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1. Introduction

When a camera moves in an unfamiliar environment, for many
computer vision and robotic applications, it is desirable to estimate the
camera position and orientation. Camera tracking is perhaps the most
challenging part of the Visual Simultaneous Localization and Mapping
(Visual SLAM) and Augmented Reality problems. This paper
proposes a feature-based approach for tracking a hand-held camera
that moves within an indoor place with a maximum depth of around 4-
5 m. In the first few frames, the camera observes a chessboard as a
marker to bootstrap the system and construct the initial map.
Thereafter, upon the arrival of each new frame, the algorithm pursues
the camera tracking procedure. This procedure is carried out in a
framework that operates using only the extracted visible natural feature
points and the initial map. The constructed initial map is extended as
the camera explores new areas. In addition, the proposed system
employs a hierarchical method on the basis of the Lucas-Kanade
registration technique to track the FAST features. For each incoming
frame, the 6-DOF camera pose parameters are estimated using an
Unscented Kalman Filter (UKF). The proposed algorithm is tested on
real-world videos, and the performance of UKF is compared against
the other camera tracking methods. Two evaluation criteria (i.e.
relative pose error and absolute trajectory error) are used in order to
assess the performance of the proposed algorithm. Accordingly, the
reported experimental results show the accuracy and effectiveness of
the presented approach. The conducted experiments also indicate that
the type of extracted feature points does not have a significant effect
on the precision of the proposed approach.

Camera tracking is the problem of estimating
camera pose parameters from a sequence of video
frames. Some known problems in computer vision
such as 3D reconstruction, image registration, and
augmented reality have a close relationship with
camera pose estimation. Meanwhile, in robotics,
this problem is known as visual Simultaneous
Localization And Mapping (visual SLAM). The
purpose of visual SLAM is to estimate the
camera’s moving path and making map of the
observed scene simultaneously. The constructed
map can be represented in dense or sparse
manners. The Visual SLAM techniques

continuously extend the constructed map of the
observed environment, and then locate the camera
position by means of this map and its projection
on image plane. However, if the camera is
equipped with a RGBD sensor or range scanner,
depth calculation for the detected natural feature
points won’t be necessary. By contrast, a
monocular camera can only provide the 2D
measurements of a 3D environment. On the other
hand, in the visual SLAM solutions, it is required
to obtain the depth of each new extracted feature
point since no information about the depth of the
observed scene is given using a monocular
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camera. In other words, due to the noisy feature

point measurements and inaccurate camera poses,

depth calculation for newly detected natural
feature points is prone to error. As a consequence,
the process of camera localization and map
extension is more complicated in the context of
monocular camera tracking.

Augmented Reality (AR) is an active field of
research in computer vision that should be
equipped with camera tracking capability. The
purpose of AR is to neatly overlay the computer-
generated models on video frames. Accurate
estimation of camera pose with respect to the
world coordinate system is an important problem
here. The primary AR systems often use fiducial
markers or Computer-Aided Design (CAD)
models to locate camera in a 3D scene. In other
words, providing 3D-2D  correspondences
between 3D scene and its projection on image
plane, the AR system can calculate the camera
pose with respect to a reference coordinate system
often known as the world coordinate system.

However, for an automatic camera tracking, it is

desirable to use natural landmarks. In the

following the main contributions of this work are
listed:

e Feature tracking routine is performed in a
coarse to fine scheme, which is accurate and
robust in the presence of quick camera
movement.

e |Initial metric map construction, which
employs a marker with salient feature points
whose 3D positions are known.

e The propagation of depth information, which
enables the proposed system to determine the
camera position as the camera explores new
places.

The structure of this paper is organized in the
following way. The Second section discusses the
related works. The Third section explains the
proposed approach in details. The experimental
results are presented in the Fourth section.
Conclusion and future works are included in the
Fifth section.

2. Related Works

Depth estimation of newly extracted feature points
is a challenging task once the camera explores
unknown environment, and it is demanding to
estimate the camera position with respect to its
surrounding. Moreover, successive iteration of
camera pose estimation and depth computation of
newly detected feature points need to be
performed continuously as the camera observes
new regions. This repetition gradually increases
cumulative error, which introduces drift in the
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camera position. In fact, utilizing only 2D
measurements of feature points in the absence of a
robust 3D map, it is only feasible to estimate 3D
position of new feature points up to a scale factor.
In general, the researchers adopt two strategies for
addressing the scale ambiguity in the camera
tracking problem. In the first strategy, some
markers with known structures are placed in front
of the camera. Detecting these markers in
captured images, the camera pose parameters are
easily computed with a high precision. Ababsa
and Mallem [1] have employed this method to
handle the scale ambiguity problem. Additionally,
using markers in the scene enables the system to
control accumulation of the estimation error.
Using the reference calibrated images is the
second strategy used for camera tracking in
unknown environments to deal with scale
ambiguity [2], [3]. Calibrated images contain
easily detectable objects with known position in
the world coordinate system. Once the reference
images are available, the camera tracking problem
reduces to association of observed features in each
new frame and the reference images.

Detection of loop closures in camera tracking is
another approach, which can control the
cumulative error of the estimated camera pose
parameters [4]-[6]. However, it is only feasible
when the camera explores those parts of the scene
that are observed before. Whenever the camera
explores new regions, we require extracting new
feature points to retrieve the camera pose
parameters. In this work, the problem of loop
closure detection is not addressed. Instead, the
reported work tries to propagate depth information
of the initially constructed map to newly detected
features points the camera observes within new
sceneries.

Camera trajectory estimation for video sequences
is extensively studied. Structure from Motion
(SfM) and filtering methods are two major
strategies presented to tackle this problem. Early
studies based on the SfM strategy were mainly
employing epipolar geometry principles for
estimation of the camera pose parameters [7].
Additionally, the initial algorithms proposed to
solve the camera tracking problem were mostly
for a short video sequences or small set of images.
However, later works were addressing longer
image sequences [8], [9]. Parallel Tracking and
Mapping (PTAM) [10] is a forerunner work
developed for small scale workspaces that has a
real-time  performance. In  PTAM, map
construction and camera tracking routines are run
in two separated threads. This improves the
execution speed of the algorithm. S-PTAM [11] is
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another feature-based method for camera tracking
and mapping, which uses stereo-images.
Exploiting  stereo-images  allows  robust
initialization of extracted feature points.
ORB-SLAM [12] and its successor ORB-SLAM2
[13] as well as LSD-SLAM [14] are prominent
works recently developed in the visual SLAM
community. ORB-SLAM and ORB-SLAM2 are
feature-based methods, and LSD-SLAM is a
direct (feature-less) approach that estimates
camera trajectory by using directly pixel
intensities. In addition, all of them benefit from
strong loop closure detection methods, which
improve precision of the algorithm substantially.

It is worth noting that camera tracking is the core
component of the visual SLAM and visual
odometry techniques. However, visual SLAM
benefits from loop closure detection but visual
odometry does not. Taking advantage of loop
closure detection could significantly improve the
accuracy of camera tracking when the camera
explores previously visited regions. Nevertheless,
the proposed approach has not utilized loop
closure detection. Instead, our algorithm tries to
do its best to improve the accuracy of camera
tracking by concentration on accurate feature
tracking and configuring a well-tuned UKF
framework.

The advent of RGBD cameras encourages some
researchers to take advantages of using RGBD
images for camera tracking. RGBD-SLAM [16]
and k-SLAM [17] are two visual SLAM approach
developed for the RGBD sequences. It is worth
noting that since the RGBD images contain depth
values of image pixels, it is not required to
triangulate newly detected features. This issue to a
large extent improves performance of the
algorithm.

Contrary to the SfM approach, in the filtering
methods, the problem casts in the form of a
dynamic system. The internal state of this
dynamic system consists of the camera pose
parameters. Similar to any dynamic system, the
state transition of this dynamic system is a non-
linear relation regarding the physical nature of
rigid body motion occurring in 3D space.
Furthermore, the internal state of the system has a
complicated non-linear relation with
measurements from the scene. Often, the Kalman
filter is used to estimate the internal state of
dynamic system given observations. However,
these non-linearities in the camera tracking
problem require employment of the Extended
Kalman Filter (EKF) for estimation of the camera
pose parameters [18]. In this context, MonoSLAM
[19] is a leading work in which, map of the
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environment is represented using a probabilistic
approach. Additionally, to estimate the position
and orientation of the camera, a full covariance
EKF is employed. Furthermore, a top-down
approach is introduced to provide feature
matchings along the consecutive frames. Although
the reported method is categorized as a filtering
approach, contrary to  MonoSLAM, a
deterministic map was employed. In other words,
in the proposed method, the state of the filter only
includes the camera pose parameters.

Some feature-based camera tracking algorithms
select some frames as keyframes. Mostly, the goal
is to minimize the camera pose accumulative error
in keyframes. Accordingly, an optimization step is
performed on selected keyframes. Two popular
methods extensively used for this purpose are
Bundle Adjustment (BA) [20] and pose map
optimization [21]. BA is a non-linear optimization
technique, which minimizes the reprojection error
between the location of tracked feature points and
the projection of their associated 3D points on
image plane. Since these optimization routines are
computationally expensive, to achieve a real-time
performane, it is essential to run them in a
separate thread as implemented in PTAM and
ORB-SLAM.

3. Proposed Method

In Figure 1, an outline of the proposed approach is
illustrated. Upon capturing every new frame, the
camera tracking procedure is carried out in two
phases. Firstly, the corresponding feature points in
the previous frame should be located in the
current frames. In the second phase, the camera
position and orientation are computed using the
obtained correspondences in an UKF framework.

New frame
T Track feature points
LA A
¥

Refine matchings
(using RANSAC)

> 7
Select fully initialized
features

12

Estimate camera pose
(UKF)

[ ¥

Extract new features
when needed

Triangulate partially
active features

Figure 1. Overview of proposed approach.

UKF is a derivative-free approach that
approximates the state distribution using special
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samples drawn from distribution called sigma
points. Like EKF, UKF consists of two phases,
i.e. state predication and state update, except they
are preceded by extra routine of sigma point
selection. During the UKF steps, these sigma
points are propagated through predication and
observation models. Calculating weighted average
of the propagated sigma points, the new state of
the filter is generated. At the same time,
covariance matrix of the filter state that implies
uncertainty of estimated state is also constructed.
It is worth noting that the number of sigma points
is 2L + 1, where L is the dimension of filter’s
state.

3.1 Preliminaries

The relation between the world coordinate system
and the camera coordinate systems is represented
using a rigid body transformation.

. } Rew fe
1x3
where 7. =[z¢ T, Zw = [zW1]T are

homogeneous coordinates of an arbitrary point in
the world and camera coordinate systems,

respectively. R, € SO(3) is a rotation matrix,

and t,, e R® is a translation vector representing

the origin of world in the camera frame. In this
paper, the pose of the camera for frame k is
denoted by T . According to the pinhole camera

model, projection of any arbitrary 3D point z, in
the world coordinate frame on image plane in
term of pixel is calculated using (2).

)7=7T(Zw)=27) (D)
W

where ¥ is the homogeneous representation of y

, d(z,) is the depth of 3D point z, in the camera
coordinate frame, and K is the camera calibration
matrix. Furthermore, let z, ={z,,2 zp} bea

set of 3D points in the scene that are already
initialized in the constructed map and are
successfully tracked in frame k. The projection of
z, ez, on frame k is denoted by u; that is

obtained through the feature tracking routine.

Accordingly, 2n

Uy =[u1,u2,---,un]T eR
indicates the associated vector for the observed
feature points in frame k.

Given a group of 3D points in the world
coordinate frame and their projection on image
frame, the parameters of world to camera
transformation are produced by minimizing the
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sum of squared error of (3).
n
E(R,T) = 2 (x(z))-up)® ©

where u; is the pixel coordinate corresponding to
the z; point in image plane obtained through the
feature tracking procedure. R is the rotation
matrix (often represented in t4he quaternion format

as a unit vector belongs to R ), and T € R? is the
translation vector that relates the world and
camera coordinate systems as shown in Figure 2.
In the computer vision literature, this problem is
referred to by Perspective-n-Point (PnP). The non-
linear optimization techniques such as Gauss-
Newton and Levenberg-Marquardt are often used
to minimize the error function defined in (3).

3.2. UKF details

In this work, a filtering method is employed for
estimation of the posteriori density of the camera
trajectory parameters. To this end, UKF is
adopted to estimate the 6-D pose parameters of
camera in each frame. State of the filterisa 14 x 1
random vector, as defined in (4).

X =l o vy @' (4)
where t; is the camera center relative to the world
coordinate system, and q¢ is the quaternion
representation of rotation matrix relative to the
world coordinate system at time step K. vx and
are the linear and angular velocities of the camera,
respectively. In each step, the filter is initialized
with the estimated state of the previous step. Here,

it is assumed that X, ;and P, , are the mean and

covariance of the filter’s state estimated in time
step k-1, from which, a collection of 2L+1 sigma
points (along with their weights) are constructed
using (5).

0o .
Xk-1= %41
X 1 =% g+ (JL+ DR )i i=1L

i v .
Xk—l:Xk_]__( (L+1)Pk—1)I—L i=L+1.--2L

WO =21 (L+2) (5)
WO =1L+ 2)+A-a® + p)
whowio— b i1

2(L+4)

where 1 =a’(L+n)-L is a scaling factor, and
the three parameters o, ,17 are used to tune the

UKEF filter [22]. The expression (y/(L + 2)P, ), is
the i-th row of the matrix square root.
In the developed UKF, a constant velocity model
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is used for state transition between the time steps,
as given in (6).
b4+ (e +Ve)
U1 ® (@4 +Cc)
= f =
k- = F (1) Vg +Ve ©)

O g+ Qe

where V. and Q. are the Gaussian white noises
that indicate the uncertainties for the linear and
angular velocities of the camera, respectively. ®
denotes the quaternion product operation.

In the prediction phase of UKF, these sigma
points are propagated through state transition.

[ i .
Later, the mean and covariance of the filter’s state
is calculated using a weighted average of
propagated sigma points.

- 2L i

XL = 12 Wm*iga

(8)

P —zszi[xi N R S LI
k1 =2 We D Figead X - Mgkl + Qi

where Qq is the covariance matrix of the additive
process noise. In the state update phase, new
sigma points are reconstructed using the predicted
state.

0 _
k-1 = Xkk-1

L =% L+ )P, 1) i=1-L
Xl_<||<-1 X1+ (DR )i )

i . .
Xk|k—l = Xk|k—1_( (L+1)Pk|k—1)ifL i=L+1--,2L

If the camera pose parameters for the frame k are
encoded in X, then the projection of each z, € Z,
on frame k is denoted by y; that is obtained using
2. Y, =y, Y,,--y,]" eR™ s the predicted
observation vector whose components are
projection of 3D points of Z, on frame k, obtained
individually using (2). In other words, the
predicted observation is obtained using a non-
linear function, as given in (10).

7(z9)

7(zp)
In the state update phase of UKF, initially, new
sigma points are passed through the non-linear
observation model.

i [
Y =¥yka0Zi) (11)

Later, the mean and covariance of the

P
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observations are calculated.
Y, 2LWiYi
k_i:O m-k
5 _ZLWiiV i ¢ 1T . R (12)
Y, T2 el i Vi Ry

where Ry is covariance of the observation noise.
The cross-covariance of state-observation can be
calculated using (13).

2L
=2 W

i i _ i 3 T
XYk i%0 o DXik1 = X DX¥igie1 = k-1 (13)

Kalman gain (#, ) and innovation vector (b, ) are

obtained, as seen in (14).
-1
K, =P P
k XkYk YkYk (14)

b =Y, Uy
The updated state and of the filter is calculated by
adding the predicted state with weighted
innovation vector.

X = Xek—1 + *iPk (15)
The updated covariance matrix of filter state is
calculated using (16).

Pk = Pk =%k Py vy % (16)
3.3. Feature extraction and tracking
Detecting salient and distinguished feature points,
which can be accurately tracked along a sequence
of video frames, is of great importance in the
feature-based camera tracking problem. In this
work, the FAST feature detector [23] is employed
to extract the salient feature points. Once new
features are detected, they should be tracked in
successive frames. In camera tracking process, the
feature points should be tracked with as much
accuracy as possible. This is because feature point
selection  accuracy  directly  affects the
performance of the camera pose estimation. Due
to small displacement of feature points within
consecutive frames, feature points can be tracked
easily using correlation window. In the reported
work, a hierarchical technique is employed [24] to
improve the precision of the feature tracking
process. To do so, at first, a multi-level pyramid
of a window whose center is located at the feature
position is constructed. In the constructed
pyramid, the Lucas-Kanade iterative algorithm
[25] is used to compute the motion vector at each
level. The Lucas-Kanade method performs image
registration between two images to align them
within the best possible way. The spatial intensity
gradient information is used to conduct search
procedure to find the best matching points. This
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coarse to fine process hierarchically proceeds
from the coarsest level down to the finest level of
the produced pyramid. The resulted matching
point in each level is determined as an initial
guess in the next level. This pyramidal routine
introduces a motion vector for each feature point,
which indicates displacement of the tracked
feature point in two successive frames. Another
result of foregoing pyramidal tracking is the
tracking score, which measures the similarity
between the image points considered as matched
features in two successive frames. The number of
pyramid levels is often set to 3 or 4 for the VGA
guality images. However, for high quality videos,
it is better to use more levels for the pyramid.

The existence of repetitive textures and blurriness
in video frames may introduce noisy or wrong
feature correspondences. In noisy
correspondences, the matching error within two
successive frames is low (i.e. 3-5 pixels).
However, wrong correspondences are often
affected from significant displacement error.
Noisy and wrong correspondences can be
removed using robust estimators. The RAndom
SAmple Consensus (RANSAC) algorithm [26] is
an outlier removal algorithm that is employed for
elimination of noisy and wrong correspondences.
During execution of the algorithm, two groups of
feature points are tracked. The first group includes
those, which are already triangulated and tracking
them in each new frame provides the algorithm
with a collection of 3D-2D correspondences. This
group of feature points is called fully active
features that directly utilized for camera pose
estimation. The second group includes those
features that are not yet triangulated. This group
of features is called the partially active features.
The coordinates of every partially active feature,
from the frame in which it is detected until the
initialization point should be stored. Due to large
error in depth estimation, after several frames,
some partially active features cannot be initialized
anymore, and hence, they are no longer tracked.
In the proposed method, any partially active
feature whose depth is not estimated after 20
frames will be ignored, and consequently,
removed from the partially active features list.

3.4. Initial map construction

The proposed system uses a metric map, which is
initialized after few frames. The initial pose of the
camera is computed using a chessboard placed in
front of the camera. The cell size of the
chessboard is known, and hence, pose of the
camera in the first frame is obtained using a
collection of 3D-2D correspondences from 3D
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coordination of chessboard cell corners and their
projections on the captured frame. There is no
way to estimate the depth of newly extracted
features except using the structure of features with
pre-determined 3D position. In fact, using a
collection of 2D-2D feature matchings in two or
more frames, the depth of the corresponding
features is estimated up to scale. Prior information
on the 3D geometry of the observed scene is
required to perform a metric visual SLAM.
Generally, a sparse group of initialized landmarks
is enough for this purpose [27].

In the reported experiments, a marker-based
strategy is pursued to estimate the camera pose
parameters in the initial frames. Accordingly, a
chessboard whose cell size is known is placed on
a computer desk. As depicted in Figure 2, the
chessboard lies on the XY plane of the world
coordinate frame and the Z axis is perpendicular
to it. Additionally, one can easily detect the
corners of the chessboard. Since their 3D
coordination in the world coordinate frame is
available, a set of 3D-2D feature correspondences
is collected, which is sufficient for computation of
the camera pose parameters using solutions of the
PnP problem. Meanwhile, those feature points that
extracted in the first frame are tracked. Having 2D
coordinate of feature points in the first few
frames, the initial map is constructed. This job is
feasible since the camera pose parameters in these
frames are available.

Zy

World Coordinate
System

Camera Coordinate
System

Figure 2. View of world and camera coordinate
systems in first frame.

In the reported work, we only employ the natural
feature points to obtain the 6Dof camera pose
parameters. Finding the depth value for newly
detected feature points is performed using the
camera pose parameters of both the reference
frame and the frame in which the feature
displacement exceeds its threshold.
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3.5. Depth estimation of new features

Camera pose estimation and map extension are
tightly coupled issues in visual SLAM since
precision of each one is directly affecting the
efficiency of the other. Map extension includes
triangulation of newly detected feature points,
which is prone to a remarkable error in the
presence of noisy feature correspondences. If the
camera explores previously visited scenes, then
one may try to detect loop and alleviate quick
growth of camera position drift. In the reported
approach, the problem of loop detection is not
addressed. The proposed approach is aimed on
achieving promising results through precise data
association and reliable camera pose estimation.
Therefore, once a new feature is detected, the
intention is to initialize it with the highest
precision. The new feature cannot be initialized
immediately because a single image contains no
knowledge about the depth of its points.
Calculating the depth of each new feature point, it
requires having it present in at least two frames.
Since successive frames of a given video forms
narrow-baseline images, triangulation of any new
feature point using two successive frames
produces a large error. This error will reduce the
accuracy of the camera pose parameters in the
future frames.

Dealing with this problem, Davison [28] has
employed a particle filter to represent the initial
depth of each new feature. The initial depth is
represented by a uniform distribution within a
predetermined range. The observation of these
new feature points in the succeeding frames is
then used to modify the initial depth. This routine
is continued until a Gaussian posteriori
distribution with small variance is resulted. Eade
and Drummond [29] have pursued a similar
method. However, they considered the initial
distribution for inverse depth of each feature
instead of its depth. The foregoing methods suffer
from a significant error in feature initialization
once the projections of a scene point on
subsequent frames are small.

In the proposed approach, the linear triangulation
approach is employed to initialize the features.
However, this calculation is delayed until the
displacement of its projections on subsequent
frames exceeds a predefined threshold.

This threshold is set to 30 pixels in our
experiments. Having enough number of fully
active features available, the depth estimation of
the newly extracted features can be postponed
since there is no need for their immediate
initialization.
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3.6. Feature management

The proposed approach utilizes an automatic
feature management procedure. It is obvious that
once the camera moves, its pose changes and
some parts of the scene will disappear from
camera field of view while some new scenery will
come in to camera’s view. In this way, on some
occasions, it is required to add new features to the
map, and sometimes it is required to remove a few
of feature points from the currently applied map.
In an efficient camera tracking algorithm, these
decisions should be made automatically. Also it is
required to make decision about the optimized
number of feature points needed for the map.
However, given only four non-coplanar 2D-3D
point matchings, it is possible to compute the
camera position and orientation. Attaining more
reliable and robust results, it is recommended to
constantly track as many feature points as
possible. Using more features points in the camera
tracking routine improves the accuracy of the
result at the expense of efficiency reduction. In
the reported experiments, at least 60 feature points
are continuously tracked. Controlling the
computation cost of the algorithm, the maximum
number of feature points in each frame is limited
to 150 feature points. Furthermore, the extracted
feature points are selected in such a way that they
are uniformly distributed across the whole frame,

and hence, the observed area is properly
represented.

4. Experimental Results

In the conducted experiments, two video

sequences taken with a freely moving handheld
camera are used. In Table 1, the details of the
video sequences are summarized. The video
sequences are captured at 30 fps and the place
where the sequences are captured is a cluttered
computer desk. To obtain ground truth data for the
camera pose parameters, a chessboard pattern is
placed on the desk since chessboard corners can
easily detect the camera position and orientation
are effortlessly calculated using a group 3D-2D
correspondences. It is worth noting that the
detected points on chessboard are exclusively
used for calculation of the ground truth pose
parameters. Therefore, the detected corner points
of the chessboard squared patterns will be treated
as regular features, which are required to be
initialized in spite of their known 3D position with
respect to the world coordinate system.

Before preparation of the aforementioned video
sequences, the camera is calibrated using a
flexible method introduced by Zhengyou [30]. To
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this end, a collection of images taken from a
planar chessboard are utilized. The chessboard
cell size is known, and images are taken from
different viewpoints.

Table 1. Specifications of used video sequences.

Avg.
Frame . Avg. angular .
count Resolution velocity (deg/s) translational
9 velocity (m/s)
Seql 1052 640x480 13.82 0.14
Seq2 1091 1280x720 10.58 0.13

Fig. 3 shows that some feature points are tracked
until their depths are calculated. The marked
magenta squares indicate fully active feature
points and small blue squares are newly extracted
feature points. New feature points are tracked
along the following few frames (green dots in
Figure 3(b)). Every new feature point is
triangulated (yellow asterisks in Figure 3(b)) once
its 2D coordinate has an adequate displacement
with respect to the frame in which it is detected.

(b)

Figure 3. (a) Fully active features + partially active
features (b) Fully active features along with
tracking path of partially active features until
initialization.

In Figure 4, projection of the estimated camera
trajectories along with the projection of ground
truth trajectories on XY plane for Seq 1 (Figure 4
(a)) and Seq 2 (Figure 4 (b)) are depicted. As it
can be seen, the estimated trajectories are tracked

camera path with high precision.
In Figure 5, the components of translation part of

500

camera pose along with ground-truth data for both
sequences are shown. As it is illustrated in Fig. 5,
in spite of long duration of the input sequences,
camera trajectories are tracked with a high
accuracy. Moreover, the translation errors in x and
y directions for both sequences are negligible, and
only a small error is seen along the z axis.

—ground truth trajectory —-— estimated trajectory‘

50

B
E
> 100 -
150 End Point
200 | | | |
-400 -300 -200 -100 0 100
X(mm)
(a)
—ground truth trajectory —--- estimated trajectory|
100 P
Start Point ‘ ‘ Erid Point '
50
- 0r
E
E
> 50
100 -

Figure 4. Ground truth and estimated camera
trajectories projected on XY plane (a) for Seq 1 and
(b) for Seq 2.

Furthermore, the proposed UKF-based algorithm
is compared against EKF and non-linear
minimization solution of PnP (NLPnP), as given
in (3) using the LM method. For comparison, the
Relative Pose Error (RPE) and Absolute
Trajectory Error (ATE) [31] criterions for both
translation and rotation parts of the camera pose
are used.

Generally, RPE is a measure for the local
accuracy of the algorithm that indicates the
trajectory error between the successive frames,
and ATE specifies the global consistency of the
estimated trajectory.

Table 2 shows the obtained results in terms of
RPE for the two sequences introduced in Table 1.
In Table 2, the reported results for the camera’s
translation part of RPE show that the UKF-based
approach outperforms the EKF and NLPnP
methods. However, the RPE values for camera
rotation in both sequences show that neither of
them has a significant superiority over the others.
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Table 3 reports the performance of the proposed
algorithm as well as the EKF and NLPnP
approaches using the ATE measure. In terms of
the translation part of ATE, one can easily see that
our algorithm produces more promising results.
Also similar to RPE, the obtained results for the
rotation part of ATE are approximately the same
among the UKF, EKF, and NLPnP methods.

[—ground truth --— estimated|

200 400 600 800

L L L I
o 200 400 600 800

V] 200 400 600 800
frame index

(a)

‘ ——ground truth —--- estimated‘

0 200 400 600 800
frame index

(b)
Figure 5. Ground truth versus estimated camera
position (a) for Seq 1 (b) for Seq 2.

In order to investigate the influence of feature
detection method on the performance of camera
tracking routine, we repeated the proposed
algorithm using well-known feature point
detection methods, i.e. FAST, HARRIS [32], and
MINEIGEN [33]. The quantitative results in terms
of the RPE and ATE criterions for different
feature extractors are reported in Table 4 and
Table 5. As presented in these two tables, the
reported results (especially for RPE) for both
sequences are almost the same. As a conclusion,
the type of feature extractor has no significant
impact on the accuracy of the estimated
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trajectories.

Table 2. Comparison of translation and rotation
parts of RPE for different camera pose estimation

methods.
i Seq 1l Seq 2

Trackin
method ’ RPErrans  RPEgo RPE-rans RPErr

(mm) (deg) (mm) (deg)
UKF 17 0.4 21 07
EKF 19 04 ”3 08
NLPnP 29 04 11 05

Table 3. Comparison of translation and rotation
parts of ATE for different camera pose estimation

methods.
i Seql Seq 2

Trackin
method ’ ATErran ATERa ATEvran ATERqt

(mm) _ (deg) (mm) (deg)
UKF 25.7 72 38 8.3
EKF 25.7 7.7 38.4 7.9
NLPnP 195.4 7.4 172.9 7.9

Table 4. Comparison of translation part of RPE and
ATE for different feature extractors.

Feature type Seq 1 Seq 2

RPE (mm) ATE (mm) RPE (mm) ATE (mm)
HARRIS 22 38.9 32 535
MINEIGEN 2.2 35 3 53.2
FAST 2.2 36.2 3 59.3

Table 5. Comparison of rotation part of RPE and
ATE for different feature extractors

Feature type Seq 1 Seq 2

RPE (deg) ATE (deg) RPE (deg) ATE (deg)
HARRIS 0.8 8.3 1.6 7.8
MINEIGEN 0.8 6.8 15 7.9
FAST 0.7 7.8 1.6 8.7

5. Conclusion

In this paper, the problem of camera tracking in
unknown environments was addressed. The
proposed method could be used in any AR or
visual SLAM application. In the reported work, a
feature-based strategy was adopted to locate the
camera. The proposed algorithm initializes a
metric map. Using a metric map, the scale
ambiguity problem for the parameters of the
camera translation and the extended map is
solved. Furthermore, the constructed map is
extended solely based on the initially triangulated
feature points and the knowledge acquired by
tracking of detected feature points. Hence, with
any increase in the number of input video frames,
the cumulative error for the camera pose
parameters will also increase. One strategy to
handle this issue is to employ loop detection
algorithms or to use known markers in the scene.
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A fundamental property of our approach is that
promising results are obtained without utilizing
any optimization method. The intention is to
develop a more accurate map extension strategy to
reduce the accumulation of camera pose error.
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