H.3. Artificial Intelligence
Pouria Rabiei; Nosratali Ashrafi-Payaman
Abstract
Today, the amount of data with graph structure has increased dramatically. Detecting structural anomalies in the graph, such as nodes and edges whose behavior deviates from the expected behavior of the network, is important in real-world applications. Thus, in our research work, we extract the structural ...
Read More
Today, the amount of data with graph structure has increased dramatically. Detecting structural anomalies in the graph, such as nodes and edges whose behavior deviates from the expected behavior of the network, is important in real-world applications. Thus, in our research work, we extract the structural characteristics of the dynamic graph by using graph convolutional neural networks, then by using temporal neural network Like GRU, we extract the short-term temporalcharacteristics of the dynamic graph and by using the attention mechanism integrated with GRU, long-term temporal dependencies are considered. Finally, by using the neural network classifier, the abnormal edge is detected in each timestamp. Conducted experiments on the two datasets, UC Irvine messages and Digg with three baselines, including Goutlier, Netwalk and CMSketch illustrate our model outperform existing methods in a dynamic graph by 10 and 15% onaverage on the UCI and Digg datasets respectively. We also measured the model with AUC and confusion matrix for 1, 5, and 10 percent anomaly injection.
Maryam Khazaei; Nosratali Ashrafi-Payaman
Abstract
Nowadays, whereas the use of social networks and computer networks is increasing, the amount of associated complex data with graph structure and their applications, such as classification, clustering, link prediction, and recommender systems, has risen significantly. Because of security problems and ...
Read More
Nowadays, whereas the use of social networks and computer networks is increasing, the amount of associated complex data with graph structure and their applications, such as classification, clustering, link prediction, and recommender systems, has risen significantly. Because of security problems and societal concerns, anomaly detection is becoming a vital problem in most fields. Applications that use a heterogeneous graph, are confronted with many issues, such as different kinds of neighbors, different feature types, and differences in type and number of links. So, in this research, we employ the HetGNN model with some changes in loss functions and parameters for heterogeneous graph embedding to capture the whole graph features (structure and content) for anomaly detection, then pass it to a VAE to discover anomalous nodes based on reconstruction error. Our experiments on AMiner data set with many base-lines illustrate that our model outperforms state-of-the-arts methods in heterogeneous graphs while considering all types of attributes.