windrowed 489 0.99 1.00 0.20 0.31 0.95 1.00 0.99 0.99 0.97 0.98
6 Soybeans-no till 968 0.72 0.52 0.09 0.21 0.48 0.39 0.38 0.43 0.45 0.49
7 Soybeans-min till 2468 0.50 0.80 0.31 0.42 0.49 0.68 0.50 0.72 0.48 0.63
8 Soybeans-clean till 614 0.57 0.52 0.23 0.11 0.46 0.47 0.44 0.48 0.30 0.38
9 Woods 1294 0.89 0.95 0.28 0.61 0.68 0.83 0.89 0.92 0.90 0.90
10  Bldg-Grass-Tree-Drives 380 0.53 0.48 0.40 0.11 0.64 0.39 0.56 0.57 0.51 0.50
Average Acc. and Average Rel. 0.71 0.68 0.26 0.27 0.61 0.59 0.65 0.64 0.60 0.59
Kappa coefficient 0.63 0.16 0.53 0.56 0.52

OFW (proposed)
4 ‘.:-."r
£

Figure 7. GTM and classification maps for Indian dataset obtained by SVM classifier and 9 extracted features.
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Table 1. Accuracy and reliability of classes of Indian dataset obtained by SVM classifier and 9 extracted features.

class OFW LDA NWFE GDA MMLDA
(proposed)
No Name of class # samples Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
1 Corn-no till 1434 0.64 0.68 0.19 0.32 0.60 0.56 0.59 0.39 0.49 0.43
2 Corn-min till 834 0.64 0.40 0.24 0.18 0.55 0.40 0.58 0.51 0.63 0.38
3 Grass/pasture 497 0.93 0.67 0.32 0.14 0.50 0.40 0.83 0.58 0.74 0.50
4 Grass/trees 747 0.74 0.81 0.31 0.28 0.78 0.83 0.72 0.83 0.59 0.75
5 Hay-windrowed 489 0.99 1.00 0.20 0.31 0.95 1.00 0.99 0.99 0.97 0.98
6 Soybeans-no till 968 0.72 0.52 0.09 021 0.48 0.39 0.38 0.43 0.45 0.49
7 Soybeans-min till 2468 0.50 0.80 0.31 0.42 0.49 0.68 0.50 0.72 0.48 0.63
8 Soybeans-clean till 614 0.57 0.52 0.23 0.11 0.46 0.47 0.44 0.48 0.30 0.38
9 Woods 1294 0.89 0.95 0.28 0.61 0.68 0.83 0.89 0.92 0.90 0.90
10  Bldg-Grass-Tree-Drives 380 0.53 0.48 0.40 0.11 0.64 0.39 0.56 0.57 0.51 0.50
Average Acc. and Average Rel. 0.71 0.68 0.26 0.27 0.61 0.59 0.65 0.64 0.60 0.59
Kappa coefficient 0.63 0.16 0.53 0.56 0.52

Table 2. Accuracy and reliability of classes of Pavia dataset obtained by SVM classifier and 8 extracted features.

class OFW LDA NWFE GDA MMLDA
(proposed)
No Name of class # Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
samples
1 Asphalt 6631 0.90 0.87 0.37 0.70 0.78 0.86 0.18 0.53 0.73 0.80
2 Meadows 18649 0.67 0.91 0.33 0.91 0.48 0.85 0.63 0.79 0.54 0.86
3 Gravel 2099 0.71 0.63 0.44 0.30 0.73 0.53 0.80 0.45 0.65 0.48
4 Trees 3064 0.87 0.61 0.78 0.75 0.83 0.63 0.86 0.64 0.92 0.64
5 Painted metal sheets 1345 0.99 0.98 0.90 1.00 0.98 0.98 0.97 0.99 0.99 1.00
6 Bare Soil 5029 0.77 0.46 0.78 0.22 0.75 0.31 0.47 0.30 0.66 0.33
7 Bitumen 1330 0.80 0.80 0.37 0.22 0.81 0.64 0.46 0.13 0.65 0.43
8 Self-Blocking Bricks 3682 0.73 0.80 0.35 0.32 0.67 0.80 0.62 0.82 0.70 0.76
9 Shadows 947 1.00 0.97 0.78 0.71 1.00 0.99 1.00 1.00 1.00 1.00
Average Acc. and Average Rel. 0.83 0.78 0.57 0.57 0.78 0.73 0.67 0.63 0.76 0.70
Kappa coefficient 0.70 0.36 0.57 0.47 0.58

OFW (proposed)

Y
h’"‘:—u be”

Figure 8. GTM and classification maps for Pavia dataset obtained by SVM classifier and 8 extracted features.
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Table 3. Accuracy and reliability of classes of KSC dataset obtained by SVM classifier and 10 extracted features.

lass OFW (proposed) LDA NWFE GDA MMLDA
No Name of class # Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
samples
1 Scrub 761 0.95 091 0.51 0.84 0.92 0.90 0.77 0.91 0.71 0.86
2 Willow swamp 243 0.89 0.92 0.51 0.54 0.92 0.86 0.84 0.84 0.65 0.50
3 Cabbage palm hammock 256 0.90 0.79 0.62 0.34 0.89 0.75 0.80 0.76 0.74 0.68
4 Cabbage palm/oak hammock 252 0.54 0.59 0.29 0.17 0.31 0.35 0.40 0.45 0.24 0.36
5 Slash pine 161 0.68 0.59 0.33 0.22 0.65 0.44 0.66 0.44 0.45 0.33
6 Oak/broadleaf hammock 229 0.56 0.75 0.36 0.33 0.43 0.73 0.42 0.35 0.48 0.32
7 Hardwood swamp 105 0.90 0.85 0.70 0.37 0.87 0.85 0.85 0.84 0.50 0.41
8 Graminoid marsh 431 0.80 0.83 0.58 0.58 0.82 0.77 0.43 0.74 0.45 0.38
9 Spartina marsh 520 0.94 0.87 0.55 0.53 0.88 0.85 0.89 0.83 0.86 0.73
10 Cattail marsh 404 0.87 0.99 0.75 0.96 0.76 0.89 0.75 0.84 0.23 0.39
11 Salt marsh 419 0.98 0.90 0.74 0.86 0.98 0.93 0.97 0.84 0.94 0.96
12 Mud flats 503 0.83 0.86 0.54 0.71 0.83 0.95 0.81 0.62 0.52 0.56
13 Water 927 0.98 0.98 0.99 0.99 0.99 0.98 0.97 1.00 0.94 0.96
Average Acc. and Average Rel. 0.83 0.83 0.57 0.57 0.79 0.79 0.74 0.73 0.59 0.57
Kappa coefficient 0.86 0.59 0.83 0.75 0.62
Table 4. Highest classification accuracies achieved by 16 training samples (numbers in parentheses represent the number of
features which obtain the highest average accuracies in experiments).
Dataset  Classifier OFW LDA NWFE GDA MMLDA
(proposed)
0.75 0.26 0.62 0.65 0.66
o (10) %) ) ©) @)
ML 0.71 0.21 0.64 0.66 0.69
@) (6) @) 9 4)
0.85 0.58 0.81 0.75 0.82
oo ©) ) (14) ©) i)
ML 0.80 0.57 0.79 0.81 0.80
(5) (5) 4) ) (6)
SVM 0.84 0.58 0.82 0.75 0.62
KSC (13) (11) (12) (11) (14)
ML 0.83 0.50 0.68 0.79 0.57
@) 0] @) (10) (©)
Table 5. McNemars test results (Z,.. denotes each case of table where r is the row and c is the column).
Indian/SVM classifier/16 training samples/ 9 extracted features Indian/ML classifier/16 training samples/ 7 extracted features
OFW LDA NWFE GDA MMLDA OFW LDA NWFE GDA MMLDA
(proposed) (proposed)
OFW 0 55.64  16.28  11.26 16.91 OFW 0 6241 1516  19.60 15.08
(proposed) (proposed)
LDA -55.64 0 -45.62  -49.19 -45.35 LDA -62.41 0 -54.47  -51.39 -54.19
NWFE -16.28 45.62 0 -5.90 0.54 NWFE -15.16 54.47 0 6.15 0.10
GDA -11.26 49.19 5.90 6.88 GDA -19.60 5139  -6.15 0 -6.08
MMLDA -16.91 4535  -0.54 -6.88 0 MMLDA -15.08 5419  -0.10 6.08 0
Pavia /SVM classifier/16 training samples/ 8 extracted features Pavia /ML classifier/16 training samples/ 5 extracted features
OFW LDA NWFE GDA MMLDA OFW DA NWFE __GDA _ MMLDA
(proposed) (proposed)
OFW 0 93.00 4611  56.76 4114 OFW 0 73.49 703 9.72 247
(prig)/ied) 93.00 0 6079 3621  -61.98 (proposed)
NWFE -4611  60.79 0 2390  -265 N"VE,’?E '_773g139 69013 '6%13 f;gg -7526540
GDA -56.76 3621 -23.90 -24.25 GDA 9.72 8225  17.80 0 11.91
MMLDA -41.14 61.98 2.65 24.25 0 MMLDA 247 7950 5.64 1191 0
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KSC / SVM classifier/16 training samples/ 10 extracted features

OFW LDA NWFE GDA MMLDA
(proposed)
OFW 0 30.71 6.03 17.66 29.21
(proposed)
LDA -30.71 0 -26.81  -17.83 -3.54
NWFE -6.03 26.81 0 11.53 25.19
GDA -17.66 17.83  -11.53 0 16.57
MMLDA -29.21 3.54 -25.19  -16.57 0

Table 6. Comparison of computation time of feature
extraction process obtained by 16 training samples and 6
extracted features for Indian dataset.

Indian, 16 training samples, 6 extracted features
The comparison of computation time in feature extraction

processes
(pr((?r'):(;/vsed) LDA NWFE GDA MMLDA
Computation
time 0.24 056 8834 0.67 0.66
(seconds)

Indian/SVM classifier/9 extracted features
T T T T T T T

0.8

0.7

o
)

Average Accuracy
o
(9]
T

o
IS
T

03F N 1
% —k— OFW (proposed)

--+- LDA

r i r r r r i

100 110 120

0.2 c c r c
10 20 30 40 50 60 70 8 9

The number of trainina samples

Figure 9. Comparison of OFW with LDA in different
training sample size for Indian dataset obtained by
SVM classifier and 9 extracted features.

4. Conclusion

The overlap-based feature weighting (OFW) is
proposed for feature extraction of hyperspectral
images in this paper. In the proposed method, the
feature vector of each pixel is divided into some
segments and the weighted mean of features in
each segment is calculated as an extracted feature.
The weight for each feature is obtained by
calculation of overlap between classes in that
feature. In the OFW method, there is no need to
calculate the statistics of data. As a result, OFW is
a simple, fast, and efficient for feature extraction
of high dimensional data in small sample size
situations. The superiority of OFW compared to
some popular feature extraction methods is shown
for Indian, Pavia, and KSC datasets using limited
training samples.
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KSC / ML classifier/16 training samples/ 7 extracted features

OFW LDA NWFE GDA MMLDA
(proposed)

OFW 0 36.83  24.02 16.09 37.01
(proposed)

LDA -36.83 0 -18.83 -27.59 0.02

NWFE -24.02 18.83 0 -12.91 22.60

GDA -16.09 27.59 1291 0 30.03
MMLDA -37.01 -0.02 -22.60 -30.03 0
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