H.6.2.2. Fuzzy set
N. Mohammadkarimi; V. Derhami
Abstract
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states ...
Read More
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to improvement the above challenge. A zero order Sugeno fuzzy model used as fuzzy system structure. At first by using clustering obtains the number of rules and input membership functions. A set of candidate amounts for consequence parts of fuzzy rules is considered. Considering each pair of training data, according which rules fires and what is the output in the pair, the amount of probability of consequences candidates are change. In the next step, eligibility probability of each consequence candidate for all rules is determined. Finally, using these obtained probability, two probable outputs is generate for each input. The experimental results show superiority of the proposed approach rather than some available well-known approaches that makes reduce the number of rule and reduce system complexity.
H.6.2.2. Fuzzy set
N. Moradkhani; M. Teshnehlab
Abstract
Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy ...
Read More
Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algorithm is applied for tuning the parameters of antecedent and consequent parts of fuzzy rules. In addition, the optimal inputs of the system are selected by genetic algorithm (GA) to achieve less complexity in fuzzy system. The data related to Saveh White Cement (SWC) factory is used in simulations. The Results demonstrate that the proposed identifier has a better performance in comparison with neural and fuzzy models have presented earlier for the same data. Furthermore, in this paper TSNFS is evaluated in noisy condition which had not been worked out before in related researches. Simulations show that this model has a proper performance in different noisy condition.
H.6.2.2. Fuzzy set
Sh. Asadi; Seyed M. b. Jafari; Z. Shokrollahi
Abstract
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate ...
Read More
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills. Once similar students are found, dependencies between student course selections are examined using fuzzy association rules mining. The application of clustering and fuzzy association rules results in appropriate recommendations and a predicted score. In this study, a collection of data on undergraduate students at the Management and Accounting Faculty of College of Farabi in University of Tehran is used. The records are from 2004 to 2015. The students are divided into two clusters according to Educational background and demographics. Finally, recommended courses and predicted scores are given to students. The mined rules facilitate decision-making regarding course selection.
H.6.2.2. Fuzzy set
M. Moradizirkohi; S. Izadpanah
Abstract
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID ...
Read More
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the control design parameters to achieve a desired performance. It is worthy of note that to form control law by considering practical considerations just the available feedbacks are used. It is beneficial for industrial applications wherethe real-time computation is costly. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts. The stability is guaranteed in the presence of both structured and unstructured uncertainties. As a result, all system states are remained bounded. Simulation results on a two-link flexible-joint robot show the efficiency of the proposed scheme.
H.6.2.2. Fuzzy set
M. M. Fateh; S. Azargoshasb
Abstract
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances ...
Read More
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimation error using a gradient descent algorithm. The proposed discrete control is robust against all uncertainties as verified by stability analysis. The proposed robust control law is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results show the effectiveness of the control approach.