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 When a camera moves in an unfamiliar environment, for many 

computer vision and robotic applications, it is desirable to estimate the 

camera position and orientation. Camera tracking is perhaps the most 

challenging part of the Visual Simultaneous Localization and Mapping 

(Visual SLAM) and Augmented Reality problems. This paper 

proposes a feature-based approach for tracking a hand-held camera 

that moves within an indoor place with a maximum depth of around 4-

5 m. In the first few frames, the camera observes a chessboard as a 

marker to bootstrap the system and construct the initial map. 

Thereafter, upon the arrival of each new frame, the algorithm pursues 

the camera tracking procedure. This procedure is carried out in a 

framework that operates using only the extracted visible natural feature 

points and the initial map. The constructed initial map is extended as 

the camera explores new areas. In addition, the proposed system 

employs a hierarchical method on the basis of the Lucas-Kanade 

registration technique to track the FAST features. For each incoming 

frame, the 6-DOF camera pose parameters are estimated using an 

Unscented Kalman Filter (UKF). The proposed algorithm is tested on 

real-world videos, and the performance of UKF is compared against 

the other camera tracking methods. Two evaluation criteria (i.e. 

relative pose error and absolute trajectory error) are used in order to 

assess the performance of the proposed algorithm. Accordingly, the 

reported experimental results show the accuracy and effectiveness of 

the presented approach. The conducted experiments also indicate that 

the type of extracted feature points does not have a significant effect 

on the precision of the proposed approach. 
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1. Introduction 

Camera tracking is the problem of estimating 

camera pose parameters from a sequence of video 

frames. Some known problems in computer vision 

such as 3D reconstruction, image registration, and 

augmented reality have a close relationship with 

camera pose estimation. Meanwhile, in robotics, 

this problem is known as visual Simultaneous 

Localization And Mapping (visual SLAM). The 

purpose of visual SLAM is to estimate the 

camera’s moving path and making map of the 

observed scene simultaneously. The constructed 

map can be represented in dense or sparse 

manners. The Visual SLAM techniques 

continuously extend the constructed map of the 

observed environment, and then locate the camera 

position by means of this map and its projection 

on image plane. However, if the camera is 

equipped with a RGBD sensor or range scanner, 

depth calculation for the detected natural feature 

points won’t be necessary. By contrast, a 

monocular camera can only provide the 2D 

measurements of a 3D environment. On the other 

hand, in the visual SLAM solutions, it is required 

to obtain the depth of each new extracted feature 

point since no information about the depth of the 

observed scene is given using a monocular 
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camera. In other words, due to the noisy feature 

point measurements and inaccurate camera poses, 

depth calculation for newly detected natural 

feature points is prone to error. As a consequence, 

the process of camera localization and map 

extension is more complicated in the context of 

monocular camera tracking. 

Augmented Reality (AR) is an active field of 

research in computer vision that should be 

equipped with camera tracking capability. The 

purpose of AR is to neatly overlay the computer-

generated models on video frames. Accurate 

estimation of camera pose with respect to the 

world coordinate system is an important problem 

here. The primary AR systems often use fiducial 

markers or Computer-Aided Design (CAD) 

models to locate camera in a 3D scene. In other 

words, providing 3D-2D correspondences 

between 3D scene and its projection on image 

plane, the AR system can calculate the camera 

pose with respect to a reference coordinate system 

often known as the world coordinate system. 

However, for an automatic camera tracking, it is 

desirable to use natural landmarks. In the 

following the main contributions of this work are 

listed: 

 Feature tracking routine is performed in a 

coarse to fine scheme, which is accurate and 

robust in the presence of quick camera 

movement. 

 Initial metric map construction, which 

employs a marker with salient feature points 

whose 3D positions are known. 

 The propagation of depth information, which 

enables the proposed system to determine the 

camera position as the camera explores new 

places. 

The structure of this paper is organized in the 

following way. The Second section discusses the 

related works. The Third section explains the 

proposed approach in details. The experimental 

results are presented in the Fourth section. 

Conclusion and future works are included in the 

Fifth section. 

 

2. Related Works 

Depth estimation of newly extracted feature points 

is a challenging task once the camera explores 

unknown environment, and it is demanding to 

estimate the camera position with respect to its 

surrounding. Moreover, successive iteration of 

camera pose estimation and depth computation of 

newly detected feature points need to be 

performed continuously as the camera observes 

new regions. This repetition gradually increases 

cumulative error, which introduces drift in the 

camera position. In fact, utilizing only 2D 

measurements of feature points in the absence of a 

robust 3D map, it is only feasible to estimate 3D 

position of new feature points up to a scale factor. 

In general, the researchers adopt two strategies for 

addressing the scale ambiguity in the camera 

tracking problem. In the first strategy, some 

markers with known structures are placed in front 

of the camera. Detecting these markers in 

captured images, the camera pose parameters are 

easily computed with a high precision. Ababsa 

and Mallem [1] have employed this method to 

handle the scale ambiguity problem. Additionally, 

using markers in the scene enables the system to 

control accumulation of the estimation error. 

Using the reference calibrated images is the 

second strategy used for camera tracking in 

unknown environments to deal with scale 

ambiguity [2], [3]. Calibrated images contain 

easily detectable objects with known position in 

the world coordinate system. Once the reference 

images are available, the camera tracking problem 

reduces to association of observed features in each 

new frame and the reference images. 

Detection of loop closures in camera tracking is 

another approach, which can control the 

cumulative error of the estimated camera pose 

parameters [4]-[6]. However, it is only feasible 

when the camera explores those parts of the scene 

that are observed before. Whenever the camera 

explores new regions, we require extracting new 

feature points to retrieve the camera pose 

parameters. In this work, the problem of loop 

closure detection is not addressed. Instead, the 

reported work tries to propagate depth information 

of the initially constructed map to newly detected 

features points the camera observes within new 

sceneries. 

Camera trajectory estimation for video sequences 

is extensively studied. Structure from Motion 

(SfM) and filtering methods are two major 

strategies presented to tackle this problem. Early 

studies based on the SfM strategy were mainly 

employing epipolar geometry principles for 

estimation of the camera pose parameters [7]. 

Additionally, the initial algorithms proposed to 

solve the camera tracking problem were mostly 

for a short video sequences or small set of images. 

However, later works were addressing longer 

image sequences [8], [9]. Parallel Tracking and 

Mapping (PTAM) [10] is a forerunner work 

developed for small scale workspaces that has a 

real-time performance. In PTAM, map 

construction and camera tracking routines are run 

in two separated threads. This improves the 

execution speed of the algorithm. S-PTAM [11] is 
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another feature-based method for camera tracking 

and mapping, which uses stereo-images. 

Exploiting stereo-images allows robust 

initialization of extracted feature points. 

ORB-SLAM [12] and its successor ORB-SLAM2 

[13] as well as LSD-SLAM [14] are prominent 

works recently developed in the visual SLAM 

community. ORB-SLAM and ORB-SLAM2 are 

feature-based methods, and LSD-SLAM is a 

direct (feature-less) approach that estimates 

camera trajectory by using directly pixel 

intensities. In addition, all of them benefit from 

strong loop closure detection methods, which 

improve precision of the algorithm substantially. 

It is worth noting that camera tracking is the core 

component of the visual SLAM and visual 

odometry techniques. However, visual SLAM 

benefits from loop closure detection but visual 

odometry does not. Taking advantage of loop 

closure detection could significantly improve the 

accuracy of camera tracking when the camera 

explores previously visited regions. Nevertheless, 

the proposed approach has not utilized loop 

closure detection. Instead, our algorithm tries to 

do its best to improve the accuracy of camera 

tracking by concentration on accurate feature 

tracking and configuring a well-tuned UKF 

framework.    
The advent of RGBD cameras encourages some 

researchers to take advantages of using RGBD 

images for camera tracking.  RGBD-SLAM [16] 

and k-SLAM [17] are two visual SLAM approach 

developed for the RGBD sequences. It is worth 

noting that since the RGBD images contain depth 

values of image pixels, it is not required to 

triangulate newly detected features. This issue to a 

large extent improves performance of the 

algorithm. 

Contrary to the SfM approach, in the filtering 

methods, the problem casts in the form of a 

dynamic system. The internal state of this 

dynamic system consists of the camera pose 

parameters. Similar to any dynamic system, the 

state transition of this dynamic system is a non-

linear relation regarding the physical nature of 

rigid body motion occurring in 3D space. 

Furthermore, the internal state of the system has a 

complicated non-linear relation with 

measurements from the scene. Often, the Kalman 

filter is used to estimate the internal state of 

dynamic system given observations. However, 

these non-linearities in the camera tracking 

problem require employment of the Extended 

Kalman Filter (EKF) for estimation of the camera 

pose parameters [18]. In this context, MonoSLAM 

[19] is a leading work in which, map of the 

environment is represented using a probabilistic 

approach. Additionally, to estimate the position 

and orientation of the camera, a full covariance 

EKF is employed. Furthermore, a top-down 

approach is introduced to provide feature 

matchings along the consecutive frames. Although 

the reported method is categorized as a filtering 

approach, contrary to MonoSLAM, a 

deterministic map was employed. In other words, 

in the proposed method, the state of the filter only 

includes the camera pose parameters. 

Some feature-based camera tracking algorithms 

select some frames as keyframes. Mostly, the goal 

is to minimize the camera pose accumulative error 

in keyframes. Accordingly, an optimization step is 

performed on selected keyframes. Two popular 

methods extensively used for this purpose are 

Bundle Adjustment (BA) [20] and pose map 

optimization [21]. BA is a non-linear optimization 

technique, which minimizes the reprojection error 

between the location of tracked feature points and 

the projection of their associated 3D points on 

image plane. Since these optimization routines are 

computationally expensive, to achieve a real-time 

performane, it is essential to run them in a 

separate thread as implemented in PTAM and 

ORB-SLAM. 

 

3. Proposed Method 

In Figure 1, an outline of the proposed approach is 

illustrated. Upon capturing every new frame, the 

camera tracking procedure is carried out in two 

phases. Firstly, the corresponding feature points in 

the previous frame should be located in the 

current frames. In the second phase, the camera 

position and orientation are computed using the 

obtained correspondences in an UKF framework. 

 

Figure 1. Overview of proposed approach. 

UKF is a derivative-free approach that 

approximates the state distribution using special 



Hoseini & Kabiri / Journal of AI and Data Mining, Vol. 10, No. 4, 2022 
 

496 
 

samples drawn from distribution called sigma 

points. Like EKF, UKF consists of two phases, 

i.e. state predication and state update, except they 

are preceded by extra routine of sigma point 

selection. During the UKF steps, these sigma 

points are propagated through predication and 

observation models. Calculating weighted average 

of the propagated sigma points, the new state of 

the filter is generated. At the same time, 

covariance matrix of the filter state that implies 

uncertainty of estimated state is also constructed. 

It is worth noting that the number of sigma points 

is 2L + 1, where L is the dimension of filter’s 

state. 

 

3.1 Preliminaries 

The relation between the world coordinate system 

and the camera coordinate systems is represented 

using a rigid body transformation. 

(1) , (3)
0 0

1 3

R tcw cw
z T z T SEc cw w cw  



 
 
   

where [ 1] , [ 1]
T T

z z z zc c w w   are 

homogeneous coordinates of an arbitrary point in 

the world and camera coordinate systems, 

respectively. (3)cwR SO  is a rotation matrix, 

and 3

cwt R  is a translation vector representing 

the origin of world in the camera frame. In this 

paper, the pose of the camera for frame k is 

denoted by k

cwT . According to the pinhole camera 

model, projection of any arbitrary 3D point zw in 

the world coordinate frame on image plane in 

term of pixel is calculated using (2). 

(1) 
1

( ) ( )
( )

y z K R z tw cw w cw
d z w

  

 
where y  is the homogeneous representation of y

, d(zw) is the depth of 3D point zw in the camera 

coordinate frame, and K is the camera calibration 

matrix. Furthermore, let  , , ,
1 2

Z z z znk
   be a 

set of 3D points in the scene that are already 

initialized in the constructed map and are 

successfully tracked in frame k. The projection of 

i kz Z on frame k is denoted by ui that is 

obtained through the feature tracking routine. 

Accordingly, 
2

[ , , , ]
1 2

T n
U u u u Rnk

 

indicates the associated vector for the observed 

feature points in frame k. 

Given a group of 3D points in the world 

coordinate frame and their projection on image 

frame, the parameters of world to camera 

transformation are produced by minimizing the 

sum of squared error of (3). 

(3) 
2

( , ) ( ( ) - )
1

n
E R T z ui i

i
 


 

where ui is the pixel coordinate corresponding to 

the zi point in image plane obtained through the 

feature tracking procedure. R is the rotation 

matrix (often represented in the quaternion format 

as a unit vector belongs to R
4

), and 
3T R  is the 

translation vector that relates the world and 

camera coordinate systems as shown in Figure 2. 

In the computer vision literature, this problem is 

referred to by Perspective-n-Point (PnP). The non-

linear optimization techniques such as Gauss-

Newton and Levenberg-Marquardt are often used 

to minimize the error function defined in (3). 

 

3.2. UKF details 

In this work, a filtering method is employed for 

estimation of the posteriori density of the camera 

trajectory parameters. To this end, UKF is 

adopted to estimate the 6-D pose parameters of 

camera in each frame. State of the filter is a 14 × 1 

random vector, as defined in (4). 

(4) [ ]
T

x t q v
k k k k k

  

where tk is the camera center relative to the world 

coordinate system, and qk is the quaternion 

representation of rotation matrix relative to the 

world coordinate system at time step k. vk and ωk 

are the linear and angular velocities of the camera, 

respectively. In each step, the filter is initialized 

with the estimated state of the previous step. Here, 

it is assumed that 1kx  and 1kP   are the mean and 

covariance of the filter’s state estimated in time 

step k-1, from which, a collection of 2L+1 sigma 

points (along with their weights) are constructed 

using (5). 

(5) 

0
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



 

   




 
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  

    
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 

    

  
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where 
2
( )L L      is a scaling factor, and 

the three parameters , ,    are used to tune the 

UKF filter [22]. The expression -1( ( ) )k iL P is 

the i-th row of the matrix square root. 

In the developed UKF, a constant velocity model 
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is used for state transition between the time steps, 

as given in (6). 

(6) 

( )
1 1

( )
1 1

( )
| 1 1

1

1

t v Vck k

q ck k
x f x
k k k v Vck

ck





 
 

 
 

 
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

 


 
 
 
 
 
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where Vc and Ωc are the Gaussian white noises 

that indicate the uncertainties for the linear and 

angular velocities of the camera, respectively. ⨂ 

denotes the quaternion product operation. 

In the prediction phase of UKF, these sigma 

points are propagated through state transition. 

(7) ( ) 0, , 2
| 1 1

i i
x f x i L

k k k
 

   

Later, the mean and covariance of the filter’s state 

is calculated using a weighted average of 

propagated sigma points. 

(8) 

2

| -1 | -10

2
[ - ][ - ]

| -1 | -1 | -1 | -1 | -10

L i i
x W xmk k k ki

L i i i T
P W x x x x Qck k k k k k k k k k ki
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

 


 

where Qk is the covariance matrix of the additive 

process noise. In the state update phase, new 

sigma points are reconstructed using the predicted 

state. 

(9) 

0
| 1 | 1

( ( ) ) 1, ,
| 1 | 1 | 1

( ( ) ) 1, , 2
| 1 | 1 | 1
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If the camera pose parameters for the frame k are 

encoded in xk, then the projection of each i kz Z

on frame k is denoted by yi that is obtained using 

(2). 2

1 2
[ , , , ]

T n

k n
Y y y y R   is the predicted 

observation vector whose components are 

projection of 3D points of Zk on frame k, obtained 

individually using (2). In other words, the 

predicted observation is obtained using a non-

linear function, as given in (10). 

(10) 

( )
1

( , )
| 1

( )

z

Y h x Z
k k k k

zn





 

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In the state update phase of UKF, initially, new 

sigma points are passed through the non-linear 

observation model. 

(11) ( , )
| -1

i i
Y h x Zik k k

  

Later, the mean and covariance of the 

observations are calculated. 

(12) 

2

0

2
[ - ][ - ]

0
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where Rk is covariance of the observation noise. 

The cross-covariance of state-observation can be 

calculated using (13). 

(13) 

2
[ - ][ - ]

| -1 | -1 | -1 | -10

L i i i T
P W x x x xcx Y k k k k k k k kik k

 
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Kalman gain ( k ) and innovation vector ( kb ) are 

obtained, as seen in (14). 

(14) 

1
P Px Y Y Yk

k k k k

b Y U
k k k





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The updated state and of the filter is calculated by 

adding the predicted state with weighted 

innovation vector. 

(15) | 1
x x b
k k k k k

 


 

The updated covariance matrix of filter state is 

calculated using (16). 

(16) -
| | -1

T
P P Py yk k k k k kk k

   

3.3. Feature extraction and tracking 

Detecting salient and distinguished feature points, 

which can be accurately tracked along a sequence 

of video frames, is of great importance in the 

feature-based camera tracking problem. In this 

work, the FAST feature detector [23] is employed 

to extract the salient feature points. Once new 

features are detected, they should be tracked in 

successive frames. In camera tracking process, the 

feature points should be tracked with as much 

accuracy as possible. This is because feature point 

selection accuracy directly affects the 

performance of the camera pose estimation. Due 

to small displacement of feature points within 

consecutive frames, feature points can be tracked 

easily using correlation window. In the reported 

work, a hierarchical technique is employed [24] to 

improve the precision of the feature tracking 

process. To do so, at first, a multi-level pyramid 

of a window whose center is located at the feature 

position is constructed. In the constructed 

pyramid, the Lucas-Kanade iterative algorithm 

[25] is used to compute the motion vector at each 

level. The Lucas-Kanade method performs image 

registration between two images to align them 

within the best possible way. The spatial intensity 

gradient information is used to conduct search 

procedure to find the best matching points. This 
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coarse to fine process hierarchically proceeds 

from the coarsest level down to the finest level of 

the produced pyramid. The resulted matching 

point in each level is determined as an initial 

guess in the next level. This pyramidal routine 

introduces a motion vector for each feature point, 

which indicates displacement of the tracked 

feature point in two successive frames. Another 

result of foregoing pyramidal tracking is the 

tracking score, which measures the similarity 

between the image points considered as matched 

features in two successive frames. The number of 

pyramid levels is often set to 3 or 4 for the VGA 

quality images. However, for high quality videos, 

it is better to use more levels for the pyramid.  

The existence of repetitive textures and blurriness 

in video frames may introduce noisy or wrong 

feature correspondences. In noisy 

correspondences, the matching error within two 

successive frames is low (i.e. 3-5 pixels). 

However, wrong correspondences are often 

affected from significant displacement error. 

Noisy and wrong correspondences can be 

removed using robust estimators. The RAndom 

SAmple Consensus (RANSAC) algorithm [26] is 

an outlier removal algorithm that is employed for 

elimination of noisy and wrong correspondences. 

During execution of the algorithm, two groups of 

feature points are tracked. The first group includes 

those, which are already triangulated and tracking 

them in each new frame provides the algorithm 

with a collection of 3D-2D correspondences. This 

group of feature points is called fully active 

features that directly utilized for camera pose 

estimation. The second group includes those 

features that are not yet triangulated. This group 

of features is called the partially active features. 

The coordinates of every partially active feature, 

from the frame in which it is detected until the 

initialization point should be stored. Due to large 

error in depth estimation, after several frames, 

some partially active features cannot be initialized 

anymore, and hence, they are no longer tracked. 

In the proposed method, any partially active 

feature whose depth is not estimated after 20 

frames will be ignored, and consequently, 

removed from the partially active features list. 

 

3.4. Initial map construction 

The proposed system uses a metric map, which is 

initialized after few frames. The initial pose of the 

camera is computed using a chessboard placed in 

front of the camera. The cell size of the 

chessboard is known, and hence, pose of the 

camera in the first frame is obtained using a 

collection of 3D-2D correspondences from 3D 

coordination of chessboard cell corners and their 

projections on the captured frame. There is no 

way to estimate the depth of newly extracted 

features except using the structure of features with 

pre-determined 3D position. In fact, using a 

collection of 2D-2D feature matchings in two or 

more frames, the depth of the corresponding 

features is estimated up to scale. Prior information 

on the 3D geometry of the observed scene is 

required to perform a metric visual SLAM. 

Generally, a sparse group of initialized landmarks 

is enough for this purpose [27]. 

In the reported experiments, a marker-based 

strategy is pursued to estimate the camera pose 

parameters in the initial frames. Accordingly, a 

chessboard whose cell size is known is placed on 

a computer desk. As depicted in Figure 2, the 

chessboard lies on the XY plane of the world 

coordinate frame and the Z axis is perpendicular 

to it. Additionally, one can easily detect the 

corners of the chessboard. Since their 3D 

coordination in the world coordinate frame is 

available, a set of 3D-2D feature correspondences 

is collected, which is sufficient for computation of 

the camera pose parameters using solutions of the 

PnP problem. Meanwhile, those feature points that 

extracted in the first frame are tracked. Having 2D 

coordinate of feature points in the first few 

frames, the initial map is constructed. This job is 

feasible since the camera pose parameters in these 

frames are available. 

Figure 2. View of world and camera coordinate 

systems in first frame. 

In the reported work, we only employ the natural 

feature points to obtain the 6Dof camera pose 

parameters. Finding the depth value for newly 

detected feature points is performed using the 

camera pose parameters of both the reference 

frame and the frame in which the feature 

displacement exceeds its threshold. 
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3.5. Depth estimation of new features 

Camera pose estimation and map extension are 

tightly coupled issues in visual SLAM since 

precision of each one is directly affecting the 

efficiency of the other. Map extension includes 

triangulation of newly detected feature points, 

which is prone to a remarkable error in the 

presence of noisy feature correspondences. If the 

camera explores previously visited scenes, then 

one may try to detect loop and alleviate quick 

growth of camera position drift. In the reported 

approach, the problem of loop detection is not 

addressed. The proposed approach is aimed on 

achieving promising results through precise data 

association and reliable camera pose estimation. 

Therefore, once a new feature is detected, the 

intention is to initialize it with the highest 

precision. The new feature cannot be initialized 

immediately because a single image contains no 

knowledge about the depth of its points. 

Calculating the depth of each new feature point, it 

requires having it present in at least two frames. 

Since successive frames of a given video forms 

narrow-baseline images, triangulation of any new 

feature point using two successive frames 

produces a large error. This error will reduce the 

accuracy of the camera pose parameters in the 

future frames.  

Dealing with this problem, Davison [28] has 

employed a particle filter to represent the initial 

depth of each new feature. The initial depth is 

represented by a uniform distribution within a 

predetermined range. The observation of these 

new feature points in the succeeding frames is 

then used to modify the initial depth. This routine 

is continued until a Gaussian posteriori 

distribution with small variance is resulted. Eade 

and Drummond [29] have pursued a similar 

method. However, they considered the initial 

distribution for inverse depth of each feature 

instead of its depth. The foregoing methods suffer 

from a significant error in feature initialization 

once the projections of a scene point on 

subsequent frames are small.  

In the proposed approach, the linear triangulation 

approach is employed to initialize the features. 

However, this calculation is delayed until the 

displacement of its projections on subsequent 

frames exceeds a predefined threshold.  

This threshold is set to 30 pixels in our 

experiments. Having enough number of fully 

active features available, the depth estimation of 

the newly extracted features can be postponed 

since there is no need for their immediate 

initialization. 

 

3.6. Feature management 

The proposed approach utilizes an automatic 

feature management procedure. It is obvious that 

once the camera moves, its pose changes and 

some parts of the scene will disappear from 

camera field of view while some new scenery will 

come in to camera’s view. In this way, on some 

occasions, it is required to add new features to the 

map, and sometimes it is required to remove a few 

of feature points from the currently applied map. 

In an efficient camera tracking algorithm, these 

decisions should be made automatically. Also it is 

required to make decision about the optimized 

number of feature points needed for the map. 

However, given only four non-coplanar 2D-3D 

point matchings, it is possible to compute the 

camera position and orientation. Attaining more 

reliable and robust results, it is recommended to 

constantly track as many feature points as 

possible. Using more features points in the camera 

tracking routine improves the accuracy of the 

result at the expense of efficiency reduction. In 

the reported experiments, at least 60 feature points 

are continuously tracked. Controlling the 

computation cost of the algorithm, the maximum 

number of feature points in each frame is limited 

to 150 feature points. Furthermore, the extracted 

feature points are selected in such a way that they 

are uniformly distributed across the whole frame, 

and hence, the observed area is properly 

represented. 

 

4. Experimental Results 

In the conducted experiments, two video 

sequences taken with a freely moving handheld 

camera are used. In Table 1, the details of the 

video sequences are summarized. The video 

sequences are captured at 30 fps and the place 

where the sequences are captured is a cluttered 

computer desk. To obtain ground truth data for the 

camera pose parameters, a chessboard pattern is 

placed on the desk since chessboard corners can 

easily detect the camera position and orientation 

are effortlessly calculated using a group 3D-2D 

correspondences. It is worth noting that the 

detected points on chessboard are exclusively 

used for calculation of the ground truth pose 

parameters. Therefore, the detected corner points 

of the chessboard squared patterns will be treated 

as regular features, which are required to be 

initialized in spite of their known 3D position with 

respect to the world coordinate system. 

Before preparation of the aforementioned video 

sequences, the camera is calibrated using a 

flexible method introduced by Zhengyou [30]. To 
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this end, a collection of images taken from a 

planar chessboard are utilized. The chessboard 

cell size is known, and images are taken from 

different viewpoints. 

Table 1. Specifications of used video sequences. 

 
Frame 

count 
Resolution 

Avg. angular 

velocity (deg/s) 

Avg. 

translational 

velocity (m/s) 

Seq 1 1052 640×480 13.82 0.14 

Seq 2 1091 1280×720 10.58 0.13 

Fig. 3 shows that some feature points are tracked 

until their depths are calculated. The marked 

magenta squares indicate fully active feature 

points and small blue squares are newly extracted 

feature points. New feature points are tracked 

along the following few frames (green dots in 

Figure 3(b)). Every new feature point is 

triangulated (yellow asterisks in Figure 3(b)) once 

its 2D coordinate has an adequate displacement 

with respect to the frame in which it is detected. 

 

Figure 3. (a) Fully active features + partially active 

features (b) Fully active features along with 

tracking path of partially active features until 

initialization. 

In Figure 4, projection of the estimated camera 

trajectories along with the projection of ground 

truth trajectories on XY plane for Seq 1 (Figure 4 

(a)) and Seq 2 (Figure 4 (b)) are depicted. As it 

can be seen, the estimated trajectories are tracked 

camera path with high precision. 

In Figure 5, the components of translation part of 

camera pose along with ground-truth data for both 

sequences are shown. As it is illustrated in Fig. 5, 

in spite of long duration of the input sequences, 

camera trajectories are tracked with a high 

accuracy. Moreover, the translation errors in x and 

y directions for both sequences are negligible, and 

only a small error is seen along the z axis. 

 

Figure 4. Ground truth and estimated camera 

trajectories projected on XY plane (a) for Seq 1 and 

(b) for Seq 2. 

Furthermore, the proposed UKF-based algorithm 

is compared against EKF and non-linear 

minimization solution of PnP (NLPnP), as given 

in (3) using the LM method. For comparison, the 

Relative Pose Error (RPE) and Absolute 

Trajectory Error (ATE) [31] criterions for both 

translation and rotation parts of the camera pose 

are used. 

Generally, RPE is a measure for the local 

accuracy of the algorithm that indicates the 

trajectory error between the successive frames, 

and ATE specifies the global consistency of the 

estimated trajectory. 

Table 2 shows the obtained results in terms of 

RPE for the two sequences introduced in Table 1. 

In Table 2, the reported results for the camera’s 

translation part of RPE show that the UKF-based 

approach outperforms the EKF and NLPnP 

methods. However, the RPE values for camera 

rotation in both sequences show that neither of 

them has a significant superiority over the others. 
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Table 3 reports the performance of the proposed 

algorithm as well as the EKF and NLPnP 

approaches using the ATE measure. In terms of 

the translation part of ATE, one can easily see that 

our algorithm produces more promising results. 

Also similar to RPE, the obtained results for the 

rotation part of ATE are approximately the same 

among the UKF, EKF, and NLPnP methods. 

 
Figure 5. Ground truth versus estimated camera 

position (a) for Seq 1 (b) for Seq 2. 

In order to investigate the influence of feature 

detection method on the performance of camera 

tracking routine, we repeated the proposed 

algorithm using well-known feature point 

detection methods, i.e. FAST, HARRIS [32], and 

MINEIGEN [33]. The quantitative results in terms 

of the RPE and ATE criterions for different 

feature extractors are reported in Table 4 and 

Table 5. As presented in these two tables, the 

reported results (especially for RPE) for both 

sequences are almost the same. As a conclusion, 

the type of feature extractor has no significant 

impact on the accuracy of the estimated 

trajectories. 

Table 2. Comparison of translation and rotation 

parts of RPE for different camera pose estimation 

methods. 

Tracking 

method 

Seq 1 Seq 2 

RPETrans 

(mm) 

RPERot 

(deg) 

RPETrans 

 (mm) 

RPERot 

 (deg) 

UKF 1.7 0.4 2.1 0.7 

EKF 1.9 0.4 2.3 0.8 

NLPnP 2.9 0.4 4.1 0.5 

Table 3. Comparison of translation and rotation 

parts of ATE for different camera pose estimation 

methods. 

Tracking 

method 

Seq 1 Seq 2 

ATETran 

(mm) 

ATERot 

(deg) 

ATETran  

(mm) 

ATERot 

 (deg) 

UKF 25.7 7.2 38 8.3 

EKF 25.7 7.7 38.4 7.9 

NLPnP 195.4 7.4 172.9 7.9 

Table 4. Comparison of translation part of RPE and 

ATE for different feature extractors. 

Feature type 
Seq 1 Seq 2 

RPE (mm) ATE (mm) RPE (mm) ATE (mm) 

HARRIS 2.2 38.9 3.2 53.5 

MINEIGEN 2.2 35 3 53.2 

FAST 2.2 36.2 3 59.3 

Table 5. Comparison of rotation part of RPE and 

ATE for different feature extractors 

Feature type 
Seq 1 Seq 2 

RPE (deg) ATE (deg) RPE (deg) ATE (deg) 

HARRIS 0.8 8.3 1.6 7.8 

MINEIGEN 0.8 6.8 1.5 7.9 

FAST 0.7 7.8 1.6 8.7 

5. Conclusion 

In this paper, the problem of camera tracking in 

unknown environments was addressed. The 

proposed method could be used in any AR or 

visual SLAM application. In the reported work, a 

feature-based strategy was adopted to locate the 

camera. The proposed algorithm initializes a 

metric map. Using a metric map, the scale 

ambiguity problem for the parameters of the 

camera translation and the extended map is 

solved. Furthermore, the constructed map is 

extended solely based on the initially triangulated 

feature points and the knowledge acquired by 

tracking of detected feature points. Hence, with 

any increase in the number of input video frames, 

the cumulative error for the camera pose 

parameters will also increase. One  strategy to 

handle this issue is to employ loop detection 

algorithms or to use known markers in the scene. 
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A fundamental property of our approach is that 

promising results are obtained without utilizing 

any optimization method. The intention is to 

develop a more accurate map extension strategy to 

reduce the accumulation of camera pose error. 
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 فضای داخل ساختمانبرای تخمین مسیر حرکت دوربین در فیلتر کالمن غیرمعطر یک روش مبتنی بر 

 

 2پیمان کبیری و،*1سیدعلی حسینی

 .ایران، بیرجند،  دانشگاه بیرجند، دانشکده مهندسی برق و کامپیوتر 1

 .ایران، تهران، دانشکده مهندسی کامپیوتر، دانشگاه علم و صنعت ایران 2

 11/41/2422 پذیرش؛ 40/40/2422 بازنگری؛ 40/41/2422 ارسال

 چکیده:

 مهمم وقعیت و جهت دوربین برای بسیاری از کاربردهای حوزه بینایی ماشین و رباتیک مکند، تخمین حرکت میناآشنا هنگامی که دوربین در یک محیط 

ایمن مقالمه   سازی همزمان و واقعیمت ازمزوده اسمت.    یابی و نقشهترین بخش مسائلی نظیر مکانت دوربین احتمالا پر چالشکاست. دنبال نمودن مسیر حر

درنظمر گرزتمه   زضمای دالمس سمالتمان     دهد. محیط حرکت دوربین درپیشنهاد مییک روش مبتنی بر ویژگی برای دنبال نمودن مسیر حرکت دوربین 

یمک نقشمه اولیمه از     ،، دوربین با دیدن یمک صمهحه شمجرنجی   در چند زریم آغازین متر است. 0تا  0ه و حداکثر عمق و زاصله اشیاء تا دوربین حدود شد

. ایمن  شمود شود. در ادامه با رسیدن هر زریم جدید روال تعقیب مسیر حرکت دوربین دنبال ممی اندازی میمحیط پیرامونی سالته و سامانه پیشنهادی راه

همزمان بما مشماهده   شود. کند، انجام میسالته شده استهاده می اولیهِ روال درون یک چارچوب که تنها از ویژگیهای استخراج شده طبیعی در کنار نقشه

بمی بمر مبنمای    یابد. درضمن، سامانه پیشنهادی از یمک روش سلسمله مرات  نواحی جدید توسط دوربین، نقشه اولیه سالته شده از محیط نیز گسترش می

بمر روی ویمدیوهای واقعمی آزممایش شمده و       برد. الگموریتم پیشمنهادی  بهره می استخراج شده کاناده برای تعقیب نقاط ویژگیِ-ثبتِ تصاویرِ لوکاس روش

 مجلق مسیر دوربمین لجای نسبی موقعیت دوربین و لجای  سنجهدو  کارایی زیلتر کالمن غیر معجر با سایر روشهای تعقیب دوربین، مقایسه شده است.

برلموردار بموده    بالاییعملکرد الگوریتم پیشنهادی مورد استهاده قرار گرزته است. آزمایشهای انجام شده حاکیست روش پیشنهادی از دقت برای ارزیابی 

 نوع ویژگی استخراج شده تاثیر شایانی بر دقت عملکرد الگوریتم ندارد. علاوه بر آن،و 

 سازی همزمان، دنبال کردن دوربین.یابی و نقشهگی، زیلتر کالمن غیرمعجر، بینایی ربات، مکاناستخراج ویژ :کلمات کلیدی

 


