[1] M. Khazaei, and N. Ashrafi-Payaman. "An Unsupervised Anomaly Detection Model for Weighted Heterogeneous Graph", Journal of AI and Data Mining, vlo. 11, no. 2, pp. 237-245, 2023.
[2] V. Chandola, A. Banerjee, and V. Kumar. "Anomaly detection: A survey", ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1-58, 2009.
[3] V. Yepmo, G. Smits, and O. Pivert. "Anomaly explanation: A review", Data & Knowledge Engineering, vol. 137, p. 101946, 2022.
[4] A. Sgueglia, A. Di Sorbo, C. Aaron Visaggio, and G. Canfora", A systematic literature review of IoT time series anomaly detection solutions." Future Generation Computer Systems, vol. 134, pp. 170-186, 2022.
[5] C. Aggarwal, Y. Zhao, and S. Yu Philip. "Outlier detection in graph streams", In 2011 IEEE 27th international conference on data engineering, 2011, pp. 399-409.
[6] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra. "Spotlight: Detecting anomalies in streaming graphs", In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1378-1386.
[7] S. Ranshous, S. Harenberg, K. Sharma, and N. F. Samatova. "A scalable approach for outlier detection in edge streams using sketch-based approximations", In Proceedings of the 2016 SIAM international conference on data mining, Society for Industrial and Applied Mathematics, 2016, pp. 189-197.
[8] E. Manzoor, M. Sadegh Milajerdi, and L. Akoglu. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs", In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1035-1044.
[9] K. Sricharan, and K. Das. "Localizing anomalous changes in time-evolving graphs", In Proceedings of the 2014 ACM SIGMOD international conference on Management of data, 2014, pp. 1347-1358.
[10] W. Yu, W. Cheng, C. Aggarwal, K. Zhang, H. Chen, and W. Wang. "Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks", In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 2672-2681.
[11] Y. Liu, S. Pan, Y. Guang Wang, F. Xiong, L.Wang, Q. Chen, and V. Lee. "Anomaly detection in dynamic graphs via transformer", IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12081-12094, 2021.
[12] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao. "AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN", In IJCAI, vol. 3, p. 7, 2019.
[13] C. Yang, L. Zhou, H. Wen, Z. Zhou, and Y. Wu. "H-VGRAE: A hierarchical stochastic spatial-temporal embedding method for robust anomaly detection in dynamic networks", arXiv preprint, arXiv:2007.06903, 2020.
[14] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen. "Structural temporal graph neural networks for anomaly detection in dynamic graphs", In Proceedings of the 30th ACM international conference on Information & Knowledge Management, 2021, pp. 3747-3756.
[15] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. "Graph neural networks: A review of methods and applications", AI open Journal, vol. 1, pp. 57-81, 2020.
[16] B. Jiandong, J. Zhu, Y. Song, L. Zhao, Z. Hou, R. Du, and H. Li. "A3t-gcn: Attention temporal graph convolutional network for traffic forecasting", ISPRS International Journal of Geo-Information, vol. 10, no. 7, p. 485, 2021.
[17] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio, F. Scarselli, and A. Passerini. "Graph Neural Networks for temporal graphs: State of the art, open challenges, and opportunities", arXiv preprint, arXiv:2302.01018, 2023.
[18] Z. Yang, G. Zhang, J. Wu, J. Yang, Q. Sheng, S. Xue, C. Zhou et al. "A Comprehensive Survey of Graph-level Learning", arXiv preprint, arXiv: 2301.05860, 2023.
[19] J. Skarding, B. Gabrys, and K. Musial. "Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey", IEEE Access, vol. 9, no. 3, pp. 79143 - 79168, 2021.
[20] C. Li, Y. Liu, and L. Zou. "DynGCN: A dynamic graph convolutional network based on spatial-temporal modeling", In Web Information Systems Engineering–WISE 2020: 21st International Conference, Amsterdam, The Netherlands, October 20–24, 2020, Proceedings, Part I 21, 2020, pp. 83-95.
[21] W. Hamilton, Z. Ying, and J. Leskovec. "Inductive representation learning on large graphs", Advances in neural information processing systems, vol 30, 2017.
[22] A. Deng, and B. Hooi. "Graph neural network-based anomaly detection in multivariate time series", In Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 5, pp. 4027-4035, 2021.
[23] R. Morshedi, S. M. Matinkhah, and M. T. Sadeghi, "Intrusion Detection for IoT Network Security with Deep learning", Journal of AI and Data Mining, vol. 12, no. 1, pp. 37-55, 2024.