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 Today, the amount of data with graph structure has increased 

dramatically. Detecting structural anomalies in the graph, such as 

nodes and edges whose behavior deviates from the expected behavior 

of the network, is important in real-world applications. Thus, in our 

research work, we extract the structural characteristics of the dynamic 

graph by using graph convolutional neural networks, then by using 

temporal neural network Like GRU, we extract the short-term 

temporal characteristics of the dynamic graph and by using the 

attention mechanism integrated with GRU, long-term temporal 

dependencies are considered. Finally, by using the neural network 

classifier, the abnormal edge is detected in each timestamp. 

Conducted experiments on the two datasets, UC Irvine messages and 

Digg with three baselines, including Goutlier, Netwalk and 

CMSketch illustrate our model outperform existing methods in a 

dynamic graph by 10 and 15% on average on the UCI and Digg 

datasets respectively. We also measured the model with AUC and 

confusion matrix for 1, 5, and 10 percent anomaly injection. 

 

Keywords: 
Anomaly Detection, Machine 

Learning, Dynamic Graph, Graph 

Neural Network, Graph-based 

Anomaly Detection. 

 

*Corresponding author: 

ashrafi@khu.ac.ir (N. Ashrafi-

Payaman). 

1. Introduction 

In many areas, data are intrinsically interdependent 

and affect each other, such as people in social 

networks, the communication of computers in 

computer networks, or the communication of 

protein graphs in cells. Graph-based anomaly 

detection is done at four different levels: node 

level, edge level, subgraph level, and the whole 

graph level. One of the most challenging 

applications is anomaly detection, especially in 

heterogeneous graphs [1]. The concept of anomaly 

indicates rare observations that significantly 

deviate from other observations [1]. Graph neural 

networks achieved remarkable progress in various 

computing fields in recent years. The purpose of 

these networks is to use and generalize deep 

learning models on graph data.  

Dynamic graph is defined in two ways: firstly, 

there is structural dynamics, that is, the structure of 

the graph, including the number of nodes and 

edges, changes, and secondly, the dynamic of 

features, in the sense that the values of network 

features, such as the features of nodes and edges, 

change over time. The terms like time-evolving 

graph, time-varying graph, temporal graph, graph 

stream, and dynamic graph are equivalent and used 

interchangeably. The main research on dynamic 

graphs is anomaly detection [2].  

Research on anomaly detection in dynamic graphs 

using deep learning has started since 2018 [2]. For 

detecting anomalous data in the dynamic graphs, 

we face four major challenges: First, many 

anomaly detection models in dynamic graphs do 

not consider the features vector of nodes [3]. 

Second, many existing methods do not consider 

spatial dependencies and short- and long-term 

temporal dependencies simultaneously in dynamic 

graphs [3]. Third, Anomaly detection in dynamic 

graphs has a high time complexity, and fourth, 

there are a very few anomalous data samples in the 

dataset, so we are facing the problem of unbalanced 

data [4]. 
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Our proposed model is supposed to solve these four 

challenges. The model includes four main parts. 

First, dividing the graph data set into timestamps, 

performing negative sampling in the training 

model, sampling the edges subgraph in a window, 

and determining the features vector for the nodes. 

Second, embedding vectors for all nodes of the 

dynamic graph at any timestamps while 

considering local and global structural features. 

Third, the time dependencies of the dynamic graph 

are considered by temporal models along with the 

attention mechanism. Fourth, with the multilayer 

neural network, the abnormality score of edges 

within the timestamp is calculated by the scoring 

function.  

The rest of the paper is organized as follows: in 

Section 2 related works on detecting edge 

anomalies in dynamic graphs are reviewed. We 

introduce in Section 3 our proposed anomaly 

detection framework. Section 4 is dedicated to 

demonstration of experimental results and analysis. 

Section 5 concludes this paper with a summary and 

suggestions for future research. 
 

2. Related Works  

The existing methods of edges anomaly detection 

on dynamic graphs can be classified into three 

classes such as, non-machine learning, graph 

embedding, and end-to-end deep learning. Goutlier 

[5] utilizes a structural connectivity approach for 

anomaly detection in dynamic graphs. It employs 

reservoir sampling to maintain a summary of the 

graph's core structural properties. This method 

presents the following challenges. The practical 

implementation of this model for large-scale graph 

streams can be computationally expensive, 

especially if the graph is dynamic and constantly 

changing.  

SpotLight [6] leverages random sketching to 

differentiate between normal and anomalous data 

in the sketch space. This approach guarantees a 

significant distance between these data points. This 

method presents the following challenges. Over 

summarizing the graph may lead to the loss of 

important details in its structure, resulting in the 

incorrect detection of some small or local 

anomalies. CM-Sketch [7] is a sketch-based 

method that incorporates both local and historical 

graph data for anomaly detection in edges. This 

method has the following challenges. The 

compression process may remove important details 

from the graph that are essential for accurate 

anomaly detection. StreamSpot [8] is a clustering-

based anomaly detection method for dynamic 

graphs, using a similarity function for 

heterogeneous graphs and a centroid clustering 

approach. However, it struggles with scalability in 

large, complex graphs and may experience 

performance degradation when edge generation 

rates are high. CAD [9] detects anomalous edges 

by analyzing changes in graph structure and edge 

weights. However, it may struggle to identify 

macro anomalies in time-based graphs, as it's 

focused on local anomalies.  

Traditional methods for analyzing graphs often 

struggle to capture the complex, non-linear 

relationships within the data. To address this 

limitation, recent research has explored leveraging 

graph embedding and deep learning techniques. 

Graph embedding is a powerful tool that 

transforms complex graph structures into lower-

dimensional representations. a growing number of 

embedding-based methods are being developed 

specifically to handle dynamic graphs. 

NetWalk [10] uses a random walk with an auto-

encoder to learn embedding vectors and updates 

them incrementally. It then applies dynamic 

clustering for anomaly detection. However, its two-

phase approach can't be trained end-to-end, as the 

embedding and anomaly detection targets are not 

jointly optimized. Therefore, it is important to use 

end-to-end deep learning approaches. TADDY 

[11] uses a transformer with spatial-temporal 

encoding and negative sampling to detect 

anomalies in dynamic graphs. However, it faces 

challenges with high computational costs and 

extensive parameter tuning due to its use of 

attention mechanisms.  AddGraph [12] uses a 

graph convolution network and gated recurrent unit 

to score edges in dynamic graphs, preserving 

temporal features. However, it struggles with noisy 

data, leading to a higher false alarm rate by 

misidentifying noise as anomalies. HVGRAE [13] 

uses a hierarchical model with a variational graph 

autoencoder and recurrent neural network for edge 

reconstruction to detect anomalies. However, its 

hierarchical and stochastic design can lead to slow 

processing and high resource use, especially with 

big data or real-time applications. StrGNN [14] 

uses h-hop subgraphs, node labeling, and a graph 

convolution network with a gated recurrent unit to 

capture spatial-temporal information. However, it 

overlooks short-term time dependencies and node 

features.  

In this paper, we propose a model based on the end-

to-end deep learning approach that has main 

differences compared to the existing approaches 

mentioned above and it solves some of the 

problems mentioned in previous articles, which are 

introduced in the next section. In the following, the 

framework includes the problem statement and the 

proposed model is explained in detail. 
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3. Framework  

In Section 3.1, the definitions of anomaly detection 

in dynamic graphs are provided, then four parts of 

the proposed model are explained in Section 3.2.  

 
3.1. Problem statement   

we represent dynamic graphs as a sequence of 

discrete snapshots captured at specific points in 

time. The formal definition of a dynamic graph is 

provided below:  

A dynamic graph with a timestamp from 1t =  to 

T , can be specified as 
1{ }t T

tG G == , where each 

graph ( , )t t tG V E=  is the timestamp graph at t , tV  

and tE  are the node and edge sets at t , respectively. 

An edge 
, ( , )t t t t

i j i je V V E=   shows that there is a link 

between node t

iV  and 
t

jV  at time t. We use | |t tn V=  

and | |t tm E=  to specify the number of nodes and 

edges at t , respectively. A adjacency matrix 
tA  is 

used to define 
tG , where 

, 1t

i jA =  if there is a 

connection between nodes 
iV and 

jV  at t , 

otherwise 
, 0t

i jA = . Anomalous edge detection in 

dynamic graphs is defined as a probability scoring 

problem. The goal is to learn a function 
,( )t

i jf e  that 

assigns an anomaly score to each edge, with higher 

scores indicating greater abnormality.  

We use a semi-supervised learning approach for 

anomaly detection in dynamic graphs, training 

exclusively on normal edges. Anomalous labels are 

added to the testing dataset, where 1 indicates an 

anomalous edge and 0 represents a normal edge.    
 

3.2. Proposed model 

Our proposed model consists of four steps, 

described in the following sections. The overall 

paradigm of our model is illustrated in Figure 1. 
 

 

Figure 1. The overall four steps of our model. 
 

A visual illustration of our proposed model is 

provided in Figure 2. 

 

3.2.1. Part 1: Graph pre-processing 

All the edges of the training and test set should be 

divided into timestamps. It should be ensured that 

the timestamps length is large enough so that the 

graph structure appears in each timestamp and the 

number of timestamps is reasonable so that the time 

complexity does not increase [15]. To create 

snapshots (timestamp), timestamps contain an 

equal number of edges. 

 

Figure 2. Proposed model for anomaly detection in the dynamic graph.

In this model, the connections (edges) between 

pairs of nodes (users) at any timestamp are defined 

as the weight of edges. The edge connected 

between the pair of nodes has a weight equal to the 



Ashrafi-Payaman & Rabiei / Journal of AI and Data Mining Vol. 12, No. 3, 2024 
 

362 

 

number of messages sent by them. To specify 

labels of the edges at the current timestamp, instead 

of accessing all past edges, the model is limited to 

a fixed window of past interactions. The size of the 

time window (W) is a hyperparameter and 

determines the received field of the model in the 

time axis [16]. With the sliding window 

mechanism, dynamic changes between timestamps 

1t w− +  to t  are preserved. The sliding window 

is used for the purpose that how many of the past 

timestamps are effective in the current timestamp. 

Anomalies often occur in the local subgraphs of the 

graph, which indicates the receiving field of the 

proposed model should be enlarged to a suitable 

local scale [16]. Since in this research, we focus on 

the detection of anomalous edges, the sampling of 

the neighbors of the subgraph is done based on the 

edge. Each edge in the dynamic graph is considered 

as the center of the sampled subgraph. For each 

edge in dynamic graphs, the source and destination 

nodes are specified as target nodes. Other neighbor 

nodes in the sampled subgraph nodes are referred 

to as contextual nodes [17]. We extract the h -hop 

neighbors of the target edges in each timestamp. 

For a dynamic graph as 
1{ ( ) { ( ), ( )}}t

i t wG i V i E i = − +=  

with time window size W, target edge et, the h −hop 

enclosing subgraph, source node X and destination 

node Y, the subgraph associated with the target 

edge of the dynamic graph in a time window is 

shown as 
,

{ ( ) | ( 1) }t t

h

x y
G i t w i t− +   .  

For popular nodes with high degrees, the number 

of H-hop neighbors is accompanied by explosive 

growth. To solve this problem, an upper bound can 

be used to consider the maximum number of nodes 

associated with the target nodes. H-hop neighbors 

sampling ignores the different roles and importance 

of nodes in the subgraph. To solve this problem, a 

feature function is used for nodes to assign a unique 

feature vector to each node. The main weakness of 

H-hop neighbors sampling is the different sizes of 

subgraph adjacency matrices, which can be solved 

using pooling methods.  

It is difficult to find feature vectors for each node 

in the dynamic graph as input for a neural network. 

To solve this problem and distinguish the role of 

each node in each subgraph, a node labeling 

function should well represent the information of 

each node in each subgraph.  We use the labeling 

function introduced in [14]. The label for each node 

in the sampled subgraph will be converted into a 

One-Hot vector as the attribute X for each node. 

The data samples in the training dataset do not 

include the GroundTruth label, so a random 

negative sampling approach is used to train the 

model with negative and positive pseudo-labels for 

positive (normal) and negative (abnormal) edges. 

This approach was used for the first time in the 

Word2Vec [18] method, where a negative edge is 

considered for each positive edge. For each 

timestamp of the graph, whose numbers of edges is 

mt, an equal number of pairs of nodes are randomly 

sampled as candidates for negative pairs. Then, all 

these pairs of nodes are checked to ensure that they 

do not belong to the set of positive edges in all 

timestamps of the training dataset. A new pair is 

resampled and validation is performed for each 

node pair until the node pairs are valid. 

 

3.2.2. Part 2: Extraction of spatial features 

In this research, at first the spatial dependencies of 

the graph are extracted and then the temporal 

dependencies of the dynamic graph are preserved. 

The convolution layer in the graph neural network 

is implemented as follows: 
 

1 1

( 1) ( ) ( ) ( 1)2 2( )K K K K

t t t tH D AD H W H
− −

+ −= + (1) 

where W is the trainable weight matrix, W0 is the 

initial random weight, Â is the symmetric 

normalized adjacency matrix (the graph is assumed 

to be undirected by default), and 0H X=  is the 

feature matrix of the graph nodes. Each row of the 

embedding matrix represents the embedding vector 

for graph nodes. Batch normalization, attention 

mechanism, deletion rate, and skip connections 

(residual connections) are used in the proposed 

graph neural network model. In this research, graph 

convolution is formulated as aggregation and 

update function [19]. The trainable weight 

parameters of the graph convolution neural 

network are shared between the same level of 

GCNs with different timestamps.  

The number of nodes in different subgraphs is 

different, which leads to different sizes of the 

embedding vector in different subgraphs. Training 

anomaly detection in dynamic graphs using neural 

networks is challenging due to the different sizes of 

the input vector. For this purpose, graph pooling 

methods are used to extract features with fixed 

sizes for each subgraph. The Sortpooling [20] layer 

implemented in the proposed model, could sort the 

nodes in each subgraph based on their importance 

and select Kth of the best nodes.  

 

3.2.3. Part 3: Extraction of temporal features 

In the attGRU implemented in the proposed model, 

temporal dependencies are modeled by GRU. GRU 

takes the time features in each timestamp as input 

and passes the output of the current timestamp to 

the next timestamp, which is considered a local 
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time feature [21]. The attention mechanism [22] is 

used to consider global temporal dependencies and 

assign importance scores to the embedding vectors 

of graph nodes in different timestamps, and by 

combining the attention mechanism with GRU, 

short long-term temporal dependencies can be 

maintained. The input of the attention layer is a 

sequence of embedding vectors in consecutive 

timestamps, and the output of the attention layer is 

the weighted sequence of embedding vectors of 

timestamps. A scoring function is used in the 

attention mechanism to score the embedding 

vectors obtained in the previous step based on their 

importance and similarity, and then, the attention 

function is used to calculate the contextual vector 

to model the global temporal changes of the data.  

In combining the attention mechanism with GRU, 

a contextual attention mechanism is used, which 

learns the embedding vector score for an arbitrary 

node. Contextual attention is implemented as 

follows:  
 

( ) ( )( ) ( )( )

1

L
t t

u u u

r

h 
=

= 
(2) 

Where ( )( )t

u  is the hidden embedding vector of 

node u after the ℓth layer of attention in timestamp 

t, and ( )

u  shows the importance score for node u. 

The output of the attention mechanism is a node 

embedding matrix at the graph level, and finally, 

the embedding vector ( )( )t

uh  is aggregated with 

( )( )t

u  and entered into the GRU in the next 

timestamp.     

 

3.2.4. Part 4: Detection of abnormal edges  

In this research, the anomaly scoring function F is 

a probabilistic function that assigns a score or 

probability of anomaly to each edge. The 

timestamps of the test are entered into the proposed 

model immediately after the training data set in a 

time window, and the anomaly score is calculated 

for each edge in each test timestamp. To detect 

abnormal edges in a directed graph, the source and 

destination nodes of the target edge should be 

treated differently, for this purpose, the embedding 

vector of pairs of nodes are joined as [hv
t; hu

t] and 

finally entered into a fully connected neural 

network.  

The anomaly detection function should be 

distinguished between positive and negative edge 

embedding vectors, which use a fully connected 

neural network layer with a sigmoid activation 

function. When the model is well trained, the 

anomaly scores (probability of anomaly) are 

obtained for each edge of the test, and finally, are 

entered into the model's loss function and the label 

of each edge is specified. The anomaly scoring 

function and the entropy loss function of the 

proposed model are respectively implemented as 

follows:  
 

( ) ( )    e s sf e Sigmoid H W b= + 
(3) 

( )( ) ( )( )
1

 - 1  ,    ,  

tm
t

pos neg

i

L log f e i log f e i
=

= − + 
(4) 

Where e is the target edge, He is an embedding 

matrix, Ws is a trainable weight matrix of the neural 

network, bs is a bias, epos and eneg are positive and 

negative edges, reopectively.  Minimizing the loss 

function [23] of the proposed model makes the 

scoring function smaller for f(epos) and larger for 

f(eneg). The loss function along with the 

regularization function is implemented as 

   t

regL L L= + . The parameter λ is weight loss and 

the L2 function is used to avoid over-fitting. The 

overall loss function of the model is the sum of the 

loss functions in timestamps and is implemented as 

1

 
t

tL L= . 

 

4. Experiments  

We evaluate our model's anomaly detection 

capabilities on the UCI and Digg datasets. The data 

is split 80/20 for training and testing, respectively. 

To assess performance, ground truth labels are 

introduced into the test set. These labels are binary 

(1: anomalous edge, 0: normal edge), and added as 

a new column. Anomaly injection is employed for 

further evaluation. During testing for each 

timestamp (Gt), synthetic anomalies are generated 

by connecting a specific number of non-adjacent 

node pairs. The anomaly ratio (pA) controls the 

number of injected anomalies, representing the 

percentage of anomalous edges relative to the 

original positive edges (mt) at that timestamp. 

Three anomaly ratios (1%, 5%, 10%) are 

introduced to evaluate the model's robustness 

under varying anomaly prevalence. 
 

4.1. Datasets 

The UCI social network dataset is a popular choice 

for evaluating methods in the field of dynamic 

graphs due to its practicality. The UCI represents a 

directed acyclic graph (DAG) of communication 

within an online student community at the 

University of California.  

Each node corresponds to a user (identified by a 

unique user number), and a directed edge indicates 

a message sent from the source user (source node) 

to the recipient user (destination node). The 
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presence of multiple edges between users signifies 

the exchange of multiple messages. Notably, no 

edges are removed from the dataset. In the UCI 

dataset, there are no anomalous data samples. The 

UCI dataset is a dense graph, the ratio of the 

number of nodes to the available edges is a high 

number. The weight of each edge is determined by 

counting the number of edges between a pair of 

vertices. The growth rate of the graph in the UCI 

dataset is incremental and abrupt, and short-term 

time dependencies exist between its generated 

edges. The data set includes a total of 196 days. The 

UCI dataset consists of four columns, source node, 

destination node, edge weight, and Unix 

timestamp.  

The Digg dataset is a graph based on users' 

responses to the news-social website Digg. Each 

node in the graph represents a user and each 

directed edge represents a user's response to 

another user. The original name of the dataset is 

munmun_digg_reply and its graph has a loop. The 

graph of the data set is unweighted multi-directed, 

each edge is labeled with a Timestamp. The total 

time of the dataset is 15 days. Digg behaves 

uniformly and in the Digg dataset, time 

dependencies are also short-term.  

Table 1 indicates the statistical attributes of a 

datasets that has been used in this paper.  
 

Table 1. Details of the datasets.  

Dataset 

value 

UCI 

 

Digg 

 

# of nodes 1899 30398 

# of edges 59835 87627 

# of unique edges 20296 86404 

Maximum degree 1546 310 

 

4.2. Model Assessment Criteria and 

Configuration metric and settings  

We present the evaluation metrics used to compare 

our model's performance against baseline models.  

AUC: AUC, or Area Under the Curve, is a metric 

used to evaluate the performance of classification 

models. It considers both the True Positive Rate 

(TPR) and False Positive Rate (FPR) and 

summarizes their relationship in a single value. A 

higher AUC score (closer to 1) generally indicates 

a more accurate model.  

Confusion Matrix: The confusion matrix measures 

the efficiency of classification problems where the 

output can be two or more classes. This matrix is a 

combination of predicted and actual values. The 

confusion matrix is often used to describe the 

performance of a classifier on a test set whose 

ground truth values are known. Two types of error, 

including False Negative error (YReal = 1, but  

Ypredict = 0) and False Positive error (Yreal = 0, but 

Ypredict = 1) are represented by a confusion matrix. 

Note that one means abnormality and zero means 

normal.  
 

4.3. Baselines 

We assessed our model's performance by 

benchmarking its accuracy against baseline 

models. 

GOutlier: It is the first paper published on the topic 

of anomalous edge detection in dynamic graphs by 

statistical and probabilistic models. It uses the 

structural connections approach to discover 

outliers or anomalous edges in a stream of edges. It 

uses the graph partitioning method to manage the 

volume and high speed of input edges to the model 

[5]. 

CM-Sketch: This model is proposed for detecting 

outlier data (abnormal edge) in a stream of edges 

by statistical and probabilistic models. This model 

uses the global and local structural dependencies of 

the stream graph to detect outliers. Sketch-based 

approximation methods and Count-Min sketch data 

structures have been used to detect anomalous 

edges in dynamic graphs [7]. 

NetWalk: This is the first paper that used deep 

learning approaches combined with graph 

embedding methods to detect anomalous edges in 

dynamic graphs. This model uses an encoder based 

on a random walk to generate the embedding 

vectors of the dynamic graph nodes and then 

models the dynamic graph by dynamic update 

reservoirs. Finally, an anomaly function based on 

dynamic clustering is used to score the anomalous 

edges [10].  

The proposed model is implemented on a server 

with RTX 6000-16GB graphics processor, Intel- 

Xeon-4214R processor (2.50 GHz), and 32 GB 

RAM. We use PyCharm version 2024, Python 

version 3.7, and packages such as Numpy, Pandas, 

ScikitLearn, MatPlotLib, PyG, Pytorch, and 

Pytorch Geometric Temporal.  

The parameters of the proposed model can be 

optimized by 5-fold cross-validation. By default, 

for neighbor sampling, we limit the search to 1- hop 

neighbors (immediate neighbors) within a time 

window of size 4. Both the embedding vectors and 

feature vectors are set to a dimensionality of 32. 

The graph neural network model utilizes two 

layers, with the outputs from each layer 

concatenated to form the final embedding vectors. 

The proposed model is trained by the Adam 

optimizer with a learning rate of 0.001 for 100 

epochs in   32   batches. Batch normalization and a 

drop rate of 0.3 are used.  
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The GRU hidden vector size is set to 256. To create 

snapshots, each 1000 edges in the UCI dataset is 

divided into one timestamp. The parameters of the 

proposed model are updated with the 

backpropagation algorithm. The LeakyRelu 

activation function is used for all layers except the 

output layer of GCN. The aggregation function of 

GCN is implemented with attention and the update 

function is a multilayer perceptron.  

The sort-polling rate is set to 0.6. The normal 

distribution has been used for the initial weights of 

the graph neural network and multilayer neural 

network.  
 

4.4. Results and Discussion  

Results are discussed and the outputs of model will 

be compared with baseline models. The results of 

model on the dataset compare with the Goutlier, 

CM-Sketch, and NetWalk in three cases of 1%, 

5%, and 10% anomaly rate, and we use the 80% of 

datasets for train, and 20% of its for test.  

As can be seen from the results (Figure 2 and 

Figure 3) for the UCI and Digg datasets, the model 

outperforms all baselines with different anomaly 

ratios. Compared to the best results for the UCI, the 

proposed model has performed 10% better on 

average.  

For tes, the number of edges is equal to 4060, and 

no edge is removed. The number of timestamps is 

equal to 4 snapshots. The number of anomaly edges 

in the UCI test set is 40 (4020 normal edges), 203 

(3857 normal edges), and 406 (3654 normal edges) 

in proportions of one percent, five percent, and ten 

percent, respectively.  

Compared to the best results for the Digg, the 

proposed model has performed more than 10% 

better on average. For test, the number of edges is 

equal to 15675, and no edge is removed. The 

number of timestamps is equal to 3 snapshots.  

The parameters and factors that have been changed 

and tested to reach the best accuracy and parameter 

value are: edge weight, node feature vector, 

number of time stamps, learning rate, the number 

of epochs, initial distribution of neural network 

weight, types of Graph neural networks, Attention 

mechanism model, polling methods, pooling rate, 

number of models layers, aggregation function and 

activity function.  

Table 2 shows the comparison of AUC in the UCI 

and Digg datasets in three 1%, 5%, and 10% 

anomaly states.  

Table 3 shows an average of all the real and 

predicted values of the test set confusion matrices 

with a 1% anomaly ratio for UCI and Digg datasets. 

 

Figure 2. Evaluating AUC values for the proposed model 

in three cases on the UCI dataset. 

 

 
Figure 3. Evaluating AUC values for the proposed model 

in three cases on the Digg dataset. 

  

Table 2. Comparing AUC values in baseline models.  

Criterion AUC (UCI) AUC (Digg) 

Method 1% 5% 10% 1% 5% 10% 

Goutlier 0.71 0.70 0.67 0.69 0.67 0.63 

Sketch 0.72 0.70 0.67 0.68 0.65 0.61 

NetWalk 0.77 0.76 0.68 0.75 0.71 0.68 

Our model 0.83 0.85 0.72 0.88 0.89 0.89 

 

Table 3. Confusion matrices with a 1% anomaly.  

Criterion 

Dataset 

TP 

 

FP 

 

TN 

 

FN 

 

UCI 35 20 4000 5 

Digg 154 107 17001 19 

 

In Table 3, TP, FP, TN, and FN are abbreviations 

of True Positive, False Positive, True Negative, and 

False Negative, respectively. 

According to Table 3, in the UCI dataset, 20 edges 

with the norm label have been wrongly recognized 

as anomalous data samples. Out of 4020 available 

normal edges, 20 edges are wrongly detected as 

abnormal samples, in some applications, the 

number of false positives can lead to unnecessary 

warnings or actions that may have negative 

consequences. In the proposed model, only 0.5% of 

the total edges of the norm are wrongly identified 

as abnormal. Also, in the dataset, 5 edges with 

anomaly labels out of 40 anomalous edges are 
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wrongly identified as norm data class (false 

negative). In the proposed model, 12.5% of all 

abnormal edges are mistakenly recognized as 

normal. For UCI dataset, precision is 63%, Recall 

is 87%, and, F1-score is 73%.  

Now let's see why our model is better. The training 

set is divided into timestamps in such a way that 

the number of timestamps is reasonable so that the 

time complexity does not increase and the 

timestamp length is large enough so that the graph 

structure appears in each time stamp. The proposed 

model learns the spatio-temporal dependencies of 

the dynamic graph without removing any 

information and by learning the embedding vectors 

simultaneously and end-to-end along with the 

feature vector of the nodes and preserves the local 

structural and global temporal dynamics. By 

considering a time window, the local temporal 

dynamics are learned in the dynamic graph. To 

predict the edge the next time, instead of accessing 

all the past edges, the model is limited to a fixed 

window w of past interactions, which reduces the 

time and memory computational complexity.  

Because the proposed model is trained with an 

efficient negative sampling strategy, the robustness 

of the model is guaranteed under different anomaly 

ratios. The proposed model has a high true positive 

rate while keeping the false positive rate relatively 

low. Each node receives the most influence from 

its first-hop neighbors, and sampling the first-hop 

neighbors on each timestamps reduces the time and 

memory complexity of the model, and the training 

of the model is done more optimally than when the 

entire graph is entered into the model. 

Due to the use of synthetic feature vectors for 

dynamic graph nodes, attributed graphs are 

supported in this model. By creating the initial 

feature vector for the graph nodes, using the node 

labeling function, the role of each node in the target 

edge is determined and richer vectors are obtained. 

In anomaly detection, the data samples of the 

normal and anomalous classes are unbalanced, and 

the challenge of the unbalanced class has been well 

overcome by the proposed method. It has been tried 

to make a trade-off between speed (running time of 

anomaly detection algorithm) and accuracy of the 

model. In the graph convolutional network used in 

the proposed model, skip connections have been 

used along with normalization with attention 

aggregation function to obtain richer features.  

Due to the use of a global-contextual attention 

mechanism along with GRU, the accuracy of the 

proposed model has increased significantly 

compared to other previous research, because the 

attention mechanism scores the embedding vectors 

output from the graph neural network based on 

their similarity.  

By using graph pooling and parameter sharing, 

model tuning is effectively performed, which 

focuses on model efficiency instead of focusing on 

the embedding vectors of nodes. Therefore, for 

graphs with unseen nodes, the model shows high 

performance. In this case, a more effective node 

representation can be learned and is not sensitive to 

the addition and deletion of nodes. The loss 

function of the proposed model is implemented 

with the regularization function to avoid overfitting 

and the direction of the dynamic graph is 

considered in this model. 

 

5. Conclusion 

A critical challenge in graph data analysis lies in 

effectively representing dynamic graphs. This 

representation should capture both the structural 

properties and the temporal evolution of the graph 

to the greatest extent possible.  

In this research, an efficient graph convolution 

neural network with Attention-GRU was 

introduced to detect anomaly edges in dynamic 

graphs. In this research, by using negative 

sampling, 1-hop sampling neighbors of the target 

edge, multi-layer graph convolutional neural 

network with residual layer, and Attention-GRU, 

we achieved a higher accuracy than previous one. 

On average, on the UC Irvine messages dataset, 

with the AUC and confusion matrix evaluation 

metrics, the proposed model outperforms baseline 

methods in directed dynamic graphs by 10 percent 

on average. The proposed model has been 

evaluated on another dataset (Digg) and compared 

to previous research, higher accuracy has been 

obtained.  

The following suggestions  are proposed for future 

works: Generalizing abnormal edge detection in 

dynamic graphs to abnormal trend and event 

detection in dynamic graphs, using meta-heuristic 

methods to optimize objective function parameters, 

combining statistical and probabilistic learning 

models with graph neural networks to model 

uncertainty with the help of hidden random 

variables, using GAN with self-supervised learning 

for anomaly detection in continuous time dynamic 

graph.  

 

References 
[1] M. Khazaei, and N. Ashrafi-Payaman. "An 

Unsupervised Anomaly Detection Model for Weighted 

Heterogeneous Graph", Journal of AI and Data Mining, 

vlo. 11, no. 2, pp. 237-245, 2023.  



Anomaly detection in dynamic graphs using machine learning algorithms 
 

367 

 

[2] V. Chandola, A. Banerjee, and V. Kumar. "Anomaly 

detection: A survey", ACM computing surveys (CSUR), 

vol. 41, no. 3, pp. 1-58, 2009. 
 

[3] V. Yepmo, G. Smits, and O. Pivert. "Anomaly 

explanation: A review", Data & Knowledge 

Engineering, vol. 137, p. 101946, 2022. 
 

[4] A. Sgueglia, A. Di Sorbo, C. Aaron Visaggio, and G. 

Canfora", A systematic literature review of IoT time 

series anomaly detection solutions." Future Generation 

Computer Systems, vol. 134, pp. 170-186, 2022. 
 

[5] C. Aggarwal, Y. Zhao, and S. Yu Philip. "Outlier 

detection in graph streams", In 2011 IEEE 27th 

international conference on data engineering, 2011, pp. 

399-409. 
 

[6] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra. 

"Spotlight: Detecting anomalies in streaming graphs", In 

Proceedings of the 24th ACM SIGKDD International 

Conference on Knowledge Discovery & Data Mining, 

2018, pp. 1378-1386. 
 

[7] S. Ranshous, S. Harenberg, K. Sharma, and N. F. 

Samatova. "A scalable approach for outlier detection in 

edge streams using sketch-based approximations", In 

Proceedings of the 2016 SIAM international conference 

on data mining, Society for Industrial and Applied 

Mathematics, 2016, pp. 189-197. 
 

[8] E. Manzoor, M. Sadegh Milajerdi, and L. Akoglu. 

"Fast memory-efficient anomaly detection in streaming 

heterogeneous graphs", In Proceedings of the 22nd 

ACM SIGKDD international conference on knowledge 

discovery and data mining, 2016, pp. 1035-1044. 
 

[9] K. Sricharan, and K. Das. "Localizing anomalous 

changes in time-evolving graphs", In Proceedings of the 

2014 ACM SIGMOD international conference on 

Management of data, 2014, pp. 1347-1358. 
 

[10] W. Yu, W. Cheng, C. Aggarwal, K. Zhang, H. 

Chen, and W. Wang. "Netwalk: A flexible deep 

embedding approach for anomaly detection in dynamic 

networks", In Proceedings of the 24th ACM SIGKDD 

international conference on knowledge discovery & 

data mining, 2018, pp. 2672-2681. 
 

[11] Y. Liu, S. Pan, Y. Guang Wang, F. Xiong, L.Wang, 

Q. Chen, and V. Lee. "Anomaly detection in dynamic 

graphs via transformer", IEEE Transactions on 

Knowledge and Data Engineering, vol. 35, no. 12, pp. 

12081-12094, 2021. 
 

[12] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao. "AddGraph: 

Anomaly Detection in Dynamic Graph Using Attention-

based Temporal GCN", In IJCAI, vol. 3, p. 7, 2019. 
 

[13] C. Yang, L. Zhou, H. Wen, Z. Zhou, and Y. Wu. 

"H-VGRAE: A hierarchical stochastic spatial-temporal 

embedding method for robust anomaly detection in 

dynamic networks", arXiv preprint,  arXiv:2007.06903, 

2020. 
 
 
 

[14] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. 

Chen. "Structural temporal graph neural networks for 

anomaly detection in dynamic graphs", In Proceedings 

of the 30th ACM international conference on 

Information & Knowledge Management, 2021, pp. 

3747-3756. 
 

[15] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, 

L. Wang, C. Li, and M. Sun. "Graph neural networks: A 

review of methods and applications", AI open Journal, 

vol. 1, pp. 57-81, 2020. 
 

[16] B. Jiandong, J. Zhu, Y. Song, L. Zhao, Z. Hou, R. 

Du, and H. Li. "A3t-gcn: Attention temporal graph 

convolutional network for traffic forecasting",  ISPRS 

International Journal of Geo-Information, vol. 10, no. 

7, p. 485, 2021. 
 

[17] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. 

Lepri, P. Lio, F. Scarselli, and A. Passerini. "Graph 

Neural Networks for temporal graphs: State of the art, 

open challenges, and opportunities", arXiv preprint, 

arXiv:2302.01018, 2023. 
 

[18] Z. Yang, G. Zhang, J. Wu, J. Yang, Q. Sheng, S. 

Xue, C. Zhou et al. "A Comprehensive Survey of Graph-

level Learning", arXiv preprint,  arXiv: 2301.05860, 

2023. 
  

[19] J. Skarding, B. Gabrys, and K. Musial. 

"Foundations and modeling of dynamic networks using 

dynamic graph neural networks: A survey", IEEE 

Access, vol. 9, no. 3, pp. 79143 - 79168, 2021. 
 

[20] C. Li, Y. Liu, and L. Zou. "DynGCN: A dynamic 

graph convolutional network based on spatial-temporal 

modeling", In Web Information Systems Engineering–

WISE 2020: 21st International Conference, Amsterdam, 

The Netherlands, October 20–24, 2020, Proceedings, 

Part I 21, 2020, pp. 83-95. 

 

[21] W. Hamilton, Z. Ying, and J. Leskovec. "Inductive 

representation learning on large graphs", Advances in 

neural information processing systems, vol 30, 2017. 
 

[22] A. Deng, and B. Hooi. "Graph neural network-

based anomaly detection in multivariate time series", In 

Proceedings of the AAAI conference on artificial 

intelligence, vol. 35, no. 5, pp. 4027-4035, 2021.  

[23] R. Morshedi, S. M. Matinkhah, and M. T. Sadeghi, 

"Intrusion Detection for IoT Network  Security with 

Deep learning", Journal of AI and Data Mining, vol. 12, 

no. 1, pp. 37-55, 2024. 

 



 .1403سال  ،دوره دوازدهم، شماره سوم ،کاویمجله هوش مصنوعی و داده                                                                                       اشرفی پیامن و ربیعی

 

 های یادگیری ماشینتشخیص ناهنجاری در گراف پویا با استفاده از الگوریتم

 

  *نصرتعلی اشرفی پیامن و پوریا ربیعی
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 چکیده:

که رفتار  یهایها و یالهای با ساختار گرافی با سرعت زیادی در حال افزایش است. تشخیص ساختارهای ناهنجار در گراف مثل گرهتولید داده نرخامروزه 

های ساختاری گراف پویا ویژگیابتدا  ،باشد. در این کار تحقیقیت زیادی میآنها با رفتار مورد انتظار شبکه انحراف دارد در کاربردهای واقعی دارای اهمیّ

شوند پویا استخراج می های زمانی کوتاه مدت گرافگیژ، ویGRUهای عصبی پیچشی استخراج شده و سپس توسط شبکه عصبی زمانی مثل شبکه توسط

در نهایت با استفاده از یک شوند. های زمانی طولانی مدت در نظر گرفته می، وابستگیGRUو در ادامه با استفاده از مکانیسم توجه تجمیع شده با 

 UC Irvineجموعه داده ــم شود. نتایج تجربی روی دوبندی کننده مبتنی بر شبکه عصبی، یال ناهنجار در هر مهر زمانی تشخیص داده میطبقه

messages  وDigg  و در مقایسه با سه روش مرجعGoutlier ،Netwalk  وCMSketch دقت دهد که روش پیشنهادی در این مقاله دارای نشان می

باشد. می 15و % 10ترتیب %به  Diggو  UC Irvine messagesدو مجموعه داده   برای دقت بهبودو میزان  بودههای ناهنجار بهتری در تشخیص یال

  .شده استارزیابی درصد  10و  5، 1و ماتریس درهمی برای ترزیق ناهنجاری به میزان  AUCهمچنین مدل پیشنهادی با معیارهای در این پژوهش 
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