H.3. Artificial Intelligence
Zeinab Poshtiban; Elham Ghanbari; Mohammadreza Jahangir
Abstract
Analyzing the influence of people and nodes in social networks has attracted a lot of attention. Social networks gain meaning, despite the groups, associations, and people interested in a specific issue or topic, and people demonstrate their theoretical and practical tendencies in such places. Influential ...
Read More
Analyzing the influence of people and nodes in social networks has attracted a lot of attention. Social networks gain meaning, despite the groups, associations, and people interested in a specific issue or topic, and people demonstrate their theoretical and practical tendencies in such places. Influential nodes are often identified based on the information related to the social network structure and less attention is paid to the information spread by the social network user. The present study aims to assess the structural information in the network to identify influential users in addition to using their information in the social network. To this aim, the user’s feelings were extracted. Then, an emotional or affective score was assigned to each user based on an emotional dictionary and his/her weight in the network was determined utilizing centrality criteria. Here, the Twitter network was applied. Thus, the structure of the social network was defined and its graph was drawn after collecting and processing the data. Then, the analysis capability of the network and existing data was extracted and identified based on the algorithm proposed by users and influential nodes. Based on the results, the nodes identified by the proposed algorithm are considered high-quality and the speed of information simulated is higher than other existing algorithms.
H.3. Artificial Intelligence
Akram Pasandideh; Mohsen Jahanshahi
Abstract
Link prediction (LP) has become a hot topic in the data mining, machine learning, and deep learning community. This study aims to implement bibliometric analysis to find the current status of the LP studies and investigate it from different perspectives. The present study provides a Scopus-based bibliometric ...
Read More
Link prediction (LP) has become a hot topic in the data mining, machine learning, and deep learning community. This study aims to implement bibliometric analysis to find the current status of the LP studies and investigate it from different perspectives. The present study provides a Scopus-based bibliometric overview of the LP studies landscape since 1987 when LP studies were published for the first time. Various kinds of analysis, including document, subject, and country distribution are applied. Moreover, author productivity, citation analysis, and keyword analysis is used, and Bradford’s law is applied to discover the main journals in this field. Most documents were published by conferences in the field. The majority of LP documents have been published in the computer science and mathematics fields. So far, China has been at the forefront of publishing countries. In addition, the most active sources of LP publications are lecture notes in Computer Science, including subseries lecture notes in Artificial Intelligence (AI) and lecture notes in Bioinformatics, and IEEE Access. The keyword analysis demonstrates that while social networks had attracted attention in the early period, knowledge graphs have attracted more attention, recently. Since the LP problem has been approached recently using machine learning (ML), the current study may inform researchers to concentrate on ML techniques. This is the first bibliometric study of “link prediction” literature and provides a broad landscape of the field.
A. Hashemi; M. A. Zare Chahooki
Abstract
Social networks are valuable sources for marketers. Marketers can publish campaigns to reach target audiences according to their interest. Although Telegram was primarily designed as an instant messenger, it is used as a social network in Iran due to censorship of Facebook, Twitter, etc. Telegram neither ...
Read More
Social networks are valuable sources for marketers. Marketers can publish campaigns to reach target audiences according to their interest. Although Telegram was primarily designed as an instant messenger, it is used as a social network in Iran due to censorship of Facebook, Twitter, etc. Telegram neither provides a marketing platform nor the possibility to search among groups. It is difficult for marketers to find target audience groups in Telegram, hence we developed a system to fill the gap. Marketers use our system to find target audience groups by keyword search. Our system has to search and rank groups as relevant as possible to the search query. This paper proposes a method called GroupRank to improve the ranking of group searching. GroupRank elicits associative connections among groups based on membership records they have in common. After detailed analysis, five-group quality factors have been introduced and used in the ranking. Our proposed method combines TF-IDF scoring with group quality scores and associative connections among groups. Experimental results show improvement in many different queries.
H. Rahmani; H. Kamali; H. Shah-Hosseini
Abstract
Nowadays, a significant amount of studies are devoted to discovering important nodes in graph data. Social networks as graph data have attracted a lot of attention. There are various purposes for discovering the important nodes in social networks such as finding the leaders in them, i.e. the users who ...
Read More
Nowadays, a significant amount of studies are devoted to discovering important nodes in graph data. Social networks as graph data have attracted a lot of attention. There are various purposes for discovering the important nodes in social networks such as finding the leaders in them, i.e. the users who play an important role in promoting advertising, etc. Different criteria have been proposed in discovering important nodes in graph data. Measuring a node’s importance by a single criterion may be inefficient due to the variety of graph structures. Recently, a combination of criteria has been used in the discovery of important nodes. In this paper, we propose a system for the Discovery of Important Nodes in social networks using Genetic Algorithms (DINGA). In our proposed system, important nodes in social networks are discovered by employing a combination of eight informative criteria and their intelligent weighting. We compare our results with a manually weighted method, that uses random weightings for each criterion, in four real networks. Our method shows an average of 22% improvement in the accuracy of important nodes discovery.
D. Data
M. Zarezade; E. Nourani; Asgarali Bouyer
Abstract
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable ...
Read More
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as instability, low accuracy, randomness, etc. The G-CN algorithm is one of local methods that uses the same label propagation as the LPA method, but unlike the LPA, only the labels of boundary nodes are updated at each iteration that reduces its execution time. However, it has resolution limit and low accuracy problem. To overcome these problems, this paper proposes an improved community detection method called SD-GCN which uses a hybrid node scoring and synchronous label updating of boundary nodes, along with disabling random label updating in initial updates. In the first phase, it updates the label of boundary nodes in a synchronous manner using the obtained score based on degree centrality and common neighbor measures. In addition, we defined a new method for merging communities in second phase which is faster than modularity-based methods. Extensive set of experiments are conducted to evaluate performance of the SD-GCN on small and large-scale real-world networks and artificial networks. These experiments verify significant improvement in the accuracy and stability of community detection approaches in parallel with shorter execution time in a linear time complexity.
H.3. Artificial Intelligence
S. Roohollahi; A. Khatibi Bardsiri; F. Keynia
Abstract
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and ...
Read More
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire network. This paper proposes a sampling algorithm that equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning automata. Evaluator unit evaluates each edge and then decides whether edge and corresponding node should be added to the sample set. In The proposed algorithm, each main activity graph node is equipped with a simple learning automaton. The proposed algorithm is compared with the best current sampling algorithm that was reported in the Kolmogorov-Smirnov test (KS) and normalized L1 and L2 distances in real networks and synthetic networks presented as a sequence of edges. Experimental results show the superiority of the proposed algorithm.