
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 12, No. 3, 2024, 359-367.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

Original paper

Anomaly Detection in Dynamic Graph Using Machine Learning

Algorithms

Pouria Rabiei and Nosratali Ashrafi-Payaman*

Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

Article Info Abstract

Article History:
Received 11 June 2024
Revised 06 November 2024

Accepted 11 November 2024

DOI:10.22044/jadm.2024.14476.2551

 Today, the amount of data with graph structure has increased

dramatically. Detecting structural anomalies in the graph, such as

nodes and edges whose behavior deviates from the expected behavior

of the network, is important in real-world applications. Thus, in our

research work, we extract the structural characteristics of the dynamic

graph by using graph convolutional neural networks, then by using

temporal neural network Like GRU, we extract the short-term

temporal characteristics of the dynamic graph and by using the

attention mechanism integrated with GRU, long-term temporal

dependencies are considered. Finally, by using the neural network

classifier, the abnormal edge is detected in each timestamp.

Conducted experiments on the two datasets, UC Irvine messages and

Digg with three baselines, including Goutlier, Netwalk and

CMSketch illustrate our model outperform existing methods in a

dynamic graph by 10 and 15% on average on the UCI and Digg

datasets respectively. We also measured the model with AUC and

confusion matrix for 1, 5, and 10 percent anomaly injection.

Keywords:
Anomaly Detection, Machine

Learning, Dynamic Graph, Graph

Neural Network, Graph-based

Anomaly Detection.

*Corresponding author:

ashrafi@khu.ac.ir (N. Ashrafi-

Payaman).

1. Introduction

In many areas, data are intrinsically interdependent

and affect each other, such as people in social

networks, the communication of computers in

computer networks, or the communication of

protein graphs in cells. Graph-based anomaly

detection is done at four different levels: node

level, edge level, subgraph level, and the whole

graph level. One of the most challenging

applications is anomaly detection, especially in

heterogeneous graphs [1]. The concept of anomaly

indicates rare observations that significantly

deviate from other observations [1]. Graph neural

networks achieved remarkable progress in various

computing fields in recent years. The purpose of

these networks is to use and generalize deep

learning models on graph data.

Dynamic graph is defined in two ways: firstly,

there is structural dynamics, that is, the structure of

the graph, including the number of nodes and

edges, changes, and secondly, the dynamic of

features, in the sense that the values of network

features, such as the features of nodes and edges,

change over time. The terms like time-evolving

graph, time-varying graph, temporal graph, graph

stream, and dynamic graph are equivalent and used

interchangeably. The main research on dynamic

graphs is anomaly detection [2].

Research on anomaly detection in dynamic graphs

using deep learning has started since 2018 [2]. For

detecting anomalous data in the dynamic graphs,

we face four major challenges: First, many

anomaly detection models in dynamic graphs do

not consider the features vector of nodes [3].

Second, many existing methods do not consider

spatial dependencies and short- and long-term

temporal dependencies simultaneously in dynamic

graphs [3]. Third, Anomaly detection in dynamic

graphs has a high time complexity, and fourth,

there are a very few anomalous data samples in the

dataset, so we are facing the problem of unbalanced

data [4].

Ashrafi-Payaman & Rabiei / Journal of AI and Data Mining Vol. 12, No. 3, 2024

360

Our proposed model is supposed to solve these four

challenges. The model includes four main parts.

First, dividing the graph data set into timestamps,

performing negative sampling in the training

model, sampling the edges subgraph in a window,

and determining the features vector for the nodes.

Second, embedding vectors for all nodes of the

dynamic graph at any timestamps while

considering local and global structural features.

Third, the time dependencies of the dynamic graph

are considered by temporal models along with the

attention mechanism. Fourth, with the multilayer

neural network, the abnormality score of edges

within the timestamp is calculated by the scoring

function.

The rest of the paper is organized as follows: in

Section 2 related works on detecting edge

anomalies in dynamic graphs are reviewed. We

introduce in Section 3 our proposed anomaly

detection framework. Section 4 is dedicated to

demonstration of experimental results and analysis.

Section 5 concludes this paper with a summary and

suggestions for future research.

2. Related Works

The existing methods of edges anomaly detection

on dynamic graphs can be classified into three

classes such as, non-machine learning, graph

embedding, and end-to-end deep learning. Goutlier

[5] utilizes a structural connectivity approach for

anomaly detection in dynamic graphs. It employs

reservoir sampling to maintain a summary of the

graph's core structural properties. This method

presents the following challenges. The practical

implementation of this model for large-scale graph

streams can be computationally expensive,

especially if the graph is dynamic and constantly

changing.

SpotLight [6] leverages random sketching to

differentiate between normal and anomalous data

in the sketch space. This approach guarantees a

significant distance between these data points. This

method presents the following challenges. Over

summarizing the graph may lead to the loss of

important details in its structure, resulting in the

incorrect detection of some small or local

anomalies. CM-Sketch [7] is a sketch-based

method that incorporates both local and historical

graph data for anomaly detection in edges. This

method has the following challenges. The

compression process may remove important details

from the graph that are essential for accurate

anomaly detection. StreamSpot [8] is a clustering-

based anomaly detection method for dynamic

graphs, using a similarity function for

heterogeneous graphs and a centroid clustering

approach. However, it struggles with scalability in

large, complex graphs and may experience

performance degradation when edge generation

rates are high. CAD [9] detects anomalous edges

by analyzing changes in graph structure and edge

weights. However, it may struggle to identify

macro anomalies in time-based graphs, as it's

focused on local anomalies.

Traditional methods for analyzing graphs often

struggle to capture the complex, non-linear

relationships within the data. To address this

limitation, recent research has explored leveraging

graph embedding and deep learning techniques.

Graph embedding is a powerful tool that

transforms complex graph structures into lower-

dimensional representations. a growing number of

embedding-based methods are being developed

specifically to handle dynamic graphs.

NetWalk [10] uses a random walk with an auto-

encoder to learn embedding vectors and updates

them incrementally. It then applies dynamic

clustering for anomaly detection. However, its two-

phase approach can't be trained end-to-end, as the

embedding and anomaly detection targets are not

jointly optimized. Therefore, it is important to use

end-to-end deep learning approaches. TADDY

[11] uses a transformer with spatial-temporal

encoding and negative sampling to detect

anomalies in dynamic graphs. However, it faces

challenges with high computational costs and

extensive parameter tuning due to its use of

attention mechanisms. AddGraph [12] uses a

graph convolution network and gated recurrent unit

to score edges in dynamic graphs, preserving

temporal features. However, it struggles with noisy

data, leading to a higher false alarm rate by

misidentifying noise as anomalies. HVGRAE [13]

uses a hierarchical model with a variational graph

autoencoder and recurrent neural network for edge

reconstruction to detect anomalies. However, its

hierarchical and stochastic design can lead to slow

processing and high resource use, especially with

big data or real-time applications. StrGNN [14]

uses h-hop subgraphs, node labeling, and a graph

convolution network with a gated recurrent unit to

capture spatial-temporal information. However, it

overlooks short-term time dependencies and node

features.

In this paper, we propose a model based on the end-

to-end deep learning approach that has main

differences compared to the existing approaches

mentioned above and it solves some of the

problems mentioned in previous articles, which are

introduced in the next section. In the following, the

framework includes the problem statement and the

proposed model is explained in detail.

Anomaly detection in dynamic graphs using machine learning algorithms

361

3. Framework

In Section 3.1, the definitions of anomaly detection

in dynamic graphs are provided, then four parts of

the proposed model are explained in Section 3.2.

3.1. Problem statement

we represent dynamic graphs as a sequence of

discrete snapshots captured at specific points in

time. The formal definition of a dynamic graph is

provided below:

A dynamic graph with a timestamp from 1t = to

T , can be specified as
1{ }t T

tG G == , where each

graph (,)t t tG V E= is the timestamp graph at t , tV

and tE are the node and edge sets at t , respectively.

An edge
, (,)t t t t

i j i je V V E= shows that there is a link

between node t

iV and
t

jV at time t. We use | |t tn V=

and | |t tm E= to specify the number of nodes and

edges at t , respectively. A adjacency matrix
tA is

used to define
tG , where

, 1t

i jA = if there is a

connection between nodes
iV and

jV at t ,

otherwise
, 0t

i jA = . Anomalous edge detection in

dynamic graphs is defined as a probability scoring

problem. The goal is to learn a function
,()t

i jf e that

assigns an anomaly score to each edge, with higher

scores indicating greater abnormality.

We use a semi-supervised learning approach for

anomaly detection in dynamic graphs, training

exclusively on normal edges. Anomalous labels are

added to the testing dataset, where 1 indicates an

anomalous edge and 0 represents a normal edge.

3.2. Proposed model

Our proposed model consists of four steps,

described in the following sections. The overall

paradigm of our model is illustrated in Figure 1.

Figure 1. The overall four steps of our model.

A visual illustration of our proposed model is

provided in Figure 2.

3.2.1. Part 1: Graph pre-processing

All the edges of the training and test set should be

divided into timestamps. It should be ensured that

the timestamps length is large enough so that the

graph structure appears in each timestamp and the

number of timestamps is reasonable so that the time

complexity does not increase [15]. To create

snapshots (timestamp), timestamps contain an

equal number of edges.

Figure 2. Proposed model for anomaly detection in the dynamic graph.

In this model, the connections (edges) between

pairs of nodes (users) at any timestamp are defined

as the weight of edges. The edge connected

between the pair of nodes has a weight equal to the

Ashrafi-Payaman & Rabiei / Journal of AI and Data Mining Vol. 12, No. 3, 2024

362

number of messages sent by them. To specify

labels of the edges at the current timestamp, instead

of accessing all past edges, the model is limited to

a fixed window of past interactions. The size of the

time window (W) is a hyperparameter and

determines the received field of the model in the

time axis [16]. With the sliding window

mechanism, dynamic changes between timestamps

1t w− + to t are preserved. The sliding window

is used for the purpose that how many of the past

timestamps are effective in the current timestamp.

Anomalies often occur in the local subgraphs of the

graph, which indicates the receiving field of the

proposed model should be enlarged to a suitable

local scale [16]. Since in this research, we focus on

the detection of anomalous edges, the sampling of

the neighbors of the subgraph is done based on the

edge. Each edge in the dynamic graph is considered

as the center of the sampled subgraph. For each

edge in dynamic graphs, the source and destination

nodes are specified as target nodes. Other neighbor

nodes in the sampled subgraph nodes are referred

to as contextual nodes [17]. We extract the h -hop

neighbors of the target edges in each timestamp.

For a dynamic graph as
1{ () { (), ()}}t

i t wG i V i E i = − +=

with time window size W, target edge et, the h −hop

enclosing subgraph, source node X and destination

node Y, the subgraph associated with the target

edge of the dynamic graph in a time window is

shown as
,

{ () | (1) }t t

h

x y
G i t w i t− + .

For popular nodes with high degrees, the number

of H-hop neighbors is accompanied by explosive

growth. To solve this problem, an upper bound can

be used to consider the maximum number of nodes

associated with the target nodes. H-hop neighbors

sampling ignores the different roles and importance

of nodes in the subgraph. To solve this problem, a

feature function is used for nodes to assign a unique

feature vector to each node. The main weakness of

H-hop neighbors sampling is the different sizes of

subgraph adjacency matrices, which can be solved

using pooling methods.

It is difficult to find feature vectors for each node

in the dynamic graph as input for a neural network.

To solve this problem and distinguish the role of

each node in each subgraph, a node labeling

function should well represent the information of

each node in each subgraph. We use the labeling

function introduced in [14]. The label for each node

in the sampled subgraph will be converted into a

One-Hot vector as the attribute X for each node.

The data samples in the training dataset do not

include the GroundTruth label, so a random

negative sampling approach is used to train the

model with negative and positive pseudo-labels for

positive (normal) and negative (abnormal) edges.

This approach was used for the first time in the

Word2Vec [18] method, where a negative edge is

considered for each positive edge. For each

timestamp of the graph, whose numbers of edges is

mt, an equal number of pairs of nodes are randomly

sampled as candidates for negative pairs. Then, all

these pairs of nodes are checked to ensure that they

do not belong to the set of positive edges in all

timestamps of the training dataset. A new pair is

resampled and validation is performed for each

node pair until the node pairs are valid.

3.2.2. Part 2: Extraction of spatial features

In this research, at first the spatial dependencies of

the graph are extracted and then the temporal

dependencies of the dynamic graph are preserved.

The convolution layer in the graph neural network

is implemented as follows:

1 1

(1) () () (1)2 2()K K K K

t t t tH D AD H W H
− −

+ −= + (1)

where W is the trainable weight matrix, W0 is the

initial random weight, Â is the symmetric

normalized adjacency matrix (the graph is assumed

to be undirected by default), and 0H X= is the

feature matrix of the graph nodes. Each row of the

embedding matrix represents the embedding vector

for graph nodes. Batch normalization, attention

mechanism, deletion rate, and skip connections

(residual connections) are used in the proposed

graph neural network model. In this research, graph

convolution is formulated as aggregation and

update function [19]. The trainable weight

parameters of the graph convolution neural

network are shared between the same level of

GCNs with different timestamps.

The number of nodes in different subgraphs is

different, which leads to different sizes of the

embedding vector in different subgraphs. Training

anomaly detection in dynamic graphs using neural

networks is challenging due to the different sizes of

the input vector. For this purpose, graph pooling

methods are used to extract features with fixed

sizes for each subgraph. The Sortpooling [20] layer

implemented in the proposed model, could sort the

nodes in each subgraph based on their importance

and select Kth of the best nodes.

3.2.3. Part 3: Extraction of temporal features

In the attGRU implemented in the proposed model,

temporal dependencies are modeled by GRU. GRU

takes the time features in each timestamp as input

and passes the output of the current timestamp to

the next timestamp, which is considered a local

Anomaly detection in dynamic graphs using machine learning algorithms

363

time feature [21]. The attention mechanism [22] is

used to consider global temporal dependencies and

assign importance scores to the embedding vectors

of graph nodes in different timestamps, and by

combining the attention mechanism with GRU,

short long-term temporal dependencies can be

maintained. The input of the attention layer is a

sequence of embedding vectors in consecutive

timestamps, and the output of the attention layer is

the weighted sequence of embedding vectors of

timestamps. A scoring function is used in the

attention mechanism to score the embedding

vectors obtained in the previous step based on their

importance and similarity, and then, the attention

function is used to calculate the contextual vector

to model the global temporal changes of the data.

In combining the attention mechanism with GRU,

a contextual attention mechanism is used, which

learns the embedding vector score for an arbitrary

node. Contextual attention is implemented as

follows:

() ()() ()()

1

L
t t

u u u

r

h
=

=
(2)

Where ()()t

u is the hidden embedding vector of

node u after the ℓth layer of attention in timestamp

t, and ()

u shows the importance score for node u.

The output of the attention mechanism is a node

embedding matrix at the graph level, and finally,

the embedding vector ()()t

uh is aggregated with

()()t

u and entered into the GRU in the next

timestamp.

3.2.4. Part 4: Detection of abnormal edges

In this research, the anomaly scoring function F is

a probabilistic function that assigns a score or

probability of anomaly to each edge. The

timestamps of the test are entered into the proposed

model immediately after the training data set in a

time window, and the anomaly score is calculated

for each edge in each test timestamp. To detect

abnormal edges in a directed graph, the source and

destination nodes of the target edge should be

treated differently, for this purpose, the embedding

vector of pairs of nodes are joined as [hv
t; hu

t] and

finally entered into a fully connected neural

network.

The anomaly detection function should be

distinguished between positive and negative edge

embedding vectors, which use a fully connected

neural network layer with a sigmoid activation

function. When the model is well trained, the

anomaly scores (probability of anomaly) are

obtained for each edge of the test, and finally, are

entered into the model's loss function and the label

of each edge is specified. The anomaly scoring

function and the entropy loss function of the

proposed model are respectively implemented as

follows:

() () e s sf e Sigmoid H W b= +
(3)

()() ()()
1

 - 1 , ,

tm
t

pos neg

i

L log f e i log f e i
=

= − +
(4)

Where e is the target edge, He is an embedding

matrix, Ws is a trainable weight matrix of the neural

network, bs is a bias, epos and eneg are positive and

negative edges, reopectively. Minimizing the loss

function [23] of the proposed model makes the

scoring function smaller for f(epos) and larger for

f(eneg). The loss function along with the

regularization function is implemented as

 t

regL L L= + . The parameter λ is weight loss and

the L2 function is used to avoid over-fitting. The

overall loss function of the model is the sum of the

loss functions in timestamps and is implemented as

1

t

tL L= .

4. Experiments

We evaluate our model's anomaly detection

capabilities on the UCI and Digg datasets. The data

is split 80/20 for training and testing, respectively.

To assess performance, ground truth labels are

introduced into the test set. These labels are binary

(1: anomalous edge, 0: normal edge), and added as

a new column. Anomaly injection is employed for

further evaluation. During testing for each

timestamp (Gt), synthetic anomalies are generated

by connecting a specific number of non-adjacent

node pairs. The anomaly ratio (pA) controls the

number of injected anomalies, representing the

percentage of anomalous edges relative to the

original positive edges (mt) at that timestamp.

Three anomaly ratios (1%, 5%, 10%) are

introduced to evaluate the model's robustness

under varying anomaly prevalence.

4.1. Datasets

The UCI social network dataset is a popular choice

for evaluating methods in the field of dynamic

graphs due to its practicality. The UCI represents a

directed acyclic graph (DAG) of communication

within an online student community at the

University of California.

Each node corresponds to a user (identified by a

unique user number), and a directed edge indicates

a message sent from the source user (source node)

to the recipient user (destination node). The

Ashrafi-Payaman & Rabiei / Journal of AI and Data Mining Vol. 12, No. 3, 2024

364

presence of multiple edges between users signifies

the exchange of multiple messages. Notably, no

edges are removed from the dataset. In the UCI

dataset, there are no anomalous data samples. The

UCI dataset is a dense graph, the ratio of the

number of nodes to the available edges is a high

number. The weight of each edge is determined by

counting the number of edges between a pair of

vertices. The growth rate of the graph in the UCI

dataset is incremental and abrupt, and short-term

time dependencies exist between its generated

edges. The data set includes a total of 196 days. The

UCI dataset consists of four columns, source node,

destination node, edge weight, and Unix

timestamp.

The Digg dataset is a graph based on users'

responses to the news-social website Digg. Each

node in the graph represents a user and each

directed edge represents a user's response to

another user. The original name of the dataset is

munmun_digg_reply and its graph has a loop. The

graph of the data set is unweighted multi-directed,

each edge is labeled with a Timestamp. The total

time of the dataset is 15 days. Digg behaves

uniformly and in the Digg dataset, time

dependencies are also short-term.

Table 1 indicates the statistical attributes of a

datasets that has been used in this paper.

Table 1. Details of the datasets.

Dataset

value

UCI

Digg

of nodes 1899 30398

of edges 59835 87627

of unique edges 20296 86404

Maximum degree 1546 310

4.2. Model Assessment Criteria and

Configuration metric and settings

We present the evaluation metrics used to compare

our model's performance against baseline models.

AUC: AUC, or Area Under the Curve, is a metric

used to evaluate the performance of classification

models. It considers both the True Positive Rate

(TPR) and False Positive Rate (FPR) and

summarizes their relationship in a single value. A

higher AUC score (closer to 1) generally indicates

a more accurate model.

Confusion Matrix: The confusion matrix measures

the efficiency of classification problems where the

output can be two or more classes. This matrix is a

combination of predicted and actual values. The

confusion matrix is often used to describe the

performance of a classifier on a test set whose

ground truth values are known. Two types of error,

including False Negative error (YReal = 1, but

Ypredict = 0) and False Positive error (Yreal = 0, but

Ypredict = 1) are represented by a confusion matrix.

Note that one means abnormality and zero means

normal.

4.3. Baselines

We assessed our model's performance by

benchmarking its accuracy against baseline

models.

GOutlier: It is the first paper published on the topic

of anomalous edge detection in dynamic graphs by

statistical and probabilistic models. It uses the

structural connections approach to discover

outliers or anomalous edges in a stream of edges. It

uses the graph partitioning method to manage the

volume and high speed of input edges to the model

[5].

CM-Sketch: This model is proposed for detecting

outlier data (abnormal edge) in a stream of edges

by statistical and probabilistic models. This model

uses the global and local structural dependencies of

the stream graph to detect outliers. Sketch-based

approximation methods and Count-Min sketch data

structures have been used to detect anomalous

edges in dynamic graphs [7].

NetWalk: This is the first paper that used deep

learning approaches combined with graph

embedding methods to detect anomalous edges in

dynamic graphs. This model uses an encoder based

on a random walk to generate the embedding

vectors of the dynamic graph nodes and then

models the dynamic graph by dynamic update

reservoirs. Finally, an anomaly function based on

dynamic clustering is used to score the anomalous

edges [10].

The proposed model is implemented on a server

with RTX 6000-16GB graphics processor, Intel-

Xeon-4214R processor (2.50 GHz), and 32 GB

RAM. We use PyCharm version 2024, Python

version 3.7, and packages such as Numpy, Pandas,

ScikitLearn, MatPlotLib, PyG, Pytorch, and

Pytorch Geometric Temporal.

The parameters of the proposed model can be

optimized by 5-fold cross-validation. By default,

for neighbor sampling, we limit the search to 1- hop

neighbors (immediate neighbors) within a time

window of size 4. Both the embedding vectors and

feature vectors are set to a dimensionality of 32.

The graph neural network model utilizes two

layers, with the outputs from each layer

concatenated to form the final embedding vectors.

The proposed model is trained by the Adam

optimizer with a learning rate of 0.001 for 100

epochs in 32 batches. Batch normalization and a

drop rate of 0.3 are used.

Anomaly detection in dynamic graphs using machine learning algorithms

365

The GRU hidden vector size is set to 256. To create

snapshots, each 1000 edges in the UCI dataset is

divided into one timestamp. The parameters of the

proposed model are updated with the

backpropagation algorithm. The LeakyRelu

activation function is used for all layers except the

output layer of GCN. The aggregation function of

GCN is implemented with attention and the update

function is a multilayer perceptron.

The sort-polling rate is set to 0.6. The normal

distribution has been used for the initial weights of

the graph neural network and multilayer neural

network.

4.4. Results and Discussion

Results are discussed and the outputs of model will

be compared with baseline models. The results of

model on the dataset compare with the Goutlier,

CM-Sketch, and NetWalk in three cases of 1%,

5%, and 10% anomaly rate, and we use the 80% of

datasets for train, and 20% of its for test.

As can be seen from the results (Figure 2 and

Figure 3) for the UCI and Digg datasets, the model

outperforms all baselines with different anomaly

ratios. Compared to the best results for the UCI, the

proposed model has performed 10% better on

average.

For tes, the number of edges is equal to 4060, and

no edge is removed. The number of timestamps is

equal to 4 snapshots. The number of anomaly edges

in the UCI test set is 40 (4020 normal edges), 203

(3857 normal edges), and 406 (3654 normal edges)

in proportions of one percent, five percent, and ten

percent, respectively.

Compared to the best results for the Digg, the

proposed model has performed more than 10%

better on average. For test, the number of edges is

equal to 15675, and no edge is removed. The

number of timestamps is equal to 3 snapshots.

The parameters and factors that have been changed

and tested to reach the best accuracy and parameter

value are: edge weight, node feature vector,

number of time stamps, learning rate, the number

of epochs, initial distribution of neural network

weight, types of Graph neural networks, Attention

mechanism model, polling methods, pooling rate,

number of models layers, aggregation function and

activity function.

Table 2 shows the comparison of AUC in the UCI

and Digg datasets in three 1%, 5%, and 10%

anomaly states.

Table 3 shows an average of all the real and

predicted values of the test set confusion matrices

with a 1% anomaly ratio for UCI and Digg datasets.

Figure 2. Evaluating AUC values for the proposed model

in three cases on the UCI dataset.

Figure 3. Evaluating AUC values for the proposed model

in three cases on the Digg dataset.

Table 2. Comparing AUC values in baseline models.

Criterion AUC (UCI) AUC (Digg)

Method 1% 5% 10% 1% 5% 10%

Goutlier 0.71 0.70 0.67 0.69 0.67 0.63

Sketch 0.72 0.70 0.67 0.68 0.65 0.61

NetWalk 0.77 0.76 0.68 0.75 0.71 0.68

Our model 0.83 0.85 0.72 0.88 0.89 0.89

Table 3. Confusion matrices with a 1% anomaly.

Criterion

Dataset

TP

FP

TN

FN

UCI 35 20 4000 5

Digg 154 107 17001 19

In Table 3, TP, FP, TN, and FN are abbreviations

of True Positive, False Positive, True Negative, and

False Negative, respectively.

According to Table 3, in the UCI dataset, 20 edges

with the norm label have been wrongly recognized

as anomalous data samples. Out of 4020 available

normal edges, 20 edges are wrongly detected as

abnormal samples, in some applications, the

number of false positives can lead to unnecessary

warnings or actions that may have negative

consequences. In the proposed model, only 0.5% of

the total edges of the norm are wrongly identified

as abnormal. Also, in the dataset, 5 edges with

anomaly labels out of 40 anomalous edges are

Ashrafi-Payaman & Rabiei / Journal of AI and Data Mining Vol. 12, No. 3, 2024

366

wrongly identified as norm data class (false

negative). In the proposed model, 12.5% of all

abnormal edges are mistakenly recognized as

normal. For UCI dataset, precision is 63%, Recall

is 87%, and, F1-score is 73%.

Now let's see why our model is better. The training

set is divided into timestamps in such a way that

the number of timestamps is reasonable so that the

time complexity does not increase and the

timestamp length is large enough so that the graph

structure appears in each time stamp. The proposed

model learns the spatio-temporal dependencies of

the dynamic graph without removing any

information and by learning the embedding vectors

simultaneously and end-to-end along with the

feature vector of the nodes and preserves the local

structural and global temporal dynamics. By

considering a time window, the local temporal

dynamics are learned in the dynamic graph. To

predict the edge the next time, instead of accessing

all the past edges, the model is limited to a fixed

window w of past interactions, which reduces the

time and memory computational complexity.

Because the proposed model is trained with an

efficient negative sampling strategy, the robustness

of the model is guaranteed under different anomaly

ratios. The proposed model has a high true positive

rate while keeping the false positive rate relatively

low. Each node receives the most influence from

its first-hop neighbors, and sampling the first-hop

neighbors on each timestamps reduces the time and

memory complexity of the model, and the training

of the model is done more optimally than when the

entire graph is entered into the model.

Due to the use of synthetic feature vectors for

dynamic graph nodes, attributed graphs are

supported in this model. By creating the initial

feature vector for the graph nodes, using the node

labeling function, the role of each node in the target

edge is determined and richer vectors are obtained.

In anomaly detection, the data samples of the

normal and anomalous classes are unbalanced, and

the challenge of the unbalanced class has been well

overcome by the proposed method. It has been tried

to make a trade-off between speed (running time of

anomaly detection algorithm) and accuracy of the

model. In the graph convolutional network used in

the proposed model, skip connections have been

used along with normalization with attention

aggregation function to obtain richer features.

Due to the use of a global-contextual attention

mechanism along with GRU, the accuracy of the

proposed model has increased significantly

compared to other previous research, because the

attention mechanism scores the embedding vectors

output from the graph neural network based on

their similarity.

By using graph pooling and parameter sharing,

model tuning is effectively performed, which

focuses on model efficiency instead of focusing on

the embedding vectors of nodes. Therefore, for

graphs with unseen nodes, the model shows high

performance. In this case, a more effective node

representation can be learned and is not sensitive to

the addition and deletion of nodes. The loss

function of the proposed model is implemented

with the regularization function to avoid overfitting

and the direction of the dynamic graph is

considered in this model.

5. Conclusion

A critical challenge in graph data analysis lies in

effectively representing dynamic graphs. This

representation should capture both the structural

properties and the temporal evolution of the graph

to the greatest extent possible.

In this research, an efficient graph convolution

neural network with Attention-GRU was

introduced to detect anomaly edges in dynamic

graphs. In this research, by using negative

sampling, 1-hop sampling neighbors of the target

edge, multi-layer graph convolutional neural

network with residual layer, and Attention-GRU,

we achieved a higher accuracy than previous one.

On average, on the UC Irvine messages dataset,

with the AUC and confusion matrix evaluation

metrics, the proposed model outperforms baseline

methods in directed dynamic graphs by 10 percent

on average. The proposed model has been

evaluated on another dataset (Digg) and compared

to previous research, higher accuracy has been

obtained.

The following suggestions are proposed for future

works: Generalizing abnormal edge detection in

dynamic graphs to abnormal trend and event

detection in dynamic graphs, using meta-heuristic

methods to optimize objective function parameters,

combining statistical and probabilistic learning

models with graph neural networks to model

uncertainty with the help of hidden random

variables, using GAN with self-supervised learning

for anomaly detection in continuous time dynamic

graph.

References
[1] M. Khazaei, and N. Ashrafi-Payaman. "An

Unsupervised Anomaly Detection Model for Weighted

Heterogeneous Graph", Journal of AI and Data Mining,

vlo. 11, no. 2, pp. 237-245, 2023.

Anomaly detection in dynamic graphs using machine learning algorithms

367

[2] V. Chandola, A. Banerjee, and V. Kumar. "Anomaly

detection: A survey", ACM computing surveys (CSUR),

vol. 41, no. 3, pp. 1-58, 2009.

[3] V. Yepmo, G. Smits, and O. Pivert. "Anomaly

explanation: A review", Data & Knowledge

Engineering, vol. 137, p. 101946, 2022.

[4] A. Sgueglia, A. Di Sorbo, C. Aaron Visaggio, and G.

Canfora", A systematic literature review of IoT time

series anomaly detection solutions." Future Generation

Computer Systems, vol. 134, pp. 170-186, 2022.

[5] C. Aggarwal, Y. Zhao, and S. Yu Philip. "Outlier

detection in graph streams", In 2011 IEEE 27th

international conference on data engineering, 2011, pp.

399-409.

[6] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra.

"Spotlight: Detecting anomalies in streaming graphs", In

Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining,

2018, pp. 1378-1386.

[7] S. Ranshous, S. Harenberg, K. Sharma, and N. F.

Samatova. "A scalable approach for outlier detection in

edge streams using sketch-based approximations", In

Proceedings of the 2016 SIAM international conference

on data mining, Society for Industrial and Applied

Mathematics, 2016, pp. 189-197.

[8] E. Manzoor, M. Sadegh Milajerdi, and L. Akoglu.

"Fast memory-efficient anomaly detection in streaming

heterogeneous graphs", In Proceedings of the 22nd

ACM SIGKDD international conference on knowledge

discovery and data mining, 2016, pp. 1035-1044.

[9] K. Sricharan, and K. Das. "Localizing anomalous

changes in time-evolving graphs", In Proceedings of the

2014 ACM SIGMOD international conference on

Management of data, 2014, pp. 1347-1358.

[10] W. Yu, W. Cheng, C. Aggarwal, K. Zhang, H.

Chen, and W. Wang. "Netwalk: A flexible deep

embedding approach for anomaly detection in dynamic

networks", In Proceedings of the 24th ACM SIGKDD

international conference on knowledge discovery &

data mining, 2018, pp. 2672-2681.

[11] Y. Liu, S. Pan, Y. Guang Wang, F. Xiong, L.Wang,

Q. Chen, and V. Lee. "Anomaly detection in dynamic

graphs via transformer", IEEE Transactions on

Knowledge and Data Engineering, vol. 35, no. 12, pp.

12081-12094, 2021.

[12] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao. "AddGraph:

Anomaly Detection in Dynamic Graph Using Attention-

based Temporal GCN", In IJCAI, vol. 3, p. 7, 2019.

[13] C. Yang, L. Zhou, H. Wen, Z. Zhou, and Y. Wu.

"H-VGRAE: A hierarchical stochastic spatial-temporal

embedding method for robust anomaly detection in

dynamic networks", arXiv preprint, arXiv:2007.06903,

2020.

[14] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H.

Chen. "Structural temporal graph neural networks for

anomaly detection in dynamic graphs", In Proceedings

of the 30th ACM international conference on

Information & Knowledge Management, 2021, pp.

3747-3756.

[15] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu,

L. Wang, C. Li, and M. Sun. "Graph neural networks: A

review of methods and applications", AI open Journal,

vol. 1, pp. 57-81, 2020.

[16] B. Jiandong, J. Zhu, Y. Song, L. Zhao, Z. Hou, R.

Du, and H. Li. "A3t-gcn: Attention temporal graph

convolutional network for traffic forecasting", ISPRS

International Journal of Geo-Information, vol. 10, no.

7, p. 485, 2021.

[17] A. Longa, V. Lachi, G. Santin, M. Bianchini, B.

Lepri, P. Lio, F. Scarselli, and A. Passerini. "Graph

Neural Networks for temporal graphs: State of the art,

open challenges, and opportunities", arXiv preprint,

arXiv:2302.01018, 2023.

[18] Z. Yang, G. Zhang, J. Wu, J. Yang, Q. Sheng, S.

Xue, C. Zhou et al. "A Comprehensive Survey of Graph-

level Learning", arXiv preprint, arXiv: 2301.05860,

2023.

[19] J. Skarding, B. Gabrys, and K. Musial.

"Foundations and modeling of dynamic networks using

dynamic graph neural networks: A survey", IEEE

Access, vol. 9, no. 3, pp. 79143 - 79168, 2021.

[20] C. Li, Y. Liu, and L. Zou. "DynGCN: A dynamic

graph convolutional network based on spatial-temporal

modeling", In Web Information Systems Engineering–

WISE 2020: 21st International Conference, Amsterdam,

The Netherlands, October 20–24, 2020, Proceedings,

Part I 21, 2020, pp. 83-95.

[21] W. Hamilton, Z. Ying, and J. Leskovec. "Inductive

representation learning on large graphs", Advances in

neural information processing systems, vol 30, 2017.

[22] A. Deng, and B. Hooi. "Graph neural network-

based anomaly detection in multivariate time series", In

Proceedings of the AAAI conference on artificial

intelligence, vol. 35, no. 5, pp. 4027-4035, 2021.

[23] R. Morshedi, S. M. Matinkhah, and M. T. Sadeghi,

"Intrusion Detection for IoT Network Security with

Deep learning", Journal of AI and Data Mining, vol. 12,

no. 1, pp. 37-55, 2024.

 .1403سال ،دوره دوازدهم، شماره سوم ،کاویمجله هوش مصنوعی و داده اشرفی پیامن و ربیعی

 های یادگیری ماشینتشخیص ناهنجاری در گراف پویا با استفاده از الگوریتم

 *نصرتعلی اشرفی پیامن و پوریا ربیعی

 . تهران، ایران، دانشگاه خوارزمی، مهندسی و دانشکده فنی، گروه آموزشی مهندسی برق و کامپیوتر1

 21/08/1403 پذیرش؛ 16/08/1403 بازنگری؛ 22/03/1403 ارسال

 چکیده:

که رفتار یهایها و یالهای با ساختار گرافی با سرعت زیادی در حال افزایش است. تشخیص ساختارهای ناهنجار در گراف مثل گرهتولید داده نرخامروزه

های ساختاری گراف پویا ویژگیابتدا ،باشد. در این کار تحقیقیت زیادی میآنها با رفتار مورد انتظار شبکه انحراف دارد در کاربردهای واقعی دارای اهمیّ

شوند پویا استخراج می های زمانی کوتاه مدت گرافگیژ، ویGRUهای عصبی پیچشی استخراج شده و سپس توسط شبکه عصبی زمانی مثل شبکه توسط

در نهایت با استفاده از یک شوند. های زمانی طولانی مدت در نظر گرفته می، وابستگیGRUو در ادامه با استفاده از مکانیسم توجه تجمیع شده با

 UC Irvineجموعه داده ــم شود. نتایج تجربی روی دوبندی کننده مبتنی بر شبکه عصبی، یال ناهنجار در هر مهر زمانی تشخیص داده میطبقه

messages وDigg و در مقایسه با سه روش مرجعGoutlier ،Netwalk وCMSketch دقت دهد که روش پیشنهادی در این مقاله دارای نشان می

باشد. می 15و % 10ترتیب %به Diggو UC Irvine messagesدو مجموعه داده برای دقت بهبودو میزان بودههای ناهنجار بهتری در تشخیص یال

 .شده استارزیابی درصد 10و 5، 1و ماتریس درهمی برای ترزیق ناهنجاری به میزان AUCهمچنین مدل پیشنهادی با معیارهای در این پژوهش

 تشخیص ناهنجاری، یادگیری ماشین، گراف پویا، شبکه عصبی گرافی، تشیخص ناهنجاری مبتنی بر گراف. :کلمات کلیدی

