[1] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph neural network,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 793–803.
[2] W. Eberle and L. Holder, “Discovering structural anomalies in graph-based data,” Proc. - IEEE Int. Conf. Data Mining, ICDM, pp. 393–398, 2007.
[3] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting Anomalies in Weighted Graphs,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Vol. 6119 LNAI, No. PART 2, pp. 410–421, 2010.
[4] E. Muller, P. I. Sanchez, Y. Mulle, and K. Bohm, “Ranking outlier nodes in subspaces of attributed graphs,” Proc. - Int. Conf. Data Eng., pp. 216–222, 2013.
[5] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, “SCAN: A Structural Clustering Algorithm for Networks,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 824–823, 2007.
[6] H. Sun, J. Huang, J. Hanr, H. Deng, P. Zhaor, and B. Feng, “gSkeletonClu: Density-based network clustering via structure-connected tree division or agglomeration,” in Proceedings - IEEE International Conference on Data Mining, ICDM, 2010, No. c, pp. 481–490.
[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–14, 2017.
[8] H. S. Sarvarani and F. Abdali-mohammadi, “An Ensemble Convolutional Neural Networks for Detection of Growth Anomalies in Children with X-ray Images,” J. AI Data Min., Vol. 10, No. 4, pp. 479–492, 2022.
[9] B. Perozzi and S. Skiena, “DeepWalk : Online Learning of Social Representations,” in KDD ’14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 701–710.
[10] A. Grover, “node2vec : Scalable Feature Learning for Networks,” in KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–864.
[11] J. Tang and M. Qu, “LINE : Large-scale Information Network Embedding,” in WWW ’15: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 1067–1077.
[12] D. Duan, L. Tong, Y. Li, J. Lu, L. Shi, and C. Zhang, “AANE: Anomaly aware network embedding for anomalous link detection,” Proc. - IEEE Int. Conf. Data Mining, ICDM, Vol. 2020-Novem, No. Icdm, pp. 1002–1007, 2020.
[13] S. Bandyopadhyay, N. Lokesh, S. V. Vivek, and M. N. Murty, “Outlier resistant unsupervised deep architectures for attributed network embedding,” WSDM 2020 - Proc. 13th Int. Conf. Web Search Data Min., pp. 25–33, 2020.
[14] K. Ding, J. Li, N. Agarwal, and H. Liu, “Inductive anomaly detection on attributed networks,” IJCAI Int. Jt. Conf. Artif. Intell., Vol. 2021-Janua, No. 1, pp. 1288–1294, 2020.
[15] W. Khan and M. Haroon, “An unsupervised deep learning ensemble model for anomaly detection in static attributed social networks,” Int. J. Cogn. Comput. Eng., Vol. 3, No. August, pp. 153–160, 2022.
[16] Y. Li, X. Huang, J. Li, M. Du, and N. Zou, “SpeCAE: Spectral autoencoder for anomaly detection in attributed networks,” Int. Conf. Inf. Knowl. Manag. Proc., pp. 2233–2236, 2019.
[17] S. X. Rao et al., “xFraud: Explainable Fraud Transaction Detection,” Proc. VLDB Endow., Vol. 15, No. 3, pp. 427–436, 2021.
[18] D. Wang et al., “A semi-supervised graph attentive network for financial fraud detection,” Proc. - IEEE Int. Conf. Data Mining, ICDM, Vol. 2019-Novem, No. 1, pp. 598–607, 2019.
[19] Y. Yang, Z. Guan, J. Li, W. Zhao, J. Cui, and Q. Wang, “Interpretable and Efficient Heterogeneous Graph Convolutional Network,” IEEE Transactions on Knowledge and Data Engineering, Vol. 35, No. 2. pp. 1637–1650, 2023.
[20] G. Pang, A. Van Den Hengel, C. Shen, and L. Cao, “Toward Deep Supervised Anomaly Detection: Reinforcement Learning from Partially Labeled Anomaly Data,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1298–1308, 2021.
[21] K. Zhao et al., “Deep Adversarial Completion for Sparse Heterogeneous Information Network Embedding,” Web Conf. 2020 - Proc. World Wide Web Conf. WWW 2020, Vol. 1, pp. 508–518, 2020.
[22] N. Ashrafi-Payaman, M. R. Kangavari, S. Hosseini, and A. M. Fander, “GS4: Graph stream summarization based on both the structure and semantics,” J. Supercomput., Vol. 77, pp. 2713–2733, 2021.
[23] N. Ashrafi-Payaman and M. R. Kangavari, “Graph hybrid summarization,” J. AI Data Min., Vol. 6, No. 2, pp. 335–340, 2018.
[24] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Adv. Neural Inf. Process. Syst., Vol. 2017-Decem, No. Nips, pp. 1025–1035, 2017.
[25] P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, and Y. Bengio, “Graph attention networks,” 6th Int. Conf. Learn. Represent. ICLR 2018 - Conf. Track Proc., pp. 1–12, 2018.
[26] X. Ma et al., “A Comprehensive Survey on Graph Anomaly Detection with Deep Learning,” IEEE Trans. Knowl. Data Eng., No. August, 2021.
[27] A. Jinwon and C. Sungzoon, “Variational Autoencoder based Anomaly Detection using Reconstruction Probability,” Special lecture on IE 2.1, 2015.
[28] S. Xiuyao, W. Mingxi, C. Jermaine, and S. Ranka, “Conditional anomaly detection,” IEEE Trans. Knowl. Data Eng., Vol. 19, No. 5, pp. 631–644, 2007.
[29] K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed networks,” WSDM 2019 - Proc. 12th ACM Int. Conf. Web Search Data Min., pp. 357–365, 2019.
[30] Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng, “Anomalous: A joint modeling approach for anomaly detection on attributed networks,” IJCAI Int. Jt. Conf. Artif. Intell., Vol. 2018-July, pp. 3513–3519, 2018.
[31] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on attributed networks,” SIAM Int. Conf. Data Mining, SDM 2019, No. 2, pp. 594–602, 2019.
[32] H. Fan, F. Zhang, and Z. Li, “Anomalydae: Dual Autoencoder for Anomaly Detection on Attributed Networks,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., Vol. 2020-May, pp. 5685–5689, 2020.
[33] Z. Chen, B. Liu, M. Wang, P. Dai, J. Lv, and L. Bo, “Generative Adversarial Attributed Network Anomaly Detection,” in International Conference on Information and Knowledge Management, Proceedings, 2020, pp. 1989–1992.